×
25.08.2018
218.016.7ec8

Результат интеллектуальной деятельности: Способ балансировки магниторезистивного датчика

Вид РИД

Изобретение

Аннотация: Изобретение относится к датчикам для измерения угла поворота, основанным на анизотропном магниторезистивном эффекте в тонких магнитных пленках, и может быть использовано в системах управления подвижными объектами. Технический результат – балансировка углового магниторезистивного датчика. Способ балансировки углового магниторезистивного датчика содержит этапы, на которых осуществляют подключение дискретного ряда одинаковых подгоночных сопротивлений последовательно с плечами моста Уинстона и балансировку моста Уинстона путем увеличения сопротивлений плеч моста Уинстона последовательным лазерным перерезанием перемычек соответствующих подгоночных сопротивлений, сначала на включенный мост Уинстона подают магнитное поле величиной не менее поля насыщения магниторезистивного материала датчика, затем замеряют значения выходного напряжения моста Уинстона при двух взаимно перпендикулярных направлениях магнитного поля, при которых выходное напряжение имеет максимальное и минимальное значения, и добиваются равенства этих значений по абсолютной величине, увеличивая сопротивления плеч моста Уинстона. 3 ил., 1 табл.

Изобретение относится к измерительной технике, а именно к датчикам для измерения угла поворота, основанным на анизотропном магниторезистивном эффекте (АМР-эффекте) в тонких магнитных пленках, и может быть использовано в системах управления подвижными объектами.

В качестве чувствительного элемента датчика используется мост Уинстона, одной из характеристик которого, отрицательно влияющей на точность измерения угла поворота, является разбаланс (смещение) моста.

Известны AMP датчики магнитного поля, описанные в ряде патентов фирмы Honeywell (Muchael 3, Caruso Н. and Tamara Bratland, Honeywell SSES, Carl H. Smith and Robert Schneider, Nonvolatile Electronics, Jnc), http://www sensorsmag.com, которым присуще наличие технологического разбаланса мостовой схемы, содержащей тонкопленочные резисторы.

Технологический разбаланс является следствием того, что процессы вакуумного напыления, фотолитографии и травления пленок не могут обеспечить одинаковую толщину и размер магниторезистивных полосок, что приводит к неравенству сопротивлений плеч моста.

Для устранения разбаланса моста предлагаются разные способы, основанные на использовании схемных решений с введением дополнительных тонкопленочных элементов или электронных компонентов в схеме обработки сигнала (катушек смещения, микропроцессора, электронной обратной связи).

Использование этих способов позволяет устранить разбаланс моста, но имеет ограничение по его величине, усложняет процесс изготовления датчика и отбирает заметную часть питания, что снижает его чувствительность.

Известны технические решения, описанные в патентах РФ №2186440, кл. H01L 43/08 от 16 февраля 2001 г. и №2216822 кл. H01L 43/08 от 9 апреля 2002 г., в которых вместо катушки индуктивности, для той же цели используются управляющие проводники, но эти решения имеют те же недостатки, что и предыдущие.

Более простой способ предложен в патенте РФ №2347302 кл. H01L 43/08 от 11.09.2007 г., взятый нами за прототип.

В этом способе балансировку разомкнутого моста Уинстона осуществляют подключением дискретного ряда одинаковых подгоночных сопротивлений последовательно с плечом моста Уинстона и поочередным лазерным перерезанием перемычек между сопротивлениями, каждый раз увеличивая сопротивление плеча на одну и ту же величину (шаг подгонки) до окончательной балансировки моста.

В приведенном примере показано с какой точностью может быть выполнено заданное сопротивление плеча при шаге подгонки 1 Ом для получения моста в 1000 Ом с равными сопротивлениями плеч.

Этот способ не может быть реализован для замкнутого моста Уинстона, вследствие того, что сопротивления плеч невозможно замерить.

В этом случае разбаланс оценивают по величине напряжения в диагонали моста при отсутствии воздействующего магнитного поля (у сбалансированного моста выходное напряжение - 0 мВ).

Для мостов Уинстона компасного применения с нечетной вольт-эрстедной характеристикой (ВЭХ) и имеющей гистерезис, используют способ, описанный в ChipNews # 3(96), 2005, стр 61-62, заключающийся в том, что магниторезистивные полоски намагничивают в одну сторону и получают смещение моста Uset, а затем в другую - получают смещение Ureset. Искомый разбаланс находится как: (Uset-Ureset)/2, и для балансировки необходимо выполнение условия Uset=Ureset. Балансировка такого моста с помощью подгоночных сопротивлений не вызывает затруднений.

Основным недостатком всех перечисленных способов является невозможность их применения для балансировки углового магниторезистивного датчика.

Особенностью угловых датчиков является то, что они работают в состоянии насыщения при полях до 10 мТл и сбалансированность моста для работы в области малых полей не обеспечивает сбалансированности моста в рабочем состоянии датчика вследствие большой величины размагничивающих полей. Так Р. Суху в книге «Магнитные тонкие пленки», Издательство «Мир», Москва, 1967 стр 394, приводит пример для размагничивающих полей по длинной и короткой стороне прямоугольного образца с соотношением сторон 2:1. Размагничивающее поле по короткой стороне оказалось в два раза больше, чем по длинной. У применяемых на практике магниторезистивных полосок эта разница еще больше, что естественно приводит к разнице сопротивлений плеч, т.е. разбалансу моста и, соответственно, снижению характеристик датчика.

Техническим результатом предлагаемого решения является способ балансировки углового магниторезистивного датчика.

Указанный технический результат достигается тем, что в способе балансировки магниторезистивного датчика, включающем подключение дискретного ряда одинаковых подгоночных сопротивлений последовательно с плечами моста Уинстона и балансировку моста Уинстона путем увеличения сопротивлений плеч моста Уинстона последовательным лазерным перерезанием перемычек соответствующих подгоночных сопротивлений, сначала на включенный мост Уинстона подают магнитное поле величиной не менее поля насыщения магниторезистивного материала датчика, затем замеряют значения выходного напряжения моста Уинстона при двух взаимно перпендикулярных направлениях магнитного поля, при которых выходное напряжение имеет максимальное и минимальное значения и добиваются равенства этих значений по абсолютной величине, увеличивая сопротивления плеч моста Уинстона.

Пример реализации способа

На фиг. 1 представлена топология датчика, состоящего из 2-х мостов Уинстона, имеющих общий центр симметрии (условное название «Ромашка»).

На фиг. 2 представлена зависимость выходного напряжения датчика от величины прикладываемого магнитного поля.

На фиг. 3а представлена зависимость выходного напряжения моста Уинстона от угла поворота до балансировки.

На фиг. 3б представлена зависимость выходного напряжения моста Уинстона от угла поворота после балансировки.

На фиг. 1:

1 - контактная площадка 1-го моста Уинстона (условное обозначение «мост 0°», у него два плеча параллельны, а два плеча перпендикулярны оси легкого намагничивания);

2 - контактная площадка 2-го моста Уинстона (условное обозначение «мост 45°», который повернут на 45° относительно первого моста);

3 - контактная площадка «моста 0°»;

4 -контактная площадка «моста 45°»;

5 - контактная площадка «моста 45°»;

6 - контактная площадка «моста 0°»;

7 - контактная площадка «моста 45°»;

8 - контактная площадка «моста 0°»;

9 - магниторезистивные полоски;

10 - сопротивление грубой подгонки;

11 - сопротивление тонкой подгонки.

Стрелкой обозначено направление оси легкого намагничивания (ОЛН), которое формировалось во время напыления пленки в вакууме при приложении вдоль поверхности подложки магнитного поля величиной 16 мТл.

Балансировку датчика проводят следующим образом. Сначала на тестовом образце снимают зависимость выходного напряжения моста Уинстона от величины прикладываемого перпендикулярно ОЛН магнитного поля. Для этого использовали соленоид на 2000 витков, который при токе 0,77 А позволяет получать однородное магнитное поле по оси соленоида величиной 12,5 мТл.

Из фиг. 2 видно, что 5 мТл достаточно для полного намагничивания образца.

Для балансировки «моста 0°» подложку устанавливают на контактное приспособление с четырьмя зондами. Зонды, по которым подается питание, устанавливают на контактные площадки 1 и 6, а зонды с которых снимается выходное напряжение, и которые подключены к вольтметру - на контактные площадки 3 и 8.

На соленоид подают от источника питания со стабилизацией по току ток величиной 0,31А, что соответствует магнитному полю величиной 5 мТл.

Из информации фирмы Honeywell об угловых датчиках НМС 1501/ НМС 1512 известно, что «мост 0°» имеет косинусную зависимость, а «мост 45°» имеет синусную зависимость выходного напряжения от угла поворота. Поэтому, для «моста 0°» замеряют два значения выходного напряжения - одно при поле направленном параллельно ОЛН (0°), а второе при поле, направленном перпендикулярно ОЛН (90°). В этих двух положениях будут наблюдаться максимальное и минимальное значения выходного напряжения.

Максимальное и минимальное значения амплитуды выходного напряжения выбраны из соображений возможности их измерения с наименьшей погрешностью. Для сбалансированного моста обе амплитуды равны по модулю.

В случае разбаланса осуществляют грубую подгонку, перерезая перемычки соответствующих подгоночных сопротивлений «10» по направлению, указанному знаком .

Если этого окажется недостаточным, то удаляют часть материала с сопротивления тонкой подгонки «11». Погрешность подгонки во многом определяется инструментом, чем меньше диаметр луча лазера, тем точнее она может быть проведена. В данном случае грубая подгонка давала 8 мВ добавки при перерезании одной перемычки и менее 1 мВ при тонкой подгонке.

Аналогичным способом балансируется и «мост 45°», у которого зависимость выходного напряжения от угла поворота синусная и его минимальное и максимальное значение замеряются при углах 45° и 135° относительно ОЛН.

В таблице 1 представлены результаты балансировки двухмостовых датчиков после грубой подгонки.

Из таблицы видно, что в случае грубой подгонки погрешность составляла от ±1 мВ до ±5 мВ.

В случае тонкой подгонки удалось достичь погрешности менее ±1 мВ, типично ±0,5 мВ.

Искомый угол определяется по формуле:

По угловой характеристике, представленной на фиг. 3a, наглядно видно, что значения «α» для разбалансированного моста не будут соответствовать табличным.

Таким образом, можно констатировать, что предложен оригинальный способ, который существенно отличается от известных и позволяет балансировать угловой тонкопленочный магниторезистивный датчик с погрешностью, определяемой возможностью инструмента удалять минимальное количество материала с сопротивления точной подгонки.

Способ балансировки углового магниторезистивного датчика, включающий подключение дискретного ряда одинаковых подгоночных сопротивлений последовательно с плечами моста Уинстона и балансировку моста Уинстона путем увеличения сопротивлений плеч моста Уинстона последовательным лазерным перерезанием перемычек соответствующих подгоночных сопротивлений, отличающийся тем, что для балансировки углового магниторезистивного датчика сначала на включенный мост Уинстона подают магнитное поле величиной не менее поля насыщения магниторезистивного материала датчика, затем замеряют значения выходного напряжения моста Уинстона при двух взаимно перпендикулярных направлениях магнитного поля, при которых выходное напряжение имеет максимальное и минимальное значения, и добиваются равенства этих значений по абсолютной величине, увеличивая сопротивления плеч моста Уинстона.
Способ балансировки магниторезистивного датчика
Способ балансировки магниторезистивного датчика
Способ балансировки магниторезистивного датчика
Способ балансировки магниторезистивного датчика
Источник поступления информации: Роспатент

Showing 431-440 of 556 items.
13.11.2018
№218.016.9c9a

Электроизоляционный заливочно-пропиточный компаунд

Изобретение относится к области электротехники, в частности к эпоксидным низковязким заливочно-пропиточным компаундам, используемым для электроизолирования и упрочнения путем заливки высоковольтных блоков питания, трансформаторов, для герметизации и защиты элементов радиоэлектронной аппаратуры...
Тип: Изобретение
Номер охранного документа: 0002672094
Дата охранного документа: 12.11.2018
21.11.2018
№218.016.9f03

Дифференциальный измерительный преобразователь

Изобретение относится к области измерительной техники, а именно к измерительным преобразователям с частотной формой выходных сигналов. Дифференциальный измерительный преобразователь содержит два генератора частотных сигналов с частотозадаюшими элементами, выходы которых соединены со входами...
Тип: Изобретение
Номер охранного документа: 0002672793
Дата охранного документа: 19.11.2018
15.12.2018
№218.016.a792

Высокотемпературный гафнийсодержащий сплав на основе титана

Изобретение относится к области металлургии титановых сплавов и может быть использовано для деталей и узлов ракетных и авиационных двигателей, работающих под высокими нагрузками при температурах до 1000°С, в частности для высокотемпературных изделий газотурбинных двигателей (ГТД)....
Тип: Изобретение
Номер охранного документа: 0002675063
Дата охранного документа: 14.12.2018
15.12.2018
№218.016.a798

Способ изготовления плоских изделий из гафнийсодержащего сплава на основе титана

Изобретение относится к металлургии, в частности к способу изготовления плоских изделий из сплава на основе титана, и может быть использовано при производстве комплектующих изделий, предназначенных для работы в высокотемпературной зоне тракта газотурбинных двигателей и других изделий,...
Тип: Изобретение
Номер охранного документа: 0002675011
Дата охранного документа: 14.12.2018
15.12.2018
№218.016.a7ad

Способ получения слитков сплава на основе титана

Изобретение относится к области металлургии, в частности к способам выплавки слитков сплава на основе титана, легированного танталом, гафнием и хромом, с целью получения из него высокопрочных, жаропрочных и жаростойких изделий, в основном используемых в аэрокосмической технике. Способ получения...
Тип: Изобретение
Номер охранного документа: 0002675010
Дата охранного документа: 14.12.2018
15.12.2018
№218.016.a81e

Способ удаления углеродсодержащих слоев и пыли из вакуумных камер плазменных установок

Изобретение относится к cпособу удаления углеродсодержащих слоев и пыли из вакуумных камер плазменных установок. При взаимодействии с плазмой в процессе работы установки боро-углеродные покрытия эродируют. Продукты эрозии осаждаются на контактирующих с плазмой поверхностях и образуют...
Тип: Изобретение
Номер охранного документа: 0002674997
Дата охранного документа: 14.12.2018
16.01.2019
№219.016.b056

Полностью оптический логический базис на основе микрокольцевого резонатора

Изобретение относится к полностью оптическим логическим элементам (ОЛЭ) на основе микрокольцевых резонаторов и может быть использовано в качестве логического базиса в оптических вычислительных устройствах. Полностью оптический логический базис на основе микрокольцевого резонатора содержит...
Тип: Изобретение
Номер охранного документа: 0002677119
Дата охранного документа: 15.01.2019
13.02.2019
№219.016.b96f

Устройство для определения объёмов замкнутых полостей

Устройство относится к измерительной технике, в частности к измерениям вместимостей замкнутых герметизированных объемов в различных сложных системах и установках, имеющих отношение к вакуумной технике, с возможностью размещения внутри их объемов пористых материалов и/или элементов конструкций...
Тип: Изобретение
Номер охранного документа: 0002679476
Дата охранного документа: 11.02.2019
14.02.2019
№219.016.ba0f

Способ динамического управления техническими средствами

Изобретение относится к способу динамического управления техническими средствами. Осуществляют прием первой неформализованной входной последовательности символов, включающей идентификационный признак, вводят код размещения для проверки принятых последовательностей, аналогичным образом принимают...
Тип: Изобретение
Номер охранного документа: 0002679749
Дата охранного документа: 12.02.2019
20.02.2019
№219.016.bc2a

Способ определения объёмов замкнутых полостей

Изобретение относится к измерительной технике, в частности к измерениям вместимостей замкнутых герметизированных объемов в различных сложных системах и установках, имеющих отношение к вакуумной технике, с возможностью размещения внутри их объемов пористых материалов и/или элементов конструкций...
Тип: Изобретение
Номер охранного документа: 0002680159
Дата охранного документа: 18.02.2019
Showing 1-8 of 8 items.
27.01.2013
№216.012.2137

Способ изготовления многоуровневых тонкопленочных микросхем

Изобретение относится к области изготовления микросхем и может быть использовано для изготовления многоуровневых тонкопленочных гибридных интегральных схем и анизотропных магниторезистивных преобразователей. Технический результат - упрощение технологии изготовления микросхем и повышение их...
Тип: Изобретение
Номер охранного документа: 0002474004
Дата охранного документа: 27.01.2013
20.12.2014
№216.013.131e

Способ изготовления магниторезистивного датчика

Изобретение относится к области автоматики и магнитометрии. Способ изготовления магниторезистивного датчика заключается в формировании на изолирующей подложке моста Уинстона путем вакуумного напыления магниторезистивной структуры с последующим формированием магниторезистивных полосок методом...
Тип: Изобретение
Номер охранного документа: 0002536317
Дата охранного документа: 20.12.2014
25.08.2017
№217.015.c0b2

Способ изготовления магниторезистивного датчика

Изобретение относится к области автоматики и магнитометрии и может быть использовано при изготовлении датчиков для определения положения движущихся объектов, магнитометров, электронных компасов для систем навигации и т.д. Технический результат: повышение разрешающей способности за счет...
Тип: Изобретение
Номер охранного документа: 0002617454
Дата охранного документа: 25.04.2017
20.01.2018
№218.016.148a

Устройство для нанесения покрытий на подложки в вакууме

Изобретение относится к технологии нанесения нанопленок в вакууме и может быть использовано в производстве изделий микроэлектроники. Устройство содержит вакуумную камеру, магнетрон с кольцевой зоной эрозии мишени и связанные кинематически с реверсивным электроприводом вакуумный ввод с...
Тип: Изобретение
Номер охранного документа: 0002634833
Дата охранного документа: 03.11.2017
05.07.2018
№218.016.6b97

Способ изготовления магниторезистивного датчика

Изобретение относится к области автоматики и может быть использовано при изготовлении тахометров, датчиков перемещения, приборов для бесконтактного измерения электрического тока, магнитометров, электронных компасов и т.п. Способ изготовления магниторезистивного датчика включает формирование на...
Тип: Изобретение
Номер охранного документа: 0002659877
Дата охранного документа: 04.07.2018
11.03.2019
№219.016.d8c3

Способ получения многослойных магнитных пленок

Изобретение относится к области вакуумного напыления тонких пленок и может быть использовано в системах магнитной записи, датчиках, основанных на магниторезистивном эффекте. Проводят послойное напыление магнитного сплава Fe-Ni и SiO в вакууме при приложении в плоскости осаждения внешнего...
Тип: Изобретение
Номер охранного документа: 0002315820
Дата охранного документа: 27.01.2008
17.04.2019
№219.017.1648

Абсолютный датчик угла поворота

Изобретение относится к измерительной технике и может быть использовано для бесконтактного определения положения вала электродвигателя. Технический результат - повышение радиационной стойкости упрощение схемы обработки сигнала. Сущность изобретения заключается в том, что абсолютный датчик угла...
Тип: Изобретение
Номер охранного документа: 0002436037
Дата охранного документа: 10.12.2011
17.04.2019
№219.017.164c

Способ изготовления магниторезистивного датчика

Изобретение относится к области магнитометрии и может быть использовано при изготовлении датчиков перемещений, устройств измерения электрического тока и магнитных полей, при изготовлении датчиков угла поворота, устройств с гальванической развязкой, магнитометров, электронных компасов и т.п....
Тип: Изобретение
Номер охранного документа: 0002463688
Дата охранного документа: 10.10.2012
+ добавить свой РИД