×
01.09.2018
218.016.8248

СПОСОБ ПОЛУЧЕНИЯ МЕТАЛЛСОДЕРЖАЩИХ НАНОРАЗМЕРНЫХ ДИСПЕРСИЙ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Настоящее изобретение относится к нефтехимической промышленности, а именно к способам получения низкоконцентрированных каталитических дисперсий для процесса получения алифатических углеводородов по методу Фишера-Тропша в трехфазном сларри-реакторе. Способ получения металлсодержащей наноразмерной дисперсии катализатора синтеза Фишера-Тропша на основе оксидов активных металлов включает растворение солей активных металлов в воде, введение полученного раствора в расплавленный нефтяной парафин при температуре выше температуры разложения указанных солей и образование указанной дисперсии катализатора, причем введение указанного раствора солей осуществляют со скоростью 20-60 мл/час при перемешивании в токе инертного газа, после чего осуществляют выдерживание до образования оксидов активных металлов и охлаждение в токе инертного газа в течение 1-6 часов, а содержание активных металлов катализатора в указанной дисперсии не превышает 3 мас.%. Технический результат - уменьшение размера частиц наноразмерной дисперсии, узкое распределение наноразмерных частиц по размерам, снижение концентрации активных металлов, снижение эксплуатационных затрат, предотвращение оседания и агломерации частиц дисперсии, обеспечение возможности ее длительного хранения без расслаивания и оседания. 2 з.п. ф-лы, 1 табл., 12 пр.
Реферат Свернуть Развернуть

Область техники

Изобретение относится к нефтехимической промышленности, а именно к способам получения низкоконцентрированных каталитических дисперсий для процесса получения алифатических углеводородов по методу Фишера-Тропша в трехфазном сларри-реакторе.

Уровень техники

Технологии формирования каталитических дисперсий непосредственно в углеводородной среде трехфазных реакторов находят все большее применение в процессах нефтехимии и нефтепереработки. В частности, перспективной технологической модификацией синтеза Фишера-Тропша в настоящее время считается синтез в присутствии катализатора, суспендированного в высококипящей углеводородной жидкости (сларри-система). При этом ультрадисперсные частицы катализатора - каталитические дисперсии - могут быть сформированы in situ непосредственно в углеводородной среде без применения. Важно отметить, что использование такой технологии позволит получать чрезвычайно активные ультрадисперсные частицы с высокоразвитой поверхностью, что делает возможным осуществлять технологический процесс с меньшей концентрацией катализатора.

Основной проблемой в использования каталитических дисперсий в промышленности является склонность этих систем к агрегации. Возможность контроля размера частиц на стадии синтеза дисперсии является важным фактором успешной реализации всего технологического процесса. Именно по этой причине наблюдается рост научного интереса к закономерностям формирования каталитических дисперсий непосредственно в реакционной зоне (in situ).

Известен способ получения металлсодержащей дисперсии катализатора синтеза Фишера-Тропша состава, мас. %: 87-95 Fe, 2-9 K2O, 1-8 Al2O3, который получают и активируют непосредственно в реакторе (см., патент РФ 2443471, кл. МПК B01J 23/745, В82В 1/00, B01J 23/78, B01J 21/04, С07С 1/04, опубл. 27.02.2012). Катализатор сформирован в процессе термообработки компонентов катализатора в токе водорода или оксида углерода в расплавленном парафине. Компоненты катализатора вводят в расплавленный нефтяной парафин в виде механической смеси солей и таким образом получают дисперсию. Образцы высокодисперсного оксида железа готовят следующим образом: расплавленный парафин объемом 25 мл нагревают до требуемой температуры, затем при интенсивном перемешивании, крайне осторожно (во избежание возгорания парафина) присыпают тонкоизмельченный порошок прекурсора соответствующей концентрации. Образующуюся в ходе термолиза дисперсию высокодисперсного оксида железа после термолиза выдерживают при соответствующей температуре в течение 1 ч при интенсивном перемешивании, для полного удаления продуктов разложения. Размер частиц составляет 667-1327 нм, т.е, катализатор не является наноразмерным, размер его частиц микрометрический. Другие недостатки известного способа - высокий расход активного металла катализатора и склонность дисперсии к оседанию частиц.

В качестве прототипа изобретения выбран способ получения металлсодержащей наноразмерной дисперсии катализатора, описанный в патенте РФ №2489207, кл. МПК B01J 23/745, B01J 23/72, В82В 1/00, С07С 1/04, C10G 2/00, опубл. 20.08.2013 г. Описан катализатор для получения алифатических углеводородов из оксида углерода и водорода (для синтеза Фишера-Тропша), содержащий наноразмерные частицы железа и сформированный in situ непосредственно в зоне реакции в процессе термообработки компонентов катализатора в токе водорода или оксида углерода в расплавленном парафине, характеризующийся тем, что наноразмерные частицы железа промотированы медью при следующем соотношении компонентов, % мас.: Cu 5-25; Fe - остальное. Для получения наноразмерной каталитической дисперсии компоненты катализатора вводят в расплавленный нефтяной парафин или в виде механической смеси солей, или в виде их раствора в растворителе, не смешивающемся с жидкой фазой, например, спирт, вода, эфир. Затем этот прекурсор катализатора подвергают термообработке при температуре 40-450°С в токе водорода или оксида углерода с образованием устойчивого коллоидного раствора. Размер частиц составляет 20-25 нм. Меньший размер частиц в прототипе не достигается; более того, в дальнейшем происходит агломерация до среднего размера частиц катализатора 250-270 нм. Недостатком прототипа также является высокий расход активного металла катализатора.

Сущность изобретения

Задача предлагаемого изобретения - уменьшение размера частиц наноразмерной дисперсии, снижение концентрации активных металлов в составе дисперсии катализатора, предотвращение оседания и агломерации частиц дисперсии.

Поставленная задача решается тем, что в способе получения металлсодержащей наноразмерной дисперсии катализатора синтеза Фишера-Тропша на основе оксидов активных металлов, включающем растворение солей активных металлов в воде, введение полученного раствора в расплавленный нефтяной парафин при температуре выше температуры разложения указанных солей и образование указанной дисперсии катализатора, введение указанного раствора солей осуществляют со скоростью 20-60 мл/час при перемешивании в токе инертного газа, после чего осуществляют выдерживание до образования оксидов активных металлов и охлаждение в токе инертного газа в течение 1-6 часов, а содержание активных металлов катализатора в указанной дисперсии не превышает 3% масс.

При указанном растворении солей активных металлов могут дополнительно вводить соль щелочного металла. Она является прекурсором промотора.

Указанная дисперсия может содержать оксиды двух активных металлов. Тогда катализатор представляет собой биметаллическую систему.

Технический результат, который может быть достигнут при использовании предлагаемого изобретения, заключается в

- снижении эксплуатационных затрат производства, так как при использовании предлагаемого метода приготовления каталитических дисперсий снижается концентрация активных компонентов (металлов).

- возможность использования катализаторов на основе каталитических дисперсий в современных сларри-реакторах без угрозы оседания и агломерации.

- улучшение эксплуатационных показателей производства вследствие бесперебойной работы сларри-реакторов с минимальным количеством регламентных работ.

Согласно данным динамического рассеяния света размер частиц полученных предлагаемым методом каталитической системы составляет 1-8 нм.

Наноразмерную металлсодержащую дисперсию готовят методом капельного термолиза раствора соли металла и промотора в парафине марки П-2.

Растворы прекурсоров вводят в четырехгорлую колбу при нагревании с заданной скоростью в токе инертного газа при перемешивании. После добавления всего объема раствора солей образец выдерживают в токе инертного газа, а затем охлаждают.

В качестве промоторов используют классические промоторы катализаторов для синтеза Фишера-Тропша - щелочные металлы. Также могут быть использованы биметаллические системы. Размер частиц наноразмерной металлсодержащей дисперсии определяли методом динамического рассеивания света на приборе NanoZetasizer ZS.

В результате описанного метода приготовления наноразмерной металлсодержащей дисперсии формируется система, в которой наноразмерные каталитически активные частицы металлов тонкодисперсно и однородно распределены в углеводородной среде - парафине марки П-2.

Под термином «активные металлы» здесь понимаются любые металлы, проявляющие активность в катализе синтеза Фишера-Тропша, такие, как железо, кобальт, никель, рутений.

В качестве солей металлов могут использовать любые водорастворимые соли используемых металлов, например, нитраты, сульфаты, хлориды и другие.

Используют любые инертные газы, например, гелий, аргон и т.д.

Предлагаемый способ получения наноразмерных металлсодержащих дисперсий включает следующие стадии:

• Приготовление раствора соли прекурсоров активных компонентов (активных металлов) в воде в расчетных количествах на массу навески парафина П-2;

• Нагрев дисперсионной среды (парафина П-2) до температуры, превышающей температуру разложения солей прекурсоров, в токе инертного газа;

• Введение раствора солей прекурсоров с заданной скоростью (20-60 мл/час) при перемешивании;

• Выдерживание до образования оксидов;

• Охлаждение полученной дисперсии в токе инертного газа в течение 1-6 часов.

Предложенный способ получения каталитической дисперсии следующие преимущества:

- возможность синтеза каталитической дисперсии с активными металлсодержащими частицами нанометрической области, не склонными к агломерации и оседанию;

- возможность длительного хранения и транспортировки полученной дисперсии без расслаивания и оседания;

- возможность синтеза каталитической дисперсии с узким распределением наноразмерных частиц по размерам;

- возможность синтеза би- и полиметаллической дисперсии с активными наноразмерными частицами, которая также не будет иметь склонность к оседанию;

- наноразмерные металлические частицы в каталитической дисперсии образуются "in situ" в процессе формирования ультрадисперсной каталитической системы, а не вводятся извне;

- предложенный метод синтеза каталитических дисперсий осуществляется с использование стандартного оборудования;

- нанометрические (наноразмерные) металлсодержащие частицы в составе каталитической дисперсии, приготовленной предложенным методом, значительно меньше наноразмерных частиц прототипа;

Нижеследующие примеры иллюстрируют изобретение, но никоим образом не ограничивают область его применения. Размер частиц приведен в табл. 1.

Пример 1 (1 г Fe)

7,2 г девятиводного нитрата железа растворяют в 3,3 мл дистиллированной воды. Полученный раствор вводят в 100 мл расплавленного парафина П-2 со скоростью 30 мл/час при температуре 280°С и постоянном перемешивании в токе инертного газа - гелия. После введения всего объема раствора прекурсора систему охлаждают до 80°С в токе инертного газа.

Полученный таким образом катализатор имеет состав, % масс: 1,4% Fe: 98,6% парафин П-2. Размер частиц полученного катализатора определен методом динамического светорассеяния и составляет 8 нм.

Пример 2 (0,5 г Fe)

3,6 г девятиводного нитрата железа растворяют в 1,7 мл дистиллированной воды. Полученный раствор вводят в 100 мл расплавленного парафина П-2 со скоростью 30 мл/час при температуре 280°С и постоянном перемешивании в токе инертного газа - гелия. После введения всего объема раствора прекурсора систему охлаждают до 80°С в токе инертного газа.

Полученный таким образом катализатор имеет состав, % масс: 0,7% Fe: 99,3% парафин П-2. Размер частиц полученного катализатора определен методом динамического светорассеяния и составляет 1, нм.

Пример 3 (2 г Fe + 0,04 K)

14,4 г девятиводного нитрата железа и 0,01 г нитрата калия растворяют в 6,8 мл дистиллированной воды. Полученный раствор вводят в 100 мл расплавленного парафина П-2 со скоростью 30 мл/час при температуре 280°С и постоянном перемешивании в токе инертного газа - гелия. После введения всего объема раствора прекурсора систему охлаждают до 80°С в токе инертного газа.

Полученный таким образом катализатор имеет состав, % масс: 3,0% Fe: 0,06% K: 96,94% парафин П-2. Размер частиц полученного катализатора определен методом динамического светорассеяния и составляет 1, нм.

Пример 4 (1 г Fe + 0,02 K)

7,2 г девятиводного нитрата железа и 0,005 г нитрата калия растворяют в 3,4 мл дистиллированной воды. Полученный раствор вводят в 100 мл расплавленного парафина П-2 со скоростью 30 мл/час при температуре 280°С и постоянном перемешивании в токе инертного газа - гелия. После введения всего объема раствора прекурсора систему охлаждают до 80°С в токе инертного газа.

Полученный таким образом катализатор имеет состав, % масс: 1,4% Fe: 0,03% K: 98,57% парафин П-2. Размер частиц полученного катализатора определен методом динамического светорассеяния и составляет 1, нм.

Пример 5 (1 г Fe + 0,01 K)

7,2 г девятиводного нитрата железа и 0,03 г нитрата калия растворяют в 3,3 мл дистиллированной воды. Полученный раствор вводят в 100 мл расплавленного парафина П-2 со скоростью 30 мл/час при температуре 280°С и постоянном перемешивании в токе инертного газа - гелия. После введения всего объема раствора прекурсора систему охлаждают до 80°С в токе инертного газа.

Полученный таким образом катализатор имеет состав, % масс: 1,4% Fe: 0,01% K: 98,59% парафин П-2. Размер частиц полученного катализатора определен методом динамического светорассеяния и составляет 1 нм.

Пример 6 (1 г Fe + 0,02 Na)

7,2 г девятиводного нитрата железа и 0,07 г нитрата натрия растворяют в 3,3 мл дистиллированной воды. Полученный раствор вводят в 100 мл расплавленного парафина П-2 со скоростью 30 мл/час при температуре 280°С и постоянном перемешивании в токе инертного газа - гелия. После введения всего объема раствора прекурсора систему охлаждают до 80°С в токе инертного газа.

Полученный таким образом катализатор имеет состав, % масс: 1,4% Fe: 0,03% Na: 98,57% парафин П-2. Размер частиц полученного катализатора определен методом динамического светорассеяния и составляет 2 нм.

Пример 7 (1 г Fe + 0,01 Na)

7,2 г девятиводного нитрата железа и 0,04 г нитрата натрия растворяют в 3,3 мл дистиллированной воды. Полученный раствор вводят в 100 мл расплавленного парафина П-2 со скоростью 30 мл/час при температуре 280°С и постоянном перемешивании в токе инертного газа - гелия. После введения всего объема раствора прекурсора систему охлаждают до 80°С в токе инертного газа.

Полученный таким образом катализатор имеет состав, % масс: 1,4% Fe: 0,01% Na: 98,59% парафин П-2. Размер частиц полученного катализатора определен методом динамического светорассеяния и составляет 1 нм.

Пример 8 (0,5 г Fe + 0,01 Na)

3,6 г девятиводного нитрата железа и 0,07 г нитрата натрия растворяют в 1,6 мл дистиллированной воды. Полученный раствор вводят в 100 мл расплавленного парафина П-2 со скоростью 30 мл/час при температуре 280°С и постоянном перемешивании в токе инертного газа - гелия. После введения всего объема раствора прекурсора систему охлаждают до 80°С в токе инертного газа.

Полученный таким образом катализатор имеет состав, % масс: 1,4% Fe: 0,03% Na: 98,57% парафин П-2. Размер частиц полученного катализатора определен методом динамического светорассеяния и составляет 2 нм.

Пример 9 (0,5 г Со)

2,5 г шестиводного нитрата кобальта, растворяют в 1,7 мл дистиллированной воды. Полученный раствор вводят в 100 мл расплавленного парафина П-2 со скоростью 30 мл/час при температуре 280°С и постоянном перемешивании в токе инертного газа - гелия. После введения всего объема раствора прекурсора систему охлаждают до 80°С в токе инертного газа.

Полученный таким образом катализатор имеет состав, % масс: 0,7% Со: 99,3% парафин П-2. Размер частиц полученного катализатора определен методом динамического светорассеяния и составляет 5 нм.

Пример 10 (1 г Fe + 0,02 г K + 0,5 г Со)

2,5 г шестиводного нитрата кобальта, 7,2 г девятиводного нитрата железа и 0,05 нитрата калия растворяют в 3,4 мл дистиллированной воды. Полученный раствор вводят в 100 мл расплавленного парафина П-2 со скоростью 30 мл/час при температуре 280°С и постоянном перемешивании в токе инертного газа - гелия. После введения всего объема раствора прекурсора систему охлаждают до 80°С в токе инертного газа.

Полученный таким образом катализатор имеет состав, % масс: 1,4% (Fe+Co): 0,03% K: 98,57% парафин П-2. Размер частиц полученного катализатора определен методом динамического светорассеяния и составляет 2 нм.

Пример 11 (0,75 г Fe + 0,02 г K + 0,25 г Со)

1,2 г шестиводного нитрата кобальта, 5,4 г девятиводного нитрата железа и 0,05 нитрата калия растворяют в 3,4 мл дистиллированной воды. Полученный раствор вводят в 100 мл расплавленного парафина П-2 со скоростью 30 мл/час при температуре 280°С и постоянном перемешивании в токе инертного газа - гелия. После введения всего объема раствора прекурсора систему охлаждают до 80°С в токе инертного газа.

Полученный таким образом катализатор имеет состав, % масс: 1,4% (Fe+Co): 0,03% K: 98,57% парафин П-2. Размер частиц полученного катализатора определен методом динамического светорассеяния и составляет 1 нм.

Пример 12 (0,5 г Fe + 0,02 г K + 0,5 г Со)

2,5 г шестиводного нитрата кобальта, 3,6 г девятиводного нитрата железа и 0,05 нитрата калия растворяют в 3,4 мл дистиллированной воды. Полученный раствор вводят в 100 мл расплавленного парафина П-2 со скоростью 30 мл/час при температуре 280°С и постоянном перемешивании в токе инертного газа - гелия. После введения всего объема раствора прекурсора систему охлаждают до 80°С в токе инертного газа.

Полученный таким образом катализатор имеет состав, % масс: 1,4% (Fe+Co): 0,03% K: 98,57% парафин П-2. Размер частиц полученного катализатора определен методом динамического светорассеяния и составляет 2 нм.

Примечания:

* - в том числе Fe - 1.4% мас., Со - 0.7% мас.

** - в том числе Fe - 1.05% мас., Со - 0.35% мас.

*** - в том числе Fe - 0.7% мас., Со - 0.7% мас.

Источник поступления информации: Роспатент

Showing 11-20 of 141 items.
20.11.2013
№216.012.822f

Способ получения полиакриламидного гидрогеля

Настоящее изобретение относится к способу получения полиакриламидного гидрогеля, который применяется в качестве разделяющей среды в жидкостной хроматографии, в качестве носителя иммобилизованных биологически активных веществ, а также для изготовления эндопротезов мягких тканей. Данный способ...
Тип: Изобретение
Номер охранного документа: 0002499003
Дата охранного документа: 20.11.2013
27.01.2014
№216.012.9ae2

Способ получения катализатора и способ синтеза олефинов c-c в присутствии катализатора, полученного этим способом

Изобретение относится к нефтеперерабатывающей промышленности и, более конкретно к катализатору и к способу синтеза олефинов С2-С4. Способ получения катализатора включает модифицирование катализатора на основе силикоалюмофосфатов методом пропитки по влагоемкости из раствора источника кремния или...
Тип: Изобретение
Номер охранного документа: 0002505356
Дата охранного документа: 27.01.2014
10.02.2014
№216.012.9ddb

Пористый керамический каталитический модуль и способ переработки отходящих продуктов процесса фишера-тропша с его использованием

Настоящее изобретение относится к получению водородсодержащего газа и может быть использовано в промышленности при переработке отходящих продуктов процесса Фишера-Тропша в присутствии пористой мембранно-каталитической системы. Пористая каталитическая мембрана представляет собой продукт...
Тип: Изобретение
Номер охранного документа: 0002506119
Дата охранного документа: 10.02.2014
10.06.2014
№216.012.cc60

Катализатор и способ синтеза олефинов из диметилового эфира в его присутствии

Предлагаемое изобретение относится к области получения катализаторов синтеза низших олефинов, а именно этилена и пропилена, из сырья, не являющегося нефтяным. Катализатор синтеза низших олефинов из диметилового эфира на основе цеолита типа пентасила с мольным отношением SiO/AlO=37, содержащего...
Тип: Изобретение
Номер охранного документа: 0002518091
Дата охранного документа: 10.06.2014
10.06.2014
№216.012.d050

Фармацевтическая композиция

Изобретение относится к фармацевтической промышленности и представляет собой фармацевтическую композицию для перорального применения для снижения уровня глюкозы в крови, содержащую инсулин, водорастворимую органическую кислоту, водорастворимый инертный наполнитель и вспомогательное вещество,...
Тип: Изобретение
Номер охранного документа: 0002519099
Дата охранного документа: 10.06.2014
20.07.2014
№216.012.ddc1

Аддитивный поли(моно(триметилгермил)-замещенный трициклононен), мономер для его получения и способ разделения газовых смесей с помощью мембран на основе аддитивного поли(моно(триметилгермил)-замещенного трициклононена)

Изобретение относится к аддитивному поли(моно(триметилгермил)-замещенному трициклононену) общей структурной формулы: где n=300-2400 (степень полимеризации). Величина средневесовой молекулярной массы M полимера составляет (7.1-57)·10 г/моль и индекс полидисперсности M/M составляет 1.9-2.6....
Тип: Изобретение
Номер охранного документа: 0002522555
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.ddfd

Способ совместной переработки нефтяных фракций и полимерных отходов

Изобретение относится к области химии и может быть использовано в нефтепереработке с целью утилизации наиболее широко распространенных полимерных отходов и с получением из них ценных продуктов нефтепереработки. Способ включает совмещение полимерных отходов и нефтяных фракций, введение...
Тип: Изобретение
Номер охранного документа: 0002522615
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.de92

Способ получения оксигенатов, повышающих эксплуатационные свойства топлив для двигателей внутреннего сгорания (варианты)

Изобретение относится к способу получения оксигенатов, повышающих эксплуатационные свойства топлив для двигателей внутреннего сгорания, в котором взаимодействие глицерина с ацетоном происходит на кислотном катализаторе, причем процесс происходит на гетерогенном катализаторе в одну стадию в...
Тип: Изобретение
Номер охранного документа: 0002522764
Дата охранного документа: 20.07.2014
20.09.2014
№216.012.f462

Способ синтеза сополимеров акрилонитрила (варианты)

Настоящее изобретение относится к получению сополимеров акрилонитрила. Описан способ синтеза сополимеров акрилонитрила с производными итаконовой кислоты путем их смешения в среде растворителя с добавлением инициатора радикальной полимеризации и нагреванием, отличающийся тем, что нагревание...
Тип: Изобретение
Номер охранного документа: 0002528395
Дата охранного документа: 20.09.2014
20.09.2014
№216.012.f470

Способ получения диметилового эфира методом одностадийного синтеза и его выделения

Предлагаемое изобретение относится к способу получения диметилового эфира, который используют в газовых приборах бытового назначения и как пропеллент для аэрозолей, методом одностадийного синтеза и его выделения. Способ включает подачу синтез-газа, проведение реакции в реакторе адиабатического...
Тип: Изобретение
Номер охранного документа: 0002528409
Дата охранного документа: 20.09.2014
Showing 11-20 of 57 items.
20.07.2014
№216.012.ddd6

Способ каталитического пиролиза хлористого метила

Изобретение относится к способу каталитического пиролиза хлористого метила в процессе получения низших олефинов C-C, преимущественно этилена и пропилена, в присутствии силикоалюмофосфатного катализатора типа SAPO. Способ характеризуется тем, что пиролиз хлористого метила проводят на...
Тип: Изобретение
Номер охранного документа: 0002522576
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.ddfd

Способ совместной переработки нефтяных фракций и полимерных отходов

Изобретение относится к области химии и может быть использовано в нефтепереработке с целью утилизации наиболее широко распространенных полимерных отходов и с получением из них ценных продуктов нефтепереработки. Способ включает совмещение полимерных отходов и нефтяных фракций, введение...
Тип: Изобретение
Номер охранного документа: 0002522615
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.de92

Способ получения оксигенатов, повышающих эксплуатационные свойства топлив для двигателей внутреннего сгорания (варианты)

Изобретение относится к способу получения оксигенатов, повышающих эксплуатационные свойства топлив для двигателей внутреннего сгорания, в котором взаимодействие глицерина с ацетоном происходит на кислотном катализаторе, причем процесс происходит на гетерогенном катализаторе в одну стадию в...
Тип: Изобретение
Номер охранного документа: 0002522764
Дата охранного документа: 20.07.2014
20.09.2014
№216.012.f470

Способ получения диметилового эфира методом одностадийного синтеза и его выделения

Предлагаемое изобретение относится к способу получения диметилового эфира, который используют в газовых приборах бытового назначения и как пропеллент для аэрозолей, методом одностадийного синтеза и его выделения. Способ включает подачу синтез-газа, проведение реакции в реакторе адиабатического...
Тип: Изобретение
Номер охранного документа: 0002528409
Дата охранного документа: 20.09.2014
20.11.2014
№216.013.091a

Способ получения синтез-газа

Изобретение относится к области нефтехимии и может быть использовано для синтеза метанола, диметилового эфира, углеводородов по методу Фишера-Тропша. Метансодержащее сырьё подвергают окислительной конверсии при температуре 650-1100°C в лифт-реакторе. В качестве окислителя используют...
Тип: Изобретение
Номер охранного документа: 0002533731
Дата охранного документа: 20.11.2014
10.12.2014
№216.013.0ed2

Способ скоростной деструкции остаточных нефтяных продуктов

Изобретение относится к способу скоростной деструкции остаточных нефтяных продуктов. Способ включает адсорбцию остаточных нефтяных продуктов в порах углеродного сорбента и обработку сверхвысокочастотным излучением при индуцированной температуре до 600°C в потоке аргона или диоксида углерода....
Тип: Изобретение
Номер охранного документа: 0002535211
Дата охранного документа: 10.12.2014
10.01.2015
№216.013.1916

Катализатор и способ получения синтетических углеводородов алифатического ряда из оксида углерода и водорода в его присутствии

Изобретение относится к нефтехимической промышленности и может быть использовано в нефтепереработке, газохимии и нефтехимии для производства синтетических моторных топлив и смазочных масел. Способ получения катализатора для синтеза Фишера-Тропша, содержащего каталитически активные наночастицы...
Тип: Изобретение
Номер охранного документа: 0002537850
Дата охранного документа: 10.01.2015
10.04.2015
№216.013.3fde

Способ получения олефинов c-c из диметилового эфира

Изобретение относится к способу получения олефинов C-C из диметилового эфира при повышенной температуре в присутствии катализатора. При этом катализатор предварительно измельчают механически, затем суспендируют в углеводородах, выкипающих при температуре выше 320°C, и диспергируют полученную...
Тип: Изобретение
Номер охранного документа: 0002547838
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3fe5

Катализатор, способ его получения и способ получения синтез-газа

Изобретение относится к катализатору получения синтез-газа в процессе парциального окисления метана, представляющему собой микросферический носитель с нанесенным активным компонентом на основе оксидов металлов, при этом в качестве микросферического носителя используют частицы диаметром от 50 до...
Тип: Изобретение
Номер охранного документа: 0002547845
Дата охранного документа: 10.04.2015
27.04.2015
№216.013.4693

Способ получения алкановых и ароматических углеводородов

Изобретение относится к каталитическому превращению возобновляемого сырья - продуктов ферментации биомассы (этанол, сивушные масла) и их смесей с растительным маслом в алкан-ароматическую фракцию C-C, которая может быть использована для получения компонентов топлив. Способ получения алкановых и...
Тип: Изобретение
Номер охранного документа: 0002549571
Дата охранного документа: 27.04.2015
+ добавить свой РИД