×
01.09.2018
218.016.8204

Результат интеллектуальной деятельности: Антифрикционная полимерная композиция на основе фторопласта

Вид РИД

Изобретение

Аннотация: Изобретение относится к области полимерного материаловедения, а именно к антифрикционным полимерным материалам триботехнического назначения, которые могут быть использованы для изготовления узлов трения, работающих в экстремальных условиях среды. Антифрикционная композиция включает, мас.%: 10-15 порошка ПМФ, полученного из отходов полиимидо-фторопластовых пленок торговой марки ПМФ, 1-5 порошка квазикристаллов AlCuFe, 0,5-3 технического углерода, остальное фторопласт-4МБ. Технический результат заключается в обеспечении высоких антифрикционных показателей полимерной композиции на основе фторопласта Ф-4МБ в сочетании с высокой износостойкостью материала и низкой абразивной способностью, а также решается задача утилизации отходов неплавких полиимидных пленок. 1 табл., 7 пр.

Изобретение относится к области полимерного материаловедения, а именно к антифрикционным полимерным материалам триботехнического назначения, которые могут быть использованы для изготовления узлов трения, работающих в экстремальных условиях среды.

Разработка антифрикционных полимерматричных композиций, содержащих наноструктурные, полимерные и гибридные добавки для функционирования в экстремальных условиях среды (резкие перепады температур, соленые жидкости, дефицит граничной смазки), обусловлена ужесточением требований по скоростям, нагрузкам и усталостным характеристикам по отношению к существующим антифрикционным материалам. Проблема увеличения срока службы узлов трения, работающих в экстремальных условиях среды, может быть решена путем оптимизации состава композиционного материала, так и подбора пары трения. Разработка новых антифрикционных полимерматричных композиций, которые могли бы заменить существующие промышленные аналоги, является актуальной проблемой. Это позволило бы улучшить плавность работы пар трения, работающих в динамическом режиме (пуск остановка-пуск), снизить шум, массу рабочих элементов и общие энергозатраты.

Существуют антифрикционные композиции на основе политетрафторэтилена (ПТФЭ), содержащих в качестве одной из структурных добавок полиимидный порошок. Данные композиции могут применяться при изготовлении блочных изделий (втулки, шестерни, уплотнительные кольца), а также при создании антифрикционных (многослойные металл-полимерные подшипники) и износостойких покрытий. Толщина слоя может составлять 30-500 мкм, благодаря чему подшипник может функционировать в отсутствие, либо при дефиците граничной смазки, обеспечивая при этом продолжительный срок службы подшипника.

Известна подшипниковая композиция на основе ПТФЭ (DE 4227909 A1, опубл. 24.02.1994), содержащая 10-40 масс.% полиимида. Средний размер полиимидного порошка 45-75 мкм. Материал представляет собой пасту, которая наносится на внутреннюю часть металл-полимерного подшипника скольжения. Далее следует спекание и прокатка до равномерной толщины, формируя таким образом антифрикционное покрытие. Установлено, что при содержании 10-15 масс.% полиимида существенно повышается износостойкость материала, а также стойкость к эрозии. Материал способен к работе при повышенных скоростях и нагрузках.

Известна трехкомпонентная композиция на основе ПТФЭ (US 5009959 A, опубл. 23.04.1991), содержащая полиимид и слюду в интервале концентраций 1-15 масс. %, из которой получали износостойкие покрытия для пищевой промышленности, функционирующие при повышенных температурах. Подложкой служила 2 мм алюминиевая пластина. Толщина слоя композита 35 мкм. Трибологические испытания проводились при 200°C. Контр-телом служила щетка из нержавеющей стали. Последняя прижималась к покрытию при нагрузке 2 кг и вращалась со скоростью 200 об/мин до достижения алюминиевой подложки. Было установлено, что сочетание полиимида и слюды позволяет увеличить износостойкость покрытия в 10-15 раз по сравнению с одиночными добавками.

Известна антифрикционная композиция на основе ПТФЭ (CN 101413543 A, опубл. 22.04.2009), содержащая 25-35 об. % фтортермопласта, 10-15 об. % полиимида, 3-6 об. % MoS2. Добавки полиимида и MoS2 обеспечивают низкое трение и износостойкость, тогда как использование фтортермопласта позволяет легче сформировать пленку переноса на контр-теле. Композиция оказывает минимальный эффект на износ ответной детали.

Известна антифрикционная композиция на основе фторопласта (US 20050025977 A1, опубл. 03.02.2005), содержащая добавки 25-35 об. % высокотемпературных полимеров, которые могут включать полисульфон, полиэстер, полэфиэиркетон, полиимид, а также 5-15 об. % твердосмазочных добавок, таких как графит, MoS2. Фторопластовая основа также может содержать до 30 об. % различных модификаций фторопласта, включающее Ф-4МБ. Частицы высокотемпературных полимеров обладают армирующим эффектом, и минимизируют абразивный износ контртела. Материал представляет собой полимерную пасту, которая наносится на внутреннюю стенку многослойного металл-полимерного подшипника скольжения, после чего происходит спекание и прокатка. Толщина полученного слоя может составлять 50-500 мкм.

Общим недостатком вышерассмотренных материалов является использование дорогостоящего полиимидного порошка в качестве наполнителя, что может существенно увеличить стоимость конечных материалов.

Известна многокомпонентная антифрикционная композиция на основе ПТФЭ (US 4703076 A, опубл. 27.10.1987), содержащая 2-30 об. % твердой смазки (графит, MoS2), 2-30 об. % полимерного наполнителя (полифениленсульфид, полиимид) и 2-30 об. % армирующей фазы (углеволокно, бронза, PbF2, Al2O3). Для проведения трибологических испытаний были изготовлены два типа образцов: массивные и покрытия. В первом случае образцы получали путем механического смешения (2-10 мин, миксер Henshel), далее холодное компактирование (давление 1000 кг/см2, кольцо: внешний диаметр 35 мм, внутренний - 15 мм, высота 40 мм), далее спекание (инертный газ, температура 327-400°C). Антифрикционные композиционные покрытия получали следующим образом: напыление медного слава (толщина слоя 0,35 мм) на стальную пластину 1,24 мм, спекание медного порошкового сплава (800-860°C), далее нанесение полимерной порошковой композиции на медный слой, спекание при температуре 380°C, далее прокатка до равномерной толщины. Параметры трибологических испытаний: нагрузка 25 кг/см2, скорость скольжения 0,1 м/с, время испытаний 4 ч, сухой режим трения. Трибологические испытания показали преимущество двух-/трехкомпонентных композиций перед многокомпонентными.

Известна многокомпонентная композиция на основе ПТФЭ (US 6607820 B2, опубл. 19.04.2003), содержащая 0,5-25 об. % твердой смазки (графит, MoS2), 1-25 об. % полимерного наполнителя (полиэстер, полиимид) и 0,5-10 об. % армирующей фазы (Al2O3). Целью работы являлось получение антифрикционной композиции с повышенной стойкостью к фреттинг-износу. В процессе работы металл-полимерного подшипника между внутренним композиционным слоем (толщина 30 мкм) и осью происходят малые смещения, что вызывает фреттинг-износ слоя композита. Применение многокомпонентных композиций позволяет повысить стойкость слоя к фреттинг-износу. Было высказано предположение, что последнее связано с постепенным изменением твердости и модулей упругости применяемых компонентов, за счет чего улучшается взаимодействие между компонентами (матрица-наполнитель, наполнитель-наполнитель).

Общим недостатком вышерассмотренных материалов является использование дорогостоящих полимерных наполнителей, а также армирующих твердых компонентов, способных вызывать повышенной износ ответной детали.

Известна антифрикционная композиция на основе ПТФЭ (РФ 2246503, опубл. 20.02.2005), содержащая молотый кварц (0,4-0,8 масс. %), графит (3-8 масс. %), мел (5-12 масс. %), бронзовую пудру (15-25 масс. %). Антифрикционную композицию получали механическим смешением исходных компонентов в смесителе. Далее следовало изготовление объемных образцов методом холодного прессования при 50-60 МПа с последующим спеканием при 375°C. Композиция была испытана для изготовления опытных образцов подшипников скольжения натяжных устройств ременных передач зерноуборочного комбайна КЗР-10 "Полесье" на ПО "Гомсельмаш". Изобретение повышает износостойкость и теплостойкость материала, и упрощает его изготовление.

Недостатком материала является использование в качестве наполнителя бронзовой пудры, имеющая высокую плотность, что может существенно повышать массу изделия.

Известна антифрикционная композиция герметизирующего назначения на основе ПТФЭ (РФ 2177962, опубл. 10.01.2002), предназначенная для изготовления уплотнительных элементов пар вращательного и возвратно-поступательного перемещения и узлов трения. Она содержит 1-2 масс. % синтетического Al2O3, предварительно активированного в планетарной мельнице АГО-2 в течение 2 мин. Порошки ПТФЭ и Al2O3 смешивали в лопастном смесителе до получения однородной массы. Далее следовала сушка порошков при 120°C в течение 1 ч. Далее следует холодное компактирование при 50 МПа. Спекание изделий проводят при 370°C. Охлаждение изделий проводят в печи. Применение антифрикционной и герметизирующей композиции повышает ресурс работы уплотнительных элементов при повышенных нагрузках.

Недостатком материала является повышенная абразивная способность Al2O3, что может вызывать износ ответной пары трения.

Наиболее близким по технической сущности и достигаемому техническому результату является антифрикционная композиция (SU 1518360 A1, опубл. 30.10.89), где в качестве противоизносной и противозадирной добавки используются отходы проводов электрокабельного производства, включающих в себя 50 масс. % ПТФЭ, 21 масс. % меди, 29 масс. % полиимида. Отходы измельчают в мельнице ударно-отражательного действия, после чего полученный порошок смешивают с пластичной смазкой ВНИИ НП 242 (ГОСТ 20421-75) в количестве 7-12 масс. %. Изобретение относится к составам смазок для тяжелонагруженных узлов трения (подшипники качения и скольжения, направляющие станков, тяговые и приводные цепи).

Недостатком является отсутствие сведений о гранулометрическом составе наполнителя, получаемого в результате измельчения отходов проводов электрокабельного производства, определяющий в значительной степени эффективность действия наполнителя.

Технический результат заключается в обеспечении высоких антифрикционных показателей полимерной композиции на основе фторопласта Ф-4МБ.

Технический результат достигается следующим образом антифрикционная композиция включает фторопласт Ф-4МБ, технический углерод, полиимид и квазикристаллы, отличающаяся тем, что она содержит порошки квазикристаллов Al65Cu23Fe12 с размером частиц 1-30 мкм и полиимидо-фторопластовый порошок с размером частиц 30-150 мкм, полученный из отходов производства полиимидо-фторопластовой пленки марки ПМФ при следующем соотношении компонентов, масс. %:

Технический углерод 0,5-3

Порошки квазикристаллов Al65Cu23Fe12 1-5

Полиимидо-фторопластовый порошок ПМФ 10-15

Фторопласт-4МБ остальное.

В результате достигается высокая износостойкость материала в сочетании с его низкой абразивной способностью, а также решается задача утилизации отходов неплавких полиимидных пленок.

Получение антифрикционных композиций включает измельчение и активацию отходов производства полиимидо-фторопластовых пленок ПМФ до порошкового состояния, далее следует смешение порошка ПМФ с порошком Ф-4МБ, порошком квазикристаллов Al65Cu23Fe12 до состояния гомогенности. Измельчение и активацию отходов полиимидо-фторопластовых пленок ПМФ проводят в шаровой планетарной мельнице при скорости вращения водила 425-460 об/мин в течении 60-75 мин, после чего следует смешение вторичного порошка ПМФ с 50-90 масс. % порошка Ф-4МБ, 1-5 масс. % порошков квазикристаллов Al65Cu23Fe12 и 0,5-3 масс. % технического углерода в шаровой планетарной мельнице при скорости вращения 425-460 об/мин в течении 45-60 мин, далее проводят сушку при 110-130°C в течении 30-40 мин, далее получают объемные образцы методом термопрессования при температуре 285-300°C и давлении 20-35 МПа.

В качестве полимерной матрицы был выбран порошок фторопласта Ф-4МБ дисперсностью 30 мкм, который представляет собой модификацию фторопласта-4 (политетрафторэтилен). Ф-4МБ включает в себя основные свойства Ф-4, но вследствие более низкой вязкости расплава может перерабатываться в объемные изделия путем компрессионного прессования, литьем под давлением и экструзией Основные характеристики Ф-4МБ: высокая термо- и морозостойкость, сохранение пластичности в широком интервале температур, низкое поверхностное натяжение и адгезия, не смачивается ни водой, ни жирами, ни большинством органических растворителей. По химической стойкости превышает все известные синтетические материалы и благородные металлы: не разрушается под влиянием щелочей, кислот и даже смеси азотной и соляной кислот.

В качестве антифрикционного полимерного наполнителя выбраны отходы производства полиимидо-фторопластовой пленки марки ПМФ (содержит фторопластовый слой Ф-4МД) толщиной 50 мкм (производство «Эстроком»). Данный тип отходов относится к типу сетчатых неплавких реактопластов, имеющих высокую стойкость к истиранию, низкую абразивная способность, отличную стойкость к нагружению, температурную и химическую стойкость. Использование отходов может позволить существенно снизить стоимость полиимидо-фторопластового наполнителя. Слой Ф-4МД вносит положительный вклад в улучшение антифрикционных характеристик, а также улучшает взаимодействие полиимидного наполнителя с полимерной матрицей Ф-4МБ. Использование порошка ПМФ размером менее 30 мкм приводит к ухудшению нагрузочной способности материла, а при размере более 150 мкм происходит снижению уровня однородности порошковой композиции. Введение в материал менее 7 масс. % порошка ПМФ является недостаточным для эффективного снижения износа композиции, а при содержании порошка ПМФ более 20 масс. % возрастает хрупкость композиционного материала.

В качестве армирующей добавки использовались порошки квазикристаллов системы Al65Cu23Fe12. Состав квазикристаллической фазы, ат. %: 65% Al, 23% Cu, 12% Fe (Ψ-фаза), доля фазы 95%. Структура икосаэдр; плотность 4,32 г/смг. Отличительные свойства квазикристаллов состоят в следующем: очень высокая твердость (10 ГПа), низкую поверхностную энергию (28 мДж/м2), низкий коэффициент трения (0,1), низкая абразивная способность. Это свойства обусловлены особенностью строения электронной структуры квазикристаллов, размер частиц порошка составляет 1-20 мкм. Введение в материал порошков квазикристаллов Al65Cu23Fe12 менее 1 масс. % являются недостаточным для достижения требуемого эффекта по снижению износа материала, а при добавлении более 5 масс. % КК порошка происходит рост хрупкости материала, а также возрастает его стоимость.

В качестве активной добавки использовался технический углерод, имеющий удельную поверхность 160-180 м2/г, насыпную плотность не менее 300 кг/м3, средний размер частиц, 20 нм. Технический углерод способствует усилению взаимодействия между компонентами и улучшению антифрикционных характеристик композита. Введение в материал порошка технического углерода менее 0,5 масс.% является недостаточным для достижения требуемого эффекта, а при введении более 3 масс.% ухудшается однородность композиции, поскольку наноразмерные частицы начинают контактировать между собой.

Таким образом, антифрикционную композицию отличает малая степень наполнения, при которой достигаются высокие антифрикционные характеристики, что дает следующие преимущества: высокая ударостойкость, низкая вязкость расплава. Последнее позволяет получать изделия на основе Ф-4МБ методом литья под давлением.

Пример 1.

Вначале проводят сушку отходов пленок ПМФ в термошкафу при 120-140°C в течении 45-60 мин, представляющие обрезки лент толщиной 50 мкм и длиной не более 50 мм. Далее отходы ПМФ загружают в шаровой планетарный активатор АПФ-3, по 65-70 г в каждый барабан. Затем отходы ПМФ измельчают до порошкового состояния при скорости вращения водила 425-460 об/мин в течении 60-75 мин. Масса стальных размольных тел размером 6-10 мм составляет 1700 г. Выбор интервала скорости вращения водила объясняется тем, что при скорости менее 425 об/мин энергии шаров для эффективного измельчения пленки ПМФ оказывается недостаточным, а при скоростях более 460 об/мин в порошке ПМФ могут возникать повышенное содержание примесей. Выбор интервала времени обработки пленки ПМФ объясняется тем, что при времени менее 60 мин основная часть порошка остается крупной, тогда как при обработке более 75 мин в порошке увеличивается содержание примесей железа от стальных размольных тел. Полученный порошок пропускают через 800 мкм сито с целью отсева грубых неизмельченных чешуек пленки. В результате формируется порошок ПМФ хлопьевидной морфологии со размером частиц 30-150 мкм. Далее готовится порошковая навеска ПМФ/Ф-4МБ в массовом соотношении компонентов 25/75 масс. %. В барабаны загружается по 100 г порошковой смеси. Далее следует гомогенизация смеси и дополнительное измельчение порошка ПМФ в планетарном активаторе АПФ-3 в течении 45-60 мин. Выбор временного интервала объясняется тем, что при обработке менее 45 мин смесь оказывается недостаточно гомогенной, тогда как при времени обработки более 60 мин в смеси могут накапливаться примеси железа от стальных размольных тел. Полученную порошковую смесь ПМФ/Ф-4МБ 25/75 масс. % сушат в термошкафу при 120-140°C в течение 45-60 мин. Блочные образцы получает методом горячего прессования при температуре 285-300°C и давлении 20-35 МПа. Изъятие заготовки происходит при 100-110°C. Образец представляет собой цилиндр диаметром 27 мм и толщиной 4-6 мм. За один цикл прессования получают три образца. Плотность образца определяется методом гидростатического взвешивания с использованием аналитических весов A&D GR-202 с приставкой. Испытания на твердость по Шор Д проводятся согласно ГОСТ на приборе ИТ 5078. Механические испытания на сжатие проводились согласно ИСО 604. Подготовка образцов к механическим испытаниям включает в себя вырезание образцов до размера 10⋅10⋅4 мм3. Испытания на трение и износ проводили на установке ИМАШ с типом сопряжения «блок-на-кольце» в режиме сухого трения, при комплексе контактных параметров, характерных для уплотнительных и подшипниковых узлов широкого класса механизмов. Контр-телом выступает кольцо диаметром 98 мм, толщиной 5 мм, сделанное из стали 45 твердостью 55 HRC, и максимальной шероховатостью 1-1,2 мкм. Нагрузка 19 Н, скорость скольжения 2,5 м/с, продолжительность испытания 30 мин, температура комнатная. Измерялся момент трения и площадь пятна контакта, в результате чего вычислялись коэффициент трения, глубина канавки износа и интенсивность изнашивания композиционного материала. Физико-механические и антифрикционные характеристики полученных материалов проводятся в таблице 1. Пример 2, 3.

Порошковые композиции и блочные образцы получают по методике, описанной в п. 1. Отличие состоит составе порошковой смеси Ф-4МБ/ПМФ. Физико-механические и трибологические характеристики полученных материалов проводятся в таблице 1.

Пример 4.

Порошковую композицию и блочные образцы получают по методике, описанной в п. 1. Отличие состоит составе порошковой смеси, которая помимо порошка ПМФ содержит добавку технического углерода. Физико-механические и трибологические характеристики полученных материалов проводятся в таблице 1.

Пример 5.

Порошковую композицию и блочные образцы получают по методике, описанной в п. 1. Отличие состоит составе порошковой смеси, которая помимо порошка ПМФ содержит добавку технического углерода и порошков квазикристаллов Al65Cu23Fe12. Физико-механические и трибологические характеристики полученных материалов проводятся в таблице 1.

Пример 6.

Готовится порошковая навеска Ф-4МБ/ Al65Cu23Fe12 в соотношении 98,5/1,5 масс. %. В каждый барабан загружается по 100 г порошковой смеси. Далее следует гомогенизация смеси в планетарном активаторе АПФ-3 в течении 45-60 мин. Получение объемных образцов и методика испытаний образцов та же, что приводится в п. 1. Физико-механические и трибологические характеристики полученных материалов проводятся в таблице 1.

Пример 7

Порошковую композицию и блочные образцы получают по методике, описанной в п. 6. Отличие состоит в составе порошковой смеси, которая вместо порошков квазикристаллов Al65Cu23Fe12 содержит добавку технического углерода. Физико-механические и трибологические характеристики полученных материалов проводятся в таблице 1.

Источник поступления информации: Роспатент

Showing 21-30 of 322 items.
10.06.2016
№216.015.481e

Интегральная схема силового биполярно-полевого транзистора

Изобретение относится к силовым полупроводниковым приборам и биполярным интегральным схемам. Изобретение обеспечивает повышение быстродействия, уменьшение энергетических потерь при переключении, упрощение технологии изготовления. Интегральная схема силового биполярно-полевого транзистора...
Тип: Изобретение
Номер охранного документа: 0002585880
Дата охранного документа: 10.06.2016
20.08.2016
№216.015.4aa1

Способ дефосфорации марганцевых руд и концентратов

Изобретение относится к дефосфорации расплавов марганцевых руд и концентратов. Селективное восстановление фосфора из расплава ведут газообразным монооксидом углерода (СО), который продувают через расплав. Может быть использован газообразный монооксид углерода, полученный в газогенераторе и...
Тип: Изобретение
Номер охранного документа: 0002594997
Дата охранного документа: 20.08.2016
20.08.2016
№216.015.4e67

Композиция для изготовления режущего инструмента для стали и чугуна

Изобретение относится к порошковой металлургии и может быть использовано для изготовления режущего инструмента. Композиция содержит сверхтвердый материал, включающий смесь порошков кубического нитрида бора и алмаза, при следующем соотношении компонентов, мас. %: кубический нитрид бора 20-60,...
Тип: Изобретение
Номер охранного документа: 0002595000
Дата охранного документа: 20.08.2016
10.08.2016
№216.015.54e5

Способ определения термостойкости углей

Изобретение относится к метрологии, в частности к средствам измерения термостойкости углей. Способ предполагает воздействие на образец угля двух последовательных термоударов, второй из которых имеет большую по сравнению с первым интенсивность, и регистрацию параметров акустической эмиссии....
Тип: Изобретение
Номер охранного документа: 0002593441
Дата охранного документа: 10.08.2016
10.08.2016
№216.015.55b2

Способ определения пористости металлоизделий

Изобретение относится к области обработки металлов давлением, а именно к определению пористости металлоизделия, полученного обработкой давлением литого изделия, и может быть использовано для определения влияния обработки давлением на пористость получаемого металлоизделия. Способ заключается в...
Тип: Изобретение
Номер охранного документа: 0002593525
Дата охранного документа: 10.08.2016
10.07.2016
№216.015.56a6

Способ сорбционного извлечения селена, теллура и мышьяка из водных растворов.

Изобретение относится к области гидрометаллургии, а именно к способу сорбционного извлечения селена, теллура и мышьяка из растворов. Сущность способа заключается во введении растворимых соединений индия в раствор извлекаемых элементов перед сорбцией. Количество соединений индия должно превышать...
Тип: Изобретение
Номер охранного документа: 0002590806
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.5d1e

Способ измерения величины и пространственного распределения локальных магнитных полей, возникающих вследствие протекания коррозионных процессов на металлической поверхности в проводящем растворе

Использование: для проведения коррозионных in-situ исследований материалов в различных проводящих средах. Сущность изобретения заключается в том, что исследуемый образец помещают в кювету с проводящим раствором, в котором требуется исследовать коррозионное поведение материала образца, после...
Тип: Изобретение
Номер охранного документа: 0002591027
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.5dcc

Способ получения порошка титаната диспрозия для поглощающих элементов ядерного реактора

Изобретение относится к способу получения высокодисперсных порошков титаната диспрозия для поглощения нейтронов и может быть использовано в стержнях регулирования ядерных реакторов. Способ включает получение порошка титаната диспрозия путем механической активации смеси компонентов - диоксида...
Тип: Изобретение
Номер охранного документа: 0002590887
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.62ef

Способ переработки сульфидных никелевых концентратов

Изобретение относится к металлургии цветных металлов. Способ переработки сульфидного никелевого сырья включает обжиг шихты, содержащей сульфидное никелевое сырье и хлорид натрия, при температуре 350-400°С с доступом кислорода в течение 1,5-2 ч и выщелачивание полученного огарка водой при...
Тип: Изобретение
Номер охранного документа: 0002588904
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.6ad8

Способ получения нанокомпозита feni/c в промышленных масштабах

Изобретение относится к нанотехнологии изготовления нанокомпозита FeNi/C. Техническим результатом является получение нанокомпозита FeNi/C, содержащего наночастицы FeNi с размером от 12 до 85 нм. Способ синтеза нанокомпозита FeNi/C включает приготовление совместного раствора порошка графита,...
Тип: Изобретение
Номер охранного документа: 0002593145
Дата охранного документа: 27.07.2016
Showing 21-30 of 47 items.
26.08.2017
№217.015.e0d0

Полимерный нанокомпозиционный материал триботехнического назначения с ориентированной структурой

Изобретение относится к нанокомпозиционному материалу с ориентированной структурой на основе сверхвысокомолекулярного полиэтилена, который может быть использован для изготовления триботехнических изделий, таких как подшипники скольжения, втулки, применяемые в слабо- и средненагруженных узлах...
Тип: Изобретение
Номер охранного документа: 0002625454
Дата охранного документа: 14.07.2017
26.08.2017
№217.015.e134

Способ обработки интерметаллических сплавов на основе гамма-алюминида титана

Изобретение относится к области металлургии, а именно к изготовлению высококачественных слитков и заготовок изделий из легированных интерметаллических сплавов на основе гамма-алюминида титана. Способ обработки интерметаллических сплавов на основе гамма-алюминида титана, включающий направленную...
Тип: Изобретение
Номер охранного документа: 0002625515
Дата охранного документа: 14.07.2017
26.08.2017
№217.015.e931

Способ получения прессованного металлосплавного палладий-бариевого катода

Изобретение относится к электронной технике и может быть использовано для изготовления эффективных термо- и вторично-эмиссионных катодов. Путем плавки получают интерметаллид РdВа, размалывают в атмосфере инертного газа или СО с получением порошка, полученный порошок смешивают с порошком...
Тип: Изобретение
Номер охранного документа: 0002627707
Дата охранного документа: 10.08.2017
26.08.2017
№217.015.e93a

Способ получения катодного сплава на основе металла платиновой группы и бария

Изобретение относится к изготовлению металлосплавных катодов для приборов СВЧ-электроники. Способ получения катодного сплава на основе металла платиновой группы и бария включает прессование навески порошка металла платиновой группы, очистку поверхности бария от оксидов, совместную дуговую...
Тип: Изобретение
Номер охранного документа: 0002627709
Дата охранного документа: 10.08.2017
29.12.2017
№217.015.f5e3

Биоактивная полимерная нить для осуществления послойной 3d-печати

Изобретение относится к композиционному материалу, выполненному в форме нити, на основе термопластичного полимера с добавлением биоактивного керамического компонента и может быть использовано для осуществления 3D-печати биорезорбируемых конструкций медицинского назначения методом наплавления...
Тип: Изобретение
Номер охранного документа: 0002637841
Дата охранного документа: 07.12.2017
19.01.2018
№218.016.0407

Способ получения блочных изделий из неплавких полиимидов, состоящих из отходов производства полипиромеллитимидных пленок

Изобретение относится к области получения полиимидов, а именно к области получения термостойких пресс-материалов на основе порошкообразных полипиромеллитимидов, и может быть использовано для получения блочных изделий для продолжительной работы при повышенных температурах (до 300°C) и...
Тип: Изобретение
Номер охранного документа: 0002630538
Дата охранного документа: 11.09.2017
19.01.2018
№218.016.04a5

Полимер-квазикристаллическая порошковая композиция для получения антикоррозийных защитных покрытий

Изобретение относится к полимерматричным композиционным материалам и представляет собой порошковый композиционный материал на основе полисульфона, наполненного дисперсными частицами квазикристаллов систем Al-Cu-Fe или Al-Cu-Cr со степенью наполнения до 20 масс. %. Разработанные композиционные...
Тип: Изобретение
Номер охранного документа: 0002630796
Дата охранного документа: 13.09.2017
19.01.2018
№218.016.093b

Вкладыш ацетабулярного компонента эндопротеза тазобедренного сустава, выполненный из полимерного нанокомпозиционного материала

Изобретение относится к медицине, а именно к травматологии и ортопедии, и представляет собой полимерный вкладыш ацетабулярного компонента, который используется в эндопротезах тазобедренных суставов. Вкладыш ацетабулярного компонента изготавливается методом термопрессования из...
Тип: Изобретение
Номер охранного документа: 0002631889
Дата охранного документа: 28.09.2017
19.01.2018
№218.016.0953

Полимерный композит с эффектом памяти формы для 3d-печати медицинских изделий

Изобретение относится к композиционным материалам медицинского назначения и может быть использовано при изготовлении костных имплантатов. Полимерный композит с памятью формы состоит из «жесткой» и «мягкой» фаз. При этом «жесткая» фаза представлена кристаллической фазой полимерной матрицы,...
Тип: Изобретение
Номер охранного документа: 0002631890
Дата охранного документа: 28.09.2017
19.01.2018
№218.016.0ca2

Гибридная пористая конструкция для замещения костно-хрящевых дефектов

Изобретение относится к медицине. Гибридная пористая многослойная конструкция для замещения костно-хрящевых дефектов содержит пористый слой на основе сверхвысокомолекулярного полиэтилена, также содержит сплошной слой на основе сверхвысокомолекулярного полиэтилена поверх пористого слоя с...
Тип: Изобретение
Номер охранного документа: 0002632785
Дата охранного документа: 09.10.2017
+ добавить свой РИД