×
01.09.2018
218.016.8204

Результат интеллектуальной деятельности: Антифрикционная полимерная композиция на основе фторопласта

Вид РИД

Изобретение

Аннотация: Изобретение относится к области полимерного материаловедения, а именно к антифрикционным полимерным материалам триботехнического назначения, которые могут быть использованы для изготовления узлов трения, работающих в экстремальных условиях среды. Антифрикционная композиция включает, мас.%: 10-15 порошка ПМФ, полученного из отходов полиимидо-фторопластовых пленок торговой марки ПМФ, 1-5 порошка квазикристаллов AlCuFe, 0,5-3 технического углерода, остальное фторопласт-4МБ. Технический результат заключается в обеспечении высоких антифрикционных показателей полимерной композиции на основе фторопласта Ф-4МБ в сочетании с высокой износостойкостью материала и низкой абразивной способностью, а также решается задача утилизации отходов неплавких полиимидных пленок. 1 табл., 7 пр.

Изобретение относится к области полимерного материаловедения, а именно к антифрикционным полимерным материалам триботехнического назначения, которые могут быть использованы для изготовления узлов трения, работающих в экстремальных условиях среды.

Разработка антифрикционных полимерматричных композиций, содержащих наноструктурные, полимерные и гибридные добавки для функционирования в экстремальных условиях среды (резкие перепады температур, соленые жидкости, дефицит граничной смазки), обусловлена ужесточением требований по скоростям, нагрузкам и усталостным характеристикам по отношению к существующим антифрикционным материалам. Проблема увеличения срока службы узлов трения, работающих в экстремальных условиях среды, может быть решена путем оптимизации состава композиционного материала, так и подбора пары трения. Разработка новых антифрикционных полимерматричных композиций, которые могли бы заменить существующие промышленные аналоги, является актуальной проблемой. Это позволило бы улучшить плавность работы пар трения, работающих в динамическом режиме (пуск остановка-пуск), снизить шум, массу рабочих элементов и общие энергозатраты.

Существуют антифрикционные композиции на основе политетрафторэтилена (ПТФЭ), содержащих в качестве одной из структурных добавок полиимидный порошок. Данные композиции могут применяться при изготовлении блочных изделий (втулки, шестерни, уплотнительные кольца), а также при создании антифрикционных (многослойные металл-полимерные подшипники) и износостойких покрытий. Толщина слоя может составлять 30-500 мкм, благодаря чему подшипник может функционировать в отсутствие, либо при дефиците граничной смазки, обеспечивая при этом продолжительный срок службы подшипника.

Известна подшипниковая композиция на основе ПТФЭ (DE 4227909 A1, опубл. 24.02.1994), содержащая 10-40 масс.% полиимида. Средний размер полиимидного порошка 45-75 мкм. Материал представляет собой пасту, которая наносится на внутреннюю часть металл-полимерного подшипника скольжения. Далее следует спекание и прокатка до равномерной толщины, формируя таким образом антифрикционное покрытие. Установлено, что при содержании 10-15 масс.% полиимида существенно повышается износостойкость материала, а также стойкость к эрозии. Материал способен к работе при повышенных скоростях и нагрузках.

Известна трехкомпонентная композиция на основе ПТФЭ (US 5009959 A, опубл. 23.04.1991), содержащая полиимид и слюду в интервале концентраций 1-15 масс. %, из которой получали износостойкие покрытия для пищевой промышленности, функционирующие при повышенных температурах. Подложкой служила 2 мм алюминиевая пластина. Толщина слоя композита 35 мкм. Трибологические испытания проводились при 200°C. Контр-телом служила щетка из нержавеющей стали. Последняя прижималась к покрытию при нагрузке 2 кг и вращалась со скоростью 200 об/мин до достижения алюминиевой подложки. Было установлено, что сочетание полиимида и слюды позволяет увеличить износостойкость покрытия в 10-15 раз по сравнению с одиночными добавками.

Известна антифрикционная композиция на основе ПТФЭ (CN 101413543 A, опубл. 22.04.2009), содержащая 25-35 об. % фтортермопласта, 10-15 об. % полиимида, 3-6 об. % MoS2. Добавки полиимида и MoS2 обеспечивают низкое трение и износостойкость, тогда как использование фтортермопласта позволяет легче сформировать пленку переноса на контр-теле. Композиция оказывает минимальный эффект на износ ответной детали.

Известна антифрикционная композиция на основе фторопласта (US 20050025977 A1, опубл. 03.02.2005), содержащая добавки 25-35 об. % высокотемпературных полимеров, которые могут включать полисульфон, полиэстер, полэфиэиркетон, полиимид, а также 5-15 об. % твердосмазочных добавок, таких как графит, MoS2. Фторопластовая основа также может содержать до 30 об. % различных модификаций фторопласта, включающее Ф-4МБ. Частицы высокотемпературных полимеров обладают армирующим эффектом, и минимизируют абразивный износ контртела. Материал представляет собой полимерную пасту, которая наносится на внутреннюю стенку многослойного металл-полимерного подшипника скольжения, после чего происходит спекание и прокатка. Толщина полученного слоя может составлять 50-500 мкм.

Общим недостатком вышерассмотренных материалов является использование дорогостоящего полиимидного порошка в качестве наполнителя, что может существенно увеличить стоимость конечных материалов.

Известна многокомпонентная антифрикционная композиция на основе ПТФЭ (US 4703076 A, опубл. 27.10.1987), содержащая 2-30 об. % твердой смазки (графит, MoS2), 2-30 об. % полимерного наполнителя (полифениленсульфид, полиимид) и 2-30 об. % армирующей фазы (углеволокно, бронза, PbF2, Al2O3). Для проведения трибологических испытаний были изготовлены два типа образцов: массивные и покрытия. В первом случае образцы получали путем механического смешения (2-10 мин, миксер Henshel), далее холодное компактирование (давление 1000 кг/см2, кольцо: внешний диаметр 35 мм, внутренний - 15 мм, высота 40 мм), далее спекание (инертный газ, температура 327-400°C). Антифрикционные композиционные покрытия получали следующим образом: напыление медного слава (толщина слоя 0,35 мм) на стальную пластину 1,24 мм, спекание медного порошкового сплава (800-860°C), далее нанесение полимерной порошковой композиции на медный слой, спекание при температуре 380°C, далее прокатка до равномерной толщины. Параметры трибологических испытаний: нагрузка 25 кг/см2, скорость скольжения 0,1 м/с, время испытаний 4 ч, сухой режим трения. Трибологические испытания показали преимущество двух-/трехкомпонентных композиций перед многокомпонентными.

Известна многокомпонентная композиция на основе ПТФЭ (US 6607820 B2, опубл. 19.04.2003), содержащая 0,5-25 об. % твердой смазки (графит, MoS2), 1-25 об. % полимерного наполнителя (полиэстер, полиимид) и 0,5-10 об. % армирующей фазы (Al2O3). Целью работы являлось получение антифрикционной композиции с повышенной стойкостью к фреттинг-износу. В процессе работы металл-полимерного подшипника между внутренним композиционным слоем (толщина 30 мкм) и осью происходят малые смещения, что вызывает фреттинг-износ слоя композита. Применение многокомпонентных композиций позволяет повысить стойкость слоя к фреттинг-износу. Было высказано предположение, что последнее связано с постепенным изменением твердости и модулей упругости применяемых компонентов, за счет чего улучшается взаимодействие между компонентами (матрица-наполнитель, наполнитель-наполнитель).

Общим недостатком вышерассмотренных материалов является использование дорогостоящих полимерных наполнителей, а также армирующих твердых компонентов, способных вызывать повышенной износ ответной детали.

Известна антифрикционная композиция на основе ПТФЭ (РФ 2246503, опубл. 20.02.2005), содержащая молотый кварц (0,4-0,8 масс. %), графит (3-8 масс. %), мел (5-12 масс. %), бронзовую пудру (15-25 масс. %). Антифрикционную композицию получали механическим смешением исходных компонентов в смесителе. Далее следовало изготовление объемных образцов методом холодного прессования при 50-60 МПа с последующим спеканием при 375°C. Композиция была испытана для изготовления опытных образцов подшипников скольжения натяжных устройств ременных передач зерноуборочного комбайна КЗР-10 "Полесье" на ПО "Гомсельмаш". Изобретение повышает износостойкость и теплостойкость материала, и упрощает его изготовление.

Недостатком материала является использование в качестве наполнителя бронзовой пудры, имеющая высокую плотность, что может существенно повышать массу изделия.

Известна антифрикционная композиция герметизирующего назначения на основе ПТФЭ (РФ 2177962, опубл. 10.01.2002), предназначенная для изготовления уплотнительных элементов пар вращательного и возвратно-поступательного перемещения и узлов трения. Она содержит 1-2 масс. % синтетического Al2O3, предварительно активированного в планетарной мельнице АГО-2 в течение 2 мин. Порошки ПТФЭ и Al2O3 смешивали в лопастном смесителе до получения однородной массы. Далее следовала сушка порошков при 120°C в течение 1 ч. Далее следует холодное компактирование при 50 МПа. Спекание изделий проводят при 370°C. Охлаждение изделий проводят в печи. Применение антифрикционной и герметизирующей композиции повышает ресурс работы уплотнительных элементов при повышенных нагрузках.

Недостатком материала является повышенная абразивная способность Al2O3, что может вызывать износ ответной пары трения.

Наиболее близким по технической сущности и достигаемому техническому результату является антифрикционная композиция (SU 1518360 A1, опубл. 30.10.89), где в качестве противоизносной и противозадирной добавки используются отходы проводов электрокабельного производства, включающих в себя 50 масс. % ПТФЭ, 21 масс. % меди, 29 масс. % полиимида. Отходы измельчают в мельнице ударно-отражательного действия, после чего полученный порошок смешивают с пластичной смазкой ВНИИ НП 242 (ГОСТ 20421-75) в количестве 7-12 масс. %. Изобретение относится к составам смазок для тяжелонагруженных узлов трения (подшипники качения и скольжения, направляющие станков, тяговые и приводные цепи).

Недостатком является отсутствие сведений о гранулометрическом составе наполнителя, получаемого в результате измельчения отходов проводов электрокабельного производства, определяющий в значительной степени эффективность действия наполнителя.

Технический результат заключается в обеспечении высоких антифрикционных показателей полимерной композиции на основе фторопласта Ф-4МБ.

Технический результат достигается следующим образом антифрикционная композиция включает фторопласт Ф-4МБ, технический углерод, полиимид и квазикристаллы, отличающаяся тем, что она содержит порошки квазикристаллов Al65Cu23Fe12 с размером частиц 1-30 мкм и полиимидо-фторопластовый порошок с размером частиц 30-150 мкм, полученный из отходов производства полиимидо-фторопластовой пленки марки ПМФ при следующем соотношении компонентов, масс. %:

Технический углерод 0,5-3

Порошки квазикристаллов Al65Cu23Fe12 1-5

Полиимидо-фторопластовый порошок ПМФ 10-15

Фторопласт-4МБ остальное.

В результате достигается высокая износостойкость материала в сочетании с его низкой абразивной способностью, а также решается задача утилизации отходов неплавких полиимидных пленок.

Получение антифрикционных композиций включает измельчение и активацию отходов производства полиимидо-фторопластовых пленок ПМФ до порошкового состояния, далее следует смешение порошка ПМФ с порошком Ф-4МБ, порошком квазикристаллов Al65Cu23Fe12 до состояния гомогенности. Измельчение и активацию отходов полиимидо-фторопластовых пленок ПМФ проводят в шаровой планетарной мельнице при скорости вращения водила 425-460 об/мин в течении 60-75 мин, после чего следует смешение вторичного порошка ПМФ с 50-90 масс. % порошка Ф-4МБ, 1-5 масс. % порошков квазикристаллов Al65Cu23Fe12 и 0,5-3 масс. % технического углерода в шаровой планетарной мельнице при скорости вращения 425-460 об/мин в течении 45-60 мин, далее проводят сушку при 110-130°C в течении 30-40 мин, далее получают объемные образцы методом термопрессования при температуре 285-300°C и давлении 20-35 МПа.

В качестве полимерной матрицы был выбран порошок фторопласта Ф-4МБ дисперсностью 30 мкм, который представляет собой модификацию фторопласта-4 (политетрафторэтилен). Ф-4МБ включает в себя основные свойства Ф-4, но вследствие более низкой вязкости расплава может перерабатываться в объемные изделия путем компрессионного прессования, литьем под давлением и экструзией Основные характеристики Ф-4МБ: высокая термо- и морозостойкость, сохранение пластичности в широком интервале температур, низкое поверхностное натяжение и адгезия, не смачивается ни водой, ни жирами, ни большинством органических растворителей. По химической стойкости превышает все известные синтетические материалы и благородные металлы: не разрушается под влиянием щелочей, кислот и даже смеси азотной и соляной кислот.

В качестве антифрикционного полимерного наполнителя выбраны отходы производства полиимидо-фторопластовой пленки марки ПМФ (содержит фторопластовый слой Ф-4МД) толщиной 50 мкм (производство «Эстроком»). Данный тип отходов относится к типу сетчатых неплавких реактопластов, имеющих высокую стойкость к истиранию, низкую абразивная способность, отличную стойкость к нагружению, температурную и химическую стойкость. Использование отходов может позволить существенно снизить стоимость полиимидо-фторопластового наполнителя. Слой Ф-4МД вносит положительный вклад в улучшение антифрикционных характеристик, а также улучшает взаимодействие полиимидного наполнителя с полимерной матрицей Ф-4МБ. Использование порошка ПМФ размером менее 30 мкм приводит к ухудшению нагрузочной способности материла, а при размере более 150 мкм происходит снижению уровня однородности порошковой композиции. Введение в материал менее 7 масс. % порошка ПМФ является недостаточным для эффективного снижения износа композиции, а при содержании порошка ПМФ более 20 масс. % возрастает хрупкость композиционного материала.

В качестве армирующей добавки использовались порошки квазикристаллов системы Al65Cu23Fe12. Состав квазикристаллической фазы, ат. %: 65% Al, 23% Cu, 12% Fe (Ψ-фаза), доля фазы 95%. Структура икосаэдр; плотность 4,32 г/смг. Отличительные свойства квазикристаллов состоят в следующем: очень высокая твердость (10 ГПа), низкую поверхностную энергию (28 мДж/м2), низкий коэффициент трения (0,1), низкая абразивная способность. Это свойства обусловлены особенностью строения электронной структуры квазикристаллов, размер частиц порошка составляет 1-20 мкм. Введение в материал порошков квазикристаллов Al65Cu23Fe12 менее 1 масс. % являются недостаточным для достижения требуемого эффекта по снижению износа материала, а при добавлении более 5 масс. % КК порошка происходит рост хрупкости материала, а также возрастает его стоимость.

В качестве активной добавки использовался технический углерод, имеющий удельную поверхность 160-180 м2/г, насыпную плотность не менее 300 кг/м3, средний размер частиц, 20 нм. Технический углерод способствует усилению взаимодействия между компонентами и улучшению антифрикционных характеристик композита. Введение в материал порошка технического углерода менее 0,5 масс.% является недостаточным для достижения требуемого эффекта, а при введении более 3 масс.% ухудшается однородность композиции, поскольку наноразмерные частицы начинают контактировать между собой.

Таким образом, антифрикционную композицию отличает малая степень наполнения, при которой достигаются высокие антифрикционные характеристики, что дает следующие преимущества: высокая ударостойкость, низкая вязкость расплава. Последнее позволяет получать изделия на основе Ф-4МБ методом литья под давлением.

Пример 1.

Вначале проводят сушку отходов пленок ПМФ в термошкафу при 120-140°C в течении 45-60 мин, представляющие обрезки лент толщиной 50 мкм и длиной не более 50 мм. Далее отходы ПМФ загружают в шаровой планетарный активатор АПФ-3, по 65-70 г в каждый барабан. Затем отходы ПМФ измельчают до порошкового состояния при скорости вращения водила 425-460 об/мин в течении 60-75 мин. Масса стальных размольных тел размером 6-10 мм составляет 1700 г. Выбор интервала скорости вращения водила объясняется тем, что при скорости менее 425 об/мин энергии шаров для эффективного измельчения пленки ПМФ оказывается недостаточным, а при скоростях более 460 об/мин в порошке ПМФ могут возникать повышенное содержание примесей. Выбор интервала времени обработки пленки ПМФ объясняется тем, что при времени менее 60 мин основная часть порошка остается крупной, тогда как при обработке более 75 мин в порошке увеличивается содержание примесей железа от стальных размольных тел. Полученный порошок пропускают через 800 мкм сито с целью отсева грубых неизмельченных чешуек пленки. В результате формируется порошок ПМФ хлопьевидной морфологии со размером частиц 30-150 мкм. Далее готовится порошковая навеска ПМФ/Ф-4МБ в массовом соотношении компонентов 25/75 масс. %. В барабаны загружается по 100 г порошковой смеси. Далее следует гомогенизация смеси и дополнительное измельчение порошка ПМФ в планетарном активаторе АПФ-3 в течении 45-60 мин. Выбор временного интервала объясняется тем, что при обработке менее 45 мин смесь оказывается недостаточно гомогенной, тогда как при времени обработки более 60 мин в смеси могут накапливаться примеси железа от стальных размольных тел. Полученную порошковую смесь ПМФ/Ф-4МБ 25/75 масс. % сушат в термошкафу при 120-140°C в течение 45-60 мин. Блочные образцы получает методом горячего прессования при температуре 285-300°C и давлении 20-35 МПа. Изъятие заготовки происходит при 100-110°C. Образец представляет собой цилиндр диаметром 27 мм и толщиной 4-6 мм. За один цикл прессования получают три образца. Плотность образца определяется методом гидростатического взвешивания с использованием аналитических весов A&D GR-202 с приставкой. Испытания на твердость по Шор Д проводятся согласно ГОСТ на приборе ИТ 5078. Механические испытания на сжатие проводились согласно ИСО 604. Подготовка образцов к механическим испытаниям включает в себя вырезание образцов до размера 10⋅10⋅4 мм3. Испытания на трение и износ проводили на установке ИМАШ с типом сопряжения «блок-на-кольце» в режиме сухого трения, при комплексе контактных параметров, характерных для уплотнительных и подшипниковых узлов широкого класса механизмов. Контр-телом выступает кольцо диаметром 98 мм, толщиной 5 мм, сделанное из стали 45 твердостью 55 HRC, и максимальной шероховатостью 1-1,2 мкм. Нагрузка 19 Н, скорость скольжения 2,5 м/с, продолжительность испытания 30 мин, температура комнатная. Измерялся момент трения и площадь пятна контакта, в результате чего вычислялись коэффициент трения, глубина канавки износа и интенсивность изнашивания композиционного материала. Физико-механические и антифрикционные характеристики полученных материалов проводятся в таблице 1. Пример 2, 3.

Порошковые композиции и блочные образцы получают по методике, описанной в п. 1. Отличие состоит составе порошковой смеси Ф-4МБ/ПМФ. Физико-механические и трибологические характеристики полученных материалов проводятся в таблице 1.

Пример 4.

Порошковую композицию и блочные образцы получают по методике, описанной в п. 1. Отличие состоит составе порошковой смеси, которая помимо порошка ПМФ содержит добавку технического углерода. Физико-механические и трибологические характеристики полученных материалов проводятся в таблице 1.

Пример 5.

Порошковую композицию и блочные образцы получают по методике, описанной в п. 1. Отличие состоит составе порошковой смеси, которая помимо порошка ПМФ содержит добавку технического углерода и порошков квазикристаллов Al65Cu23Fe12. Физико-механические и трибологические характеристики полученных материалов проводятся в таблице 1.

Пример 6.

Готовится порошковая навеска Ф-4МБ/ Al65Cu23Fe12 в соотношении 98,5/1,5 масс. %. В каждый барабан загружается по 100 г порошковой смеси. Далее следует гомогенизация смеси в планетарном активаторе АПФ-3 в течении 45-60 мин. Получение объемных образцов и методика испытаний образцов та же, что приводится в п. 1. Физико-механические и трибологические характеристики полученных материалов проводятся в таблице 1.

Пример 7

Порошковую композицию и блочные образцы получают по методике, описанной в п. 6. Отличие состоит в составе порошковой смеси, которая вместо порошков квазикристаллов Al65Cu23Fe12 содержит добавку технического углерода. Физико-механические и трибологические характеристики полученных материалов проводятся в таблице 1.

Источник поступления информации: Роспатент

Showing 31-40 of 322 items.
13.01.2017
№217.015.6d89

Нанокомпозиционный электроконтактный материал и способ его получения

Изобретение относится к области электротехники и нанотехнологии, в частности к нанокомпозитному материалу на основе меди (Cu) для производства силовых разрывных электрических контактов в переключателях мощных электрических сетей и вакуумных дугогасительных камерах и способу его получения....
Тип: Изобретение
Номер охранного документа: 0002597204
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.7009

Способ винтовой прокатки полых заготовок с дном

Изобретение относится к области прокатки из заготовок сплошного сечения деталей с дном. Способ включает следующие операции: отделение мерных штучных заготовок, зацентровку их по торцу, нагрев, подачу во вводной желоб стана винтовой прокатки, перемещение по желобу заталкивателем до касания...
Тип: Изобретение
Номер охранного документа: 0002596519
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.707c

Материал на основе объемных металлических стекол на основе циркония и способ его получения в условиях низкого вакуума

Изобретение относится к области металлургии, а именно к материалу на основе объемных металлических стекол на основе циркония, и может быть использовано для производства деталей микромашин и механизмов с требованиями высокой износостойкости и прочности. Сплав на основе циркония для изготовления...
Тип: Изобретение
Номер охранного документа: 0002596696
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.7678

Способ создания тонких слоев оксидов ni и nb с дырочной проводимостью для изготовления элементов сверхбольших интегральных схем

Изобретение относится к области электронной техники и описывает возможность получения дырочной проводимости аморфной оксидной пленки на поверхности металлического стекла системы Ni-Nb путем искусственного оксидирования. Способ создания тонких слоев оксидов Ni и Nb с дырочной проводимостью для...
Тип: Изобретение
Номер охранного документа: 0002598698
Дата охранного документа: 27.09.2016
13.01.2017
№217.015.793c

Планарный преобразователь ионизирующих излучений и способ его изготовления

Изобретение относится к области преобразователей энергии оптических и радиационных излучений в электрическую энергию. Предложена конструкция планарного преобразователя ионизирующих излучений, содержащая слаболегированную полупроводниковую пластину n (p) типа проводимости, в которой расположена...
Тип: Изобретение
Номер охранного документа: 0002599274
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.7c30

Способ нанесения биоактивного покрытия на основе хитозана на полимерные пористые конструкции

Изобретение относится к способу нанесения покрытия на полимерные пористые конструкции и может быть использовано для формирования композиционных полимерных пористых конструкций на основе полилактида медицинского назначения с размером пор от 300 мкм, отличающихся повышенной биоактивностью и...
Тип: Изобретение
Номер охранного документа: 0002600652
Дата охранного документа: 27.10.2016
13.01.2017
№217.015.7df0

Способ выбора мест размещения углепородных отвалов

Изобретение относится к горной промышленности, может быть использовано при выборе мест для расположения углепородных отвалов и предназначено для предотвращения самовозгорания складируемой горной массы. Техническим результатом изобретения является предотвращение самовозгорания складируемой...
Тип: Изобретение
Номер охранного документа: 0002600948
Дата охранного документа: 27.10.2016
13.01.2017
№217.015.862c

Способ стерилизации сверхвысокомолекулярного полиэтилена, предназначенного для применения в медицине (варианты)

Областью применения заявляемого изобретения являются медицина и ветеринария, в частности реконструктивная хирургия, ортопедия и травматология, а также экспериментальная биология. Сутью заявляемого изобретения является способ стерилизации СВМПЭ, предназначенного для применения в медицине, путем...
Тип: Изобретение
Номер охранного документа: 0002603477
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.863f

Способ получения сплава неодим-железо и устройство для его осуществления

Изобретение относится к электролитическому получению сплавов. Получают сплав неодим-железо, содержащий 78-96 мас.% неодима. В электролизер загружают оксид неодима, железо в виде стружки, расплав солевой смеси в качестве электролита через загрузочный карман, в котором устанавливают температуру...
Тип: Изобретение
Номер охранного документа: 0002603408
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.8730

Способ интенсификации процесса кучного выщелачивания золота из руд

Изобретение относится к извлечению благородных металлов кучным выщелачиванием из руд. Способ включает дробление руды, складирование штабеля руды на гидроизолированное основание, монтирование системы орошения и орошение щелочным раствором цианида натрия штабеля руды. При этом штабель руды...
Тип: Изобретение
Номер охранного документа: 0002603411
Дата охранного документа: 27.11.2016
Showing 31-40 of 47 items.
19.01.2018
№218.016.0d0d

Интерметаллический сплав на основе tial

Изобретение относится к области металлургии, в частности легированным сплавам на основе γ-TiAl. Интерметаллический сплав на основе TiAl содержит, ат.%: алюминий 44-46, ниобий 5-7, хром 1-3, цирконий 1-2, бор 0,1-0,5, лантан ≤0,2, титан - остальное. Сплав характеризуется мелкозернистой...
Тип: Изобретение
Номер охранного документа: 0002633135
Дата охранного документа: 11.10.2017
19.01.2018
№218.016.0d7e

Композиционный материал на полимерной основе для комбинированной защиты гамма, нейтронного и электромагнитного излучения, наполненный нанопорошком вольфрама, нитрида бора и технического углерода

Изобретение относится к области защиты от ионизирующего и сверхвысокочастотного излучения. Предлагаемый композиционный материал состоит из сверхвысокомолекулярного полиэтилена 40-62 мас.%, порошка вольфрама 18-20 мас.%, нитрида бора 15-20 мас.% и технического углерода УМ-76 5-20 мас.%....
Тип: Изобретение
Номер охранного документа: 0002632934
Дата охранного документа: 11.10.2017
19.01.2018
№218.016.0d9c

Композиционный материал на основе сверхвысокомолекулярного полиэтилена для комбинированной радио и радиационной защиты, наполненный пентаборидом дивольфрама и техническим углеродом

Изобретение относится к области защиты от ионизирующего и сверхвысокочастотного излучения. Предлагаемый композиционный материал состоит из: сверхвысокомолекулярного полиэтилена - 50-75 масс.%, пентаборида дивольфрама - 20-30 масс.% и технического углерода УМ-76 - 5-20 масс.%. Изобретение...
Тип: Изобретение
Номер охранного документа: 0002632932
Дата охранного документа: 11.10.2017
20.01.2018
№218.016.157b

Биоинженерная конструкция с антибактериальным покрытием для замещения костно-хрящевых дефектов

Изобретение относится к области медицины, а именно к ортопедии, травматологии и трансплантологии, и предназначено для изготовления протезов, скаффолдов и биоимплантатов для замещения костно-хрящевых дефектов. Биоинженерная многослойная конструкция на основе биосовместимого...
Тип: Изобретение
Номер охранного документа: 0002634860
Дата охранного документа: 07.11.2017
04.04.2018
№218.016.35f0

Металлополимерные подшипники скольжения, выполненные из ориентированного полимерного нанокомпозиционного материала

Изобретение относится к машиностроению и может применяться в узлах трения, работающих в условиях сухого трения и химически агрессивных средах. Металлополимерный подшипник скольжения состоит из металлической втулки, на которую нанесен слой антифрикционного полимерного нанокомпозиционного...
Тип: Изобретение
Номер охранного документа: 0002646205
Дата охранного документа: 01.03.2018
09.05.2018
№218.016.37d3

Способ получения катодного материала на основе металла платиновой группы и бария

Изобретение относится к электронной технике и может быть использовано для изготовления эффективных термо- и вторичноэмиссионных катодов для мощных приборов СВЧ-электроники, в частности ламп бегущей волны, магнетронов и т.п. Способ получения катодного материала на основе металла платиновой...
Тип: Изобретение
Номер охранного документа: 0002646654
Дата охранного документа: 06.03.2018
10.05.2018
№218.016.4a35

Компрессионная одежда, выполненная с использованием синтетических искусственных мышц

Изобретение относится к медицине и предназначено для улучшения кровоснабжения конечностей путем создания градиентной статической и/или динамической компрессии во времени за счет контролируемого сокращения и расслабления синтетических искусственных мышц. Сокращение синтетических искусственных...
Тип: Изобретение
Номер охранного документа: 0002651448
Дата охранного документа: 19.04.2018
28.08.2018
№218.016.7fe2

Способ получения трехмерных изделий сложной формы из высоковязких полимеров и устройство для его осуществления (варианты)

Изобретение относится к области аддитивных технологий для получения трехмерных изделий сложной формы, например, для создания трехмерного принтера, и предназначено для быстрого прототипирования или получения малых серий изделий, в общем, и транспортном машиностроении, авиационной технике или...
Тип: Изобретение
Номер охранного документа: 0002664962
Дата охранного документа: 23.08.2018
29.08.2018
№218.016.80e0

Биоактивный полимерный пористый каркас

Изобретение относится к области медицины, в частности к созданию биосовместимых каркасов для замещения дефектов костной ткани. Биосовместимый каркас в форме биорезорбируемой пористой конструкции медицинского назначения с повышенной остеокондуктивностью на основе термопластичного полимера с...
Тип: Изобретение
Номер охранного документа: 0002665175
Дата охранного документа: 28.08.2018
16.01.2019
№219.016.b00a

Способ получения трехмерных изделий сложной формы из высоковязких полимеров

Изобретение относится к области аддитивных технологий для получения трехмерных изделий сложной формы и предназначено для быстрого прототипирования или получения малых серий изделий в общем и транспортном машиностроении, авиационной технике или индивидуализированных медицинских изделий....
Тип: Изобретение
Номер охранного документа: 0002677143
Дата охранного документа: 15.01.2019
+ добавить свой РИД