×
19.08.2018
218.016.7dc9

Результат интеллектуальной деятельности: ПЫЛЕСОС

Вид РИД

Изобретение

№ охранного документа
0002664227
Дата охранного документа
15.08.2018
Аннотация: Изобретение относится к бытовой технике. Пылесос содержит узел электродвигателя-вентилятора, регулятор для регулировки установки мощности узла электродвигателя-вентилятора, а также процессор, который выполнен с возможностью защиты узла электродвигателя-вентилятора от перегрева и/или вхождения в режим останова в зависимости от сравнения параметра, относящегося к скорости потока, с пороговым значением, которое представляет собой скорость вращения узла электродвигателя-вентилятора. Пороговое значение может зависеть от установки мощности узла электродвигателя-вентилятора или тока через узел электродвигателя-вентилятора. Параметр, относящийся к скорости потока, может быть разностью давлений между, с одной стороны, положением выше по потоку или ниже по потоку от узла электродвигателя-вентилятора и, с другой стороны, окружающей средой, разностью давлений на известном компоненте, разностью давлений на узле электродвигателя-вентилятора, и/или, если пороговое значение зависит от установки мощности, скоростью вращения узла электродвигателя-вентилятора. Процессор может быть выполнен с возможностью защиты узла электродвигателя-вентилятора путем открытия клапана выше по потоку от узла электродвигателя-вентилятора, и/или путем уменьшения скорости вращения узла электродвигателя-вентилятора. Технический результат – повышение эффективности защиты электродвигателя пылесоса от перегрева. 5 з.п. ф-лы, 10 ил.

Область техники, к которой относится изобретение

Изобретение относится к пылесосу.

Предпосылки к созданию изобретения

Пылесосы содержат узел, образованный вентилятором и электродвигателем для приведения в действие вентилятора. Обычно, узлы пылесоса нуждаются в охлаждении потока для предотвращения перегрева узла. Обычно, воздушный поток, который генерируется самим узлом, используется в качестве потока охлаждения. Это означает то, что узел всегда нуждается в конкретном количестве воздушного потока, и, таким образом, впускное отверстие не может полностью блокироваться. Если впускное отверстие пылесоса заблокировано, узел будет перегреваться и может выйти из строя. Эта проблема обычно решена с помощью предохранительного клапана, который открывается, когда достигнуто конкретное давление. Из-за блокирования впускного отверстия, узел будет генерировать давление. Если давление является достаточно высоким (и, таким образом, скорость потока достаточно низкая), предохранительный клапан будет открываться и обеспечивать узел необходимым количеством потока охлаждения.

В патенте США 6,349,738 раскрыт воздуховыпускной клапан для подачи отводимой текучей среды в основную текучую среду, проходящую через устройство, в котором возникает разность давлений. Воздуховыпускной клапан выполнен с возможностью открытия для выпуска текучей среды в основную текучую среду, когда разность давлений в устройстве опускается ниже заданного значения.

В заявке на патент США 2011/0265285 раскрыт пылесос, определяющий блокирование вдоль воздуховода вакуума путем определения амперной нагрузки электрического тока и определения блокирования вдоль воздуховода путем отбора величины электрического тока и расчета во сколько раз отобранный номинальный ток при полной нагрузке превышает пороговую величину тока в пределах периода времени. Когда отобранные образцы превышают определенное процентное пороговое значение, подача питания на узел электродвигателя прекращается.

Сущность изобретения

В пылесосах известного уровня техники такой воздуховыпускной клапан имеет размеры для максимальной установки всасывающей силы. Для нижних установок всасывающей силы воздуховыпускной клапан сам по себе не обеспечивает достаточную защиту, но это не представляет большую проблему, так как пылесосы известного уровня техники обеспечивают достаточную утечку где-либо в другом месте, так что электродвигатель не слишком легко перегревается. Однако современные пылесосы с учетом требований к электроэнергии не имеют утечку, которая является достаточной для защиты электродвигателя, так что новое решение необходимо для защиты электродвигателя пылесоса от перегрева, когда установка мощности всасывания не является максимальной. Это не является подходящим решением для простого задания размеров предохранительного клапана для установки мощности ниже максимальной установки мощности, так как это привело бы к открытию предохранительного клапана для установок мощности выше нижней установки мощности, для которой были заданы размеры предохранительного клапана.

В частности, целью изобретения является создание усовершенствованного пылесоса. Изобретение определено независимыми пунктами формулы изобретения. Предпочтительные варианты осуществления определены в зависимых пунктах формулы изобретения.

В соответствии с аспектом изобретения пылесос содержит узел электродвигателя-вентилятора и регулятор для регулировки установки мощности узла электродвигателя-вентилятора, процессор выполнен с возможностью защиты узла электродвигателя-вентилятора от перегрева и/или вхождения в режим останова в зависимости от сравнения параметра, относящегося к скорости потока, с пороговым значением, который представляет собой скорость вращения узла. Пороговое значение может зависеть от установки мощности узла электродвигателя-вентилятора или тока через узел электродвигателя-вентилятора. Параметр, относящийся к скорости потока, может быть разностью давлений между, с одной стороны, положением выше по потоку или ниже по потоку от узла электродвигателя-вентилятора и, с другой стороны, окружающей средой, разностью давлений на известном компоненте, разностью давлений на узле электродвигателя-вентилятора и/или, если пороговое значение зависит от установки мощности, скоростью вращения узла электродвигателя-вентилятора. Процессор может быть выполнен с возможностью защиты узла электродвигателя-вентилятора путем открытия клапана выше по потоку от узла электродвигателя-вентилятора и/или путем уменьшения скорости вращения узла электродвигателя-вентилятора.

Эти и другие аспекты изобретения будут понятны и объяснены со ссылкой на варианты осуществления, описанные ниже.

Краткое описание чертежей

Фиг.1 - вариант осуществления пылесоса VC, в котором разность P давлений измерена между, с одной стороны, камерой выше по потоку от узла A и, с другой стороны, окружающей средой;

фиг.2 - вариант осуществления пылесоса VC, в котором разность P давлений измерена между, с одной стороны, камерой ниже по потоку от узла A и, с другой стороны, окружающей средой;

фиг.3A и 3B - варианты осуществления пылесоса VC, в котором разность P давлений измерена на известном компоненте;

фиг.4 - вариант осуществления пылесоса VC, в котором разность P давлений измерена на узле A;

фиг.5 - вариант осуществления пылесоса VC, в котором при управлении микропроцессором μP предпринимается действие, если скорость N вращения узла A превышает пороговое значение Nthreshold в зависимости от установки PS мощности;

фиг.6 - вариант осуществления пылесоса VC, имеющего электронно-управляемый клапан ECV, который управляется микропроцессором μP, который, в качестве альтернативы или дополнительно управляет узлом A для прекращения его работы или, по меньшей мере, уменьшения его скорости вращения;

фиг.7 - отношение между падением H давления (в мбар) и скоростью Q потока (в л/сек) через компонент;

фиг.8 - эффективность узла в соответствии с отношением при постоянном напряжении между скоростью S вращения (в об/мин) и скоростью Q потока через узел для одной установки мощности для четырех разных узлов одного и того же типа; и

фиг.9 - эффективность электродвигателя-вентилятора в соответствии с отношением при постоянном напряжении между давлением H - скоростью Q потока (кривые с шариками •) и скоростью S вращения - скоростью Q потока (кривые с небольшими треугольниками ▲) через узел для пяти разных установок мощности одного и того же узла.

Описание вариантов осуществления изобретения

Помимо вышеупомянутой проблемы перегрева при низких скоростях воздушного потока и высоких давлениях узел может входить в режим останова. В этом режиме возникает остановка лопастей вентилятора, уменьшая эффективность вентилятора. Эффект останова также генерирует очень характерный звук (подобно вертолету). Потребители могут воспринимать это как неисправность пылесоса и не хотеть использовать его. Предохранительный клапан может быть выполнен таким образом, что узел никогда не будет входить в режим останова.

В варианте осуществления изобретения скорость потока определяется с помощью известного отношения, связанного с установкой мощности, и для каждой установки мощности скорость потока определяется для предотвращения перегрева или вхождения в режим останова узла.

В качестве альтернативы, возможно использование непосредственно скорости вращения узла вместо использования установки мощности в качестве входного параметра, который представляет собой скорость вращения. Таким образом, можно обеспечить преимущества, если напряжение сети колеблется. Данный вариант осуществления изобретения создает предохранительный клапан путем измерения скорости вращения узла (для определения эффективности вентилятора) и одновременно измерения давления на вентиляторе или скорости потока через вентилятор. Каждая скорость вращения затем будет иметь свое пороговое значение для разности давлений или скорости потока, при котором необходимо предпринимать действие для предотвращения перегрева узла или предотвращения вхождения узла в режим останова.

Скорость потока может определяться разными способами, используя

1. разность давлений между камерой выше по потоку или ниже по потоку от узла и давлением окружающей среды (как созданы в настоящий момент предохранительные клапаны), или

2. разность давлений на компоненте, когда отношение между давлением и потоком известно и не изменяется по времени, или

3. разность давлений на узле, или

4. скорость вращения узла. Только эта последняя опция не возможна, если скорость вращения используется непосредственно вместо установки мощности в сочетании с любой из трех вышеупомянутых разностей давлений.

Эти четыре способа для определения скорости потока будут описаны более подробно ниже.

1. Разность давлений между камерой выше по потоку или ниже по потоку от узла и давлением окружающей среды (как созданы в настоящий момент предохранительные клапаны).

Одна и та же разность давлений, когда созданные в настоящий момент предохранительные клапаны работают по определенному принципу, (камера выше по потоку от узла - окружающая среда) могут использоваться в сочетании с кривой QH (отношение между скоростью Q потока и давлением H) узла для определения скорости потока. Для каждой установки мощности требуемый поток охлаждения является разным (нижняя установка мощности требует меньшего потока охлаждения). Наряду с этим, для каждой установки мощности существует разное отношение между давлением H и скоростью Q потока узла (см. фиг.9). Это означает то, что для каждой установки мощности используется разное отношение между давлением H и скоростью Q потока для определения того, что проходит ли достаточный поток охлаждения через узел.

На фиг.1 изображен вариант осуществления пылесоса VC, в котором разность P давлений измерена между, с одной стороны, камерой выше по потоку от узла A и, с другой стороны, окружающей средой. При управлении микропроцессором μP предпринимается действие, если abs[P]>Pthreshold, в котором пороговое значение Pthreshold зависит от установки PS мощности при регулировке регулятором установки PS мощности. Этот регулятор установки PS мощности может быть поворотной кнопкой или может иметь любую другую подходящую форму (например, 3 нажимные кнопки для низкой, средней и высокой установки PS мощности, или линейным датчиком касания для ввода желаемой установки PS мощности).

В качестве альтернативы, если скорость N вращения узла A используется непосредственно, микропроцессор μP обеспечивает то, что предпринимается действие, если abs[P]>Pthreshold, в котором пороговое значение Pthreshold зависит от скорости N вращения узла.

На фиг.2 изображен вариант осуществления пылесоса VC, в котором разность P давлений измеряется между, с одной стороны, камерой ниже по потоку от узла A и, с другой стороны, окружающей средой.

При управлении микропроцессором μP, предпринимается действие, если abs[P]<Pthreshold, в котором пороговое значение Pthreshold зависит от установки PS мощности с помощью регулятора установки PS мощности.

В качестве альтернативы, если скорость N вращения узла A используется непосредственно, микропроцессор μP обеспечивает то, что предпринимается действие, если abs[P]<Pthreshold, в котором пороговое значение Pthreshold зависит от скорости N вращения узла.

2. Разность давления на компоненте, когда отношение между давлением и потоком известно и не изменяется с течением времени.

Существует четкое отношение между потерей H давления на компоненте и скоростью Q потока через этот компонент (см. фиг.7). При измерении разности давлений на этом компоненте скорость потока известна. Для этого установка PS мощности не обязательна. Однако, установка PS мощности должна быть известна для определения порогового значения скорости потока (т.е., нижняя установка мощности требует меньшего потока охлаждения).

На фиг.3A и 3B изображены варианты осуществления пылесоса VC, в которых разность P давлений измеряется на известном компоненте. Известный компонент может быть сопротивлением потоку, например, поверхность раздела, имеющая отверстие с известным размером. Известный компонент может быть расположен ниже по потоку от узла A (как показано на фиг.3A), или выше по потоку от узла A (как показано на фиг.3B).

При управлении микропроцессором μP, предпринимается действие, если abs[P]<Pthreshold, в котором пороговое значение Pthreshold зависит от установки PS мощности при регулировке регулятором установки PS мощности.

В качестве альтернативы, если скорость N вращения узла A используется непосредственно, микропроцессор μP обеспечивает то, что предпринимается действие, если abs[P]<Pthreshold, в котором пороговое значение Pthreshold зависит от скорости N вращения узла.

3. Разность давлений на узле.

Существует четкое отношение между скоростью потока и давлением узла при конкретной установке (см. фиг.9). Если давление H на узле A и установка PS мощности (и, таким образом, кривая QH узла A) известны, скорость Q потока может быть определена. Для каждой установки PS мощности необходимый поток охлаждения является разным (так как нижняя установка PS мощности требует меньшего потока охлаждения). Наряду с этим, для каждой установки PS мощности существует разное отношение между давлением H и скоростью Q потока узла (см. фиг.9). Это означает то, что для каждой установки PS мощности используется разное отношение между давлением H и скоростью Q потока для определения того, что проходит ли достаточный поток охлаждения через узел A.

На фиг.4 изображен вариант осуществления пылесоса VC, в котором разность P давлений измеряется на узле A. При управлении микропроцессором μP, предпринимается действие, в котором пороговое значение Pthreshold зависит от установки PS мощности при регулировке регулятором установки PS мощности.

В качестве альтернативы, если скорость N вращения узла A используется непосредственно, микропроцессор μP обеспечивает то, что предпринимается действие, в котором пороговое значение Pthreshold зависит от скорости N вращения узла.

4. Скорость вращения узла.

Существует четкое отношение между потоком через узел (при конкретной установке мощности или напряжения) и скоростью S вращения (см. фиг.7). При конкретной установке мощности скорость S вращения будет увеличиваться, если давление H увеличивается, и при этом скорость Q потока уменьшается. При определении скорости S вращения узла скорость Q потока через узел известна. Для каждой установки PS мощности требуемый поток охлаждения является разным (нижняя установка мощности требует меньшего потока охлаждения). Наряду с этим, для каждой установки PS мощности существует разное отношение между скоростью S вращения и скоростью Q потока узла (см. фиг.8). Это означает то, что для каждой установки PS мощности используется разное отношение между скоростью S вращения и скоростью Q потока для определения того, что проходит ли достаточный поток охлаждения через узел A.

На фиг.5 изображен вариант осуществления пылесоса VC, в котором при управлении микропроцессором μP, предпринимается действие, если N>Nthreshold, в котором пороговое значение Nhreshold зависит от установки PS мощности при регулировке регулятором установки PS мощности. Скорость N вращения узла A может измеряться отдельно или измеряться косвенно с использованием тока через электродвигатель, или посредством осуществления распознавания сигнала при пиках напряжения на коллекторе электродвигателя или любым другим пригодным способом.

Если определено, что поток охлаждения является слишком слабым, может быть предпринято действие для предотвращения перегрева или вхождение в режим останова узла A. Вышеупомянутые данные (установка мощности/скорость вращения в сочетании с разностью давлений между камерой выше по потоку/ниже по потоку от узла и окружающей средой на известном компоненте или на узле или сочетании установки мощности и скорости вращения) могут обрабатываться в микропроцессоре μP для определения скорости Q потока (используя отношение между скоростью S вращения и скоростью Q потока узла A, соответствующими заданной установки PS мощности).

После расчета скорости Q потока могут осуществляться разные действия, если обнаруживается слишком низкая скорость потока:

- (с электронным управлением) открытие клапана выше по потоку от узла A,

- понижение скорости вращения узла. Скорость вращения может/будет увеличиваться снова до значения, соответствующего заданной установке мощности, если устранена блокировка. Эта опция возможна, поскольку при более низкой скорости вращения необходим более слабый поток охлаждения. Уменьшение скорости вращения до нуля (т.е., выключение узла A) является одним способом уменьшения скорости, который является очень эффективным при защите узла от перегрева.

На фиг.6 изображен вариант осуществления, имеющий электронно управляемый клапан ECV, который управляется микропроцессором μP, при этом микропроцессор μP в качестве альтернативы или дополнительно управляет узлом A для его отключения или, по меньшей мере, уменьшения скорости вращения.

Следует отметить, что вышеупомянутые варианты осуществления иллюстрируют, а не ограничивают изобретение, и специалисты в данной области техники смогут осуществлять многие альтернативные варианты осуществления без отхода от объема прилагаемой формулы изобретения. Микропроцессор μP для защиты узла A электродвигатель-вентилятор от перегрева и/или вхождения в режим останова, может также очень хорошо осуществлять другие функции. Микропроцессор μP не обязательно должен быть микропроцессором, он может быть любым пригодным блоком управления. В формуле изобретения любые ссылочные позиции, расположенные в скобках, не должны истолковываться как ограничивающие формулу изобретения. Слово «содержащий» не исключает наличие элементов или этапов в отличие от элементов или этапов, перечисленных в пункте форму изобретения. Слово ʺaʺ или ʺanʺ, стоящее перед элементом, не исключает наличия множества таких элементов. Изобретение может быть воплощено с помощью технического средства, содержащего несколько различных элементов и/или с помощью соответствующего программируемого процессора. В пункте устройства, перечисляющем несколько средств, некоторые из этих средств могут быть воплощены с помощью одного и того же элемента технического средства. Сам по себе тот факт, что конкретные меры перечислены во взаимно разных зависимых пунктах формулы изобретения, не означает того, что сочетание этих мер не может быть использовано для получения преимущества.


ПЫЛЕСОС
ПЫЛЕСОС
ПЫЛЕСОС
ПЫЛЕСОС
ПЫЛЕСОС
ПЫЛЕСОС
Источник поступления информации: Роспатент

Showing 911-920 of 1,727 items.
23.09.2018
№218.016.8a40

Устройство для вспенивания жидкости

Устройство (1) для вспенивания жидкости, содержащее камеру (10) осаждения, создающую пространство (11) в устройстве (1) для вспененной жидкости, формируемой во время работы устройства (1); впуск (20) для впуска жидкости, подлежащей вспениванию, в устройство (1); впуск (30) для впуска пара в...
Тип: Изобретение
Номер охранного документа: 0002667579
Дата охранного документа: 21.09.2018
23.09.2018
№218.016.8a4d

Система, способ и устройство для контроля влияния света и звука на человека

Группа изобретений относится к медицинской технике, а именно к средствам для контроля влияния света и звука на пациента. Система содержит блок улавливания окружающего света около человека с течением времени, содержащий камеру для улавливания изображений, в частности видеоданных зоны записи,...
Тип: Изобретение
Номер охранного документа: 0002667615
Дата охранного документа: 21.09.2018
23.09.2018
№218.016.8a7b

Беспроводная индуктивная передача мощности

Изобретение относится к области электротехники. Технический результат заключается в улучшении характеристик беспроводной передачи мощности. Система беспроводной передачи мощности включает в себя приемник мощности и передатчик мощности, передающий мощность посредством сигнала индуктивной...
Тип: Изобретение
Номер охранного документа: 0002667506
Дата охранного документа: 21.09.2018
25.09.2018
№218.016.8aa1

Кофемолка и способ измельчения кофе

Предложена кофемолка, которая содержит измельчающее приспособление (20) для измельчения кофейных зерен, двигатель (30) для привода измельчающего приспособления (20), датчик (41) останова для обнаружения состояния останова измельчающего приспособления (20) и/или двигателя (30), и реверсивный...
Тип: Изобретение
Номер охранного документа: 0002667704
Дата охранного документа: 24.09.2018
25.09.2018
№218.016.8b1c

Устройство для нагревания жидкости

Настоящее изобретение относится к устройству (10) для нагревания жидкости для машины для приготовления горячих напитков, содержащему: проточный нагреватель (18, 18'); первый резервуар (12) для приема жидкости (24), предназначенной для нагревания; второй резервуар (14) для временного хранения...
Тип: Изобретение
Номер охранного документа: 0002667703
Дата охранного документа: 24.09.2018
25.09.2018
№218.016.8b1d

Устройство для вспенивания напитков и емкость, содержащая указанное устройство

Предложено устройство для вспенивания напитков, которое содержит первый пропускной канал для напитка, образованный: первой всасывающей камерой (13) для напитка, сообщающейся с первым всасывающим каналом (17) для напитка и первым впускным каналом (21) для пара, причем первый всасывающий канал...
Тип: Изобретение
Номер охранного документа: 0002667706
Дата охранного документа: 24.09.2018
25.09.2018
№218.016.8b3c

Система диагностики апноэ во сне и способ формирования информации с использованием ненавязчивого анализа аудиосигналов

Группа изобретений относится к медицине. Способ формирования информации о классификации аудио и информации о движениях головы выполняют с помощью электронного устройства для диагностики апноэ во сне. При этом регистрируют производимые пациентом слышимые звуки решеткой микрофонов и формируют...
Тип: Изобретение
Номер охранного документа: 0002667724
Дата охранного документа: 24.09.2018
26.09.2018
№218.016.8bab

Беспроводное стыковочное устройство

Группа изобретений относится к беспроводной стыковке устройств. Технический результат – обеспечение защищенной и безопасной беспроводной стыковки устройств. Для этого в беспроводной системе стыковки стыкуемое устройство связывается с базовым устройством, которое соединено по меньшей мере с...
Тип: Изобретение
Номер охранного документа: 0002667982
Дата охранного документа: 25.09.2018
26.09.2018
№218.016.8bba

Виртуальное интерактивное определение объёмных форм

Группа изобретений относится к технологиям обработки изображений. Техническим результатом является обеспечение отсечения частичного объема посредством поверхностей раздела между слоями. Предложен способ обработки изображения. Способ содержит этап, на котором осуществляют прием объемного...
Тип: Изобретение
Номер охранного документа: 0002667976
Дата охранного документа: 25.09.2018
26.09.2018
№218.016.8bf0

Оптимизированный масштабный коэффициент для расширения диапазона частот в декодере сигналов звуковой частоты

Изобретение относится к средствам для расширения диапазона частот при декодировании аудиосигналов. Технический результат заключается в повышении эффективности расширения диапазона частот без дополнительной информации из кодера. Декодируют в первом диапазоне частот сигнал возбуждения и параметры...
Тип: Изобретение
Номер охранного документа: 0002668058
Дата охранного документа: 25.09.2018
+ добавить свой РИД