×
17.08.2018
218.016.7c59

Результат интеллектуальной деятельности: Способ получения мелкокристаллического корунда

Вид РИД

Изобретение

Аннотация: Изобретение относится к производству абразивных тугоплавких материалов, в частности к получению порошка - оксида алюминия (корунда), и может быть использовано в металлообрабатывающей, машиностроительной, химико-металлургической промышленности. Отходы электротехнической алюминиевой проволоки, содержащие не менее 99,5% алюминия (ГОСТ 14838-78), подвергают электроэрозионному диспергированию в дистиллированной воде при частоте следования импульсов 50 Гц, напряжении на электродах 90 В и емкости конденсаторов 65 мкФ. Изобретение позволяет получать мелкокристаллический корунд из алюминиевых отходов с низкой себестоимостью, невысокими энергетическими затратами и экологической чистотой процесса. 10 ил., 3 пр.

Изобретение относится к производству абразивных тугоплавких материалов, в частности к получению порошка - оксида алюминия (корунда), и может быть использовано в металлообрабатывающей, машиностроительной, химико-металлургической промышленности.

Наиболее распространенный способ получения порошкового α-Аl2О3 (корунда) заключается в высокотемпературном (выше 1200°С) обжиге на воздухе гидроксида алюминия (гидраргиллита) или оксигидроксида алюминия (бемита) без/с добавками кристаллов - затравок и/или легирующих веществ [RU 2076083, 1997, С04В 35/10]. Полученный таким методом порошок α-Аl2О3 преимущественно содержит крупнозернистые агломерированные частицы неправильной формы. Порошок α-Аl2О3 перемалывается и затем классифицируется по размерам сухим и/или мокрым способом, часто с использованием специальных добавок [US 5277702, 1994, С09С 1/68; US 5387268, 1995, С09С 1/68; US С1 51/309]. Метод трудоемкий и энергоемкий, поскольку состоит из нескольких операций и включает высокотемпературный обжиг. Кроме того, метод не позволяет в процессе синтеза регулировать размер кристаллов полученного корунда.

Известен способ получения порошка α-А12О3 включающий стадию прокаливания гидроксида алюминия 500-1500°С в атмосфере галогенида водорода в присутствии затравочных кристаллов и/или форморегулирующего агента (Mg, Са, Sr, Y, V, Mo, Сu, Zn, В, Lf, Nd, Се) и их соединений. Способ позволяет получать порошок α-А12О3 с размером кристаллов в интервале 0,8-20 мкм различного габитуса. Однако способ имеет недостатки: большие энергетические затраты и использование в процессе синтеза агрессивных сред (НСl, Сl2 и МеСl), что делает способ экологически неблагоприятным [RU 2118612, 1998, С01F 7/02].

Недостатками известных способов являются высокая энергоемкость, размер кристаллов полученного корунда невозможно регулировать, а также экологические проблемы

Заявляемое изобретение направлено на решение задачи получения корунда из алюминиевых отходов с низкой себестоимостью, невысокими энергетическими затратами и экологической чистотой процесса.

Поставленная задача достигается способом получения корунда из алюминиевых отходов, отличающимся от прототипа тем, что отходы электротехнической алюминиевой проволоки (ГОСТ 14838-78) подвергают электроэрозионному диспергированию в дистиллированной воде при частоте следования импульсов 50 Гц; напряжении на электродах 90 В и емкости конденсаторов 65 мкФ.

На фигуре 1 описаны этапы получения корунда; на фигуре 2 - схема процесса ЭЭД, на фигуре 3 - фотография полученного порошка оксида алюминия (корунда), на фигуре 4 - распределение по размерам микрочастиц порошка корунда, на фигуре 5 - параметры формы микрочастиц порошка, на фигуре 6 - микрофотографии частиц порошка корунда; на фигуре 7 - элементный состав порошка корунда, в таблице 1 - численные значения элементного состава порошка корунда, на фигуре 8 - рентгенограмма порошка корунда, на фигуре 9 - рентгенограмма порошка корунда, на фигуре 10 - рентгенограмма порошка корунда.

Процесс ЭЭД представляет собой разрушение токопроводящего материала в результате локального воздействия кратковременных электрических разрядов между электродами [Немилов, Е.Ф. Электроэрозионная обработка материалов. Л.: Машиностроение, Ленингр. отд-ние, 1983. - 160 с]. Получение алюминиевого порошка на экспериментальной установке для получения нанодисперсных порошков из токопроводящих материалов [Патент RU на изобретение № 2449859] проводилось по схеме, представленной на фигуре 1 в четыре этапа:

- 1 этап - подготовка к процессу электроэрозионного диспергирования;

- 2 этап - процесс электроэрозионного диспергирования;

- 3 этап - выгрузка порошка из реактора.

- 4 этап - сушка и взвешивание порошка оксида алюминия.

Получаемые этим способом порошковые материалы, имеют в основном сферическую и эллиптическую форму частиц. Причем, изменяя электрические параметры процесса диспергирования (напряжение на электродах, емкость конденсаторов и частоту следования импульсов) можно управлять шириной и смещением интервала размера частиц, а также производительностью процесса.

На первом этапе производили сортировку алюминиевых отходов, их промывку, сушку, обезжиривание и взвешивание. Реактор заполняли рабочей средой - дистиллированной водой, отходы загружали в реактор. Монтировали электроды. Смонтированные электроды подключали к генератору. Устанавливали необходимые параметры процесса: частоту следования импульсов, напряжение на электродах, емкость конденсаторов.

На втором этапе - этапе электроэрозионного диспергирования включали установку. Процесс ЭЭД представлен на фигуре 2. Импульсное напряжение генератора 2 прикладывается к электродам 5 и далее к алюминиевым отходам 8 (в качестве электродов также служат алюминиевые отходы). Алюминиевые отходы расположены в реакторе 3. При достижении напряжения определённой величины происходит электрический пробой рабочей среды 10, находящийся в межэлектродном пространстве, с образованием канала разряда. Благодаря высокой концентрации тепловой энергии, материал в точке разряда плавится и испаряется, рабочая среда испаряется и окружает канал разряда газообразными продуктами распада (газовым пузырём 9). В результате развивающихся в канале разряда и газовом пузыре значительных динамических сил, капли расплавленного материала выбрасываются за пределы зоны разряда в рабочую среду, окружающую электроды, и застывают в ней, образуя каплеобразные частицы алюминиевого порошка 7. Регулятор напряжения 1 предназначен для установки необходимых значений напряжения, а встряхиватель 4 передвигает один электрод, что обеспечивает непрерывное протекание процесса ЭЭД.

На третьем этапе проводится выгрузка рабочей жидкости с порошком из реактора.

На четвертом этапе происходит выпаривание раствора, его сушка, взвешивание, фасовка, упаковка и последующий анализ порошка.

При этом достигается следующий технический результат: получение оксида алюминия (корунда) с частицами правильной сферической формы с невысокими энергетическими затратами и экологической чистотой процесса способом электроэрозионного диспергирования (ЭЭД).

Способ позволяет получить корунд без использования химических реагентов, что существенно влияет на себестоимость порошка и позволяет избежать загрязнения рабочей жидкости и окружающей среды химическими веществами.

Средние удельные затраты электроэнергии при производстве алюминиевого электроэрозионного порошка составляет 2,1 кг/кВт⋅ч, что ниже других способов получения корунда. Электроэрозионное диспергирование позволяет эффективно утилизировать алюминиевые отходы с невысокими энергетическими затратами и экологической частотой процесса и получать оксид алюминия.

Корунд, получаемый электроэрозионным диспергированием алюминиевых отходов, может быть использован в металлообрабатывающей, машиностроительной и химико-металлургической промышленности. Также корунд применяется как огнеупорный материал. Керамика на основе оксида алюминия обладает высокой твёрдостью, огнеупорностью и антифрикционными свойствами, а также является хорошим изолятором. Она используется в горелках газоразрядных ламп, подложек интегральных схем, в запорных элементах керамических трубопроводных кранов, в зубных протезах и т.д.

Пример 1

Для получения оксида алюминия (корунда) на экспериментальной установке методом электроэрозионного диспергирования использовали отходы алюминиевой проволоки ГОСТ 14838-78, предварительно нарезанную по 5…7 см. Проволоку загружали в реактор, заполненный рабочей жидкостью - дистиллированной водой. При этом использовали следующие электрические параметры установки:

- частота следования импульсов 50 Гц;

- напряжение на электродах 90 В;

- емкость конденсаторов 65 мкФ.

Полученный оксид алюминия (корунд) (Фигура 3) исследовали различными методами. Гранулометрический состав порошка оксида алюминия, полученного методом электроэрозионного диспергирования в дистиллированной воде, был исследован на лазерном анализаторе размеров частиц «Analysette 22 NanoTec». (Фигура 4). На Фигуре 5 представлены параметры формы микрочастиц порошка корунда, установлено, что коэффициент элонгации (удлинения) частиц размером 25.489 мкм составляет 1.245, что говорит о сферической форме частиц порошка корунда. Установлено, что средний размер частиц составляет 28.5 мкм, арифметическое значение - 28.503 мкм, удельная площадь поверхности - 16266.5 см2/см3.

Исследование элементного состава образцов порошка проводили на электронно-ионном сканирующем (растровом) микроскопе с полевой эмиссией электронов «QUANTA 600 FEG» (Фигура 6) и энерго-дисперсионного анализатора рентгеновского излучения фирмы «EDAX» (Фигура 7).

Фазовый анализ полученного порошка проводили на рентгеновском дифрактометре Rigaku Ultima IV, результаты которого показаны на Фигуре 8.

Пример 2

Для получения оксида алюминия (корунда) на экспериментальной установке методом электроэрозионного диспергирования использовали отходы алюминиевой проволоки ГОСТ 14838-78, предварительно нарезанную по 5…7 см. Проволоку загружали в реактор, заполненный рабочей жидкостью - дистиллированной водой. При этом использовали следующие электрические параметры установки:

- частота следования импульсов 140 Гц;

- напряжение на электродах 100 В;

- емкость конденсаторов 65 мкФ.

Фазовый анализ полученного порошка проводили на рентгеновском дифрактометре Rigaku Ultima IV, результаты которого показаны на Фигуре 9.

На Фигуре 9 представлена рентгенограмма порошка алюминия полученного при следующих электрических параметрах: емкость разрядных конденсаторов 65 мкФ, напряжение 100 В, частота импульсов 140 Гц., по которой можно установить, что основными фазами в алюминиевом порошке являются Байерит - Аl(ОН)3 и Гиббисит - Аl(ОН)3.

Пример 3

Для получения алюминиевого нанодисперсного порошка на экспериментальной установке методом электроэрозионного диспергирования использовали отходы алюминиевой проволоки ГОСТ 14838-78, предварительно нарезанную по 5…7 см. Проволоку загружали в реактор, заполненный рабочей жидкостью - дистиллированной водой. При этом использовали следующие электрические параметры установки:

- частота следования импульсов 50 Гц;

- напряжение на электродах 100 В;

- емкость конденсаторов 65 мкФ.

Фазовый анализ полученного порошка проводили на рентгеновском дифрактометре Rigaku Ultima IV, результаты которого показаны на Фигуре 10. На представленной рентгенограмме порошка алюминия полученного при следующих электрических параметрах: емкость разрядных конденсаторов 65 мкФ, напряжение 50 В, частота импульсов 100 Гц., по которой можно установить, что основными фазами в алюминиевом порошке являются алюминий - Аl и бемит - АlO(ОН).

Способ получения мелкокристаллического корунда, отличающийся тем, что отходы электротехнической алюминиевой проволоки, содержащие не менее 99,5 % алюминия (ГОСТ 14838-78), подвергают электроэрозионному диспергированию в дистиллированной воде при частоте следования импульсов 50 Гц, напряжении на электродах 90 В и емкости разрядных конденсаторов 65 мкФ.
Способ получения мелкокристаллического корунда
Способ получения мелкокристаллического корунда
Способ получения мелкокристаллического корунда
Способ получения мелкокристаллического корунда
Способ получения мелкокристаллического корунда
Способ получения мелкокристаллического корунда
Способ получения мелкокристаллического корунда
Способ получения мелкокристаллического корунда
Способ получения мелкокристаллического корунда
Способ получения мелкокристаллического корунда
Источник поступления информации: Роспатент

Showing 141-150 of 320 items.
07.09.2018
№218.016.847b

Способ автоматизированного оповещения водителей транспортных средств на особо опасных участках дороги

Изобретение относится к технике управления дорожными транспортными средствами и касается обеспечения безопасности движения транспортных средств. Способ автоматизированного оповещения водителей транспортных средств на особо опасных участках дороги в том, что по краям дороги перпендикулярно...
Тип: Изобретение
Номер охранного документа: 0002666103
Дата охранного документа: 05.09.2018
07.09.2018
№218.016.84de

Способ автоматизированного определения и контроля местоположения транспортного средства на дорожном полотне с двусторонним однополосным движением

Изобретение относится к технике управления дорожно-транспортным движением и касается определения местоположения транспортных средств на дорожном полотне с двусторонним однополосным движением. Для определения местоположения всех транспортных средств, въезжающих в зону контролируемого участка...
Тип: Изобретение
Номер охранного документа: 0002666087
Дата охранного документа: 05.09.2018
03.10.2018
№218.016.8d2f

Система лучистого отопления здания

Изобретение относится к отопительным системам здания. Система лучистого отопления здания с несущими стенами и внутренними перегородками включает камеру подогрева воздуха, сборные каналы, горизонтальные подающие каналы, горизонтальные распределительные каналы, вертикальные воздуховоды,...
Тип: Изобретение
Номер охранного документа: 0002668239
Дата охранного документа: 27.09.2018
13.10.2018
№218.016.9113

Безвентиляторная градирня

Изобретение относится к теплоэнергетике и может быть использовано при воздушном охлаждении оборотной воды в градирнях ТЭЦ, АЭС и промышленных предприятий. Везвентиляторная градирня содержит вертикальную башню с водопароулавливателем, воздухозаборными окнами, резервуар для сбора охлажденной...
Тип: Изобретение
Номер охранного документа: 0002669430
Дата охранного документа: 11.10.2018
21.10.2018
№218.016.949c

Способ получения карбоксилатов олова (ii)

Изобретение относится к простому способу получения карбоксилатов олова (II) путем взаимодействия металла с окислителем в присутствии стимулирующей добавки йода в бисерной мельнице вертикального типа в уайт-спирите со стеклянным бисером в качестве перетирающего агента в массовом соотношении с...
Тип: Изобретение
Номер охранного документа: 0002670199
Дата охранного документа: 19.10.2018
01.11.2018
№218.016.98dc

Способ получения карбоксилатов олова (ii)

Изобретение относится к способу получения карбоксилатов олова (II) путем взаимодействия металла, его диоксида и карбоновой кислоты в присутствии органического растворителя и стимулирующей добавки йода в бисерной мельнице вертикального типа со стеклянным бисером в качестве перетирающего агента,...
Тип: Изобретение
Номер охранного документа: 0002671197
Дата охранного документа: 30.10.2018
03.11.2018
№218.016.99f9

Продувочная свеча

Изобретение относится к газовой промышленности и предназначено для продувки газопроводов. Технической задачей предлагаемого изобретения является снижение шумового воздействия на окружающую среду при продувке газопроводов посредством продувочной свечи за счет выполнения кривизны криволинейных...
Тип: Изобретение
Номер охранного документа: 0002671541
Дата охранного документа: 01.11.2018
21.11.2018
№218.016.9ebe

Способ определения параметров динамического догружения в растянутых железобетонных элементах конструктивных систем

Предлагаемое изобретение относится к области строительства, в частности к испытаниям растянутых элементов конструкций железобетонных стержневых систем. Способ предусматривает устройство в среднем поперечном сечении испытываемого элемента пазов глубиной и шириной до 0,1 h высоты сечения. В зоне...
Тип: Изобретение
Номер охранного документа: 0002672771
Дата охранного документа: 19.11.2018
21.11.2018
№218.016.9ec8

Звукоизолирующее окно

Изобретение относится к строительству, а именно к конструкции звукоизолирующего окна, используемого в различных зданиях и сооружениях. Технический результат по обеспечению комфортных условий внутри здания или сооружения с сохранением звукоизолирующих параметров окна достигается тем, что...
Тип: Изобретение
Номер охранного документа: 0002672735
Дата охранного документа: 19.11.2018
21.11.2018
№218.016.9f07

Устройство для гранулирования удобрений

Изобретение относится к устройству для гранулирования удобрений и может быть использовано в сельскохозяйственной промышленности. Устройство содержит цилиндрическую емкость со штуцерами вывода готового продукта и подвода теплоносителя через форсунки. Емкость разделена на загрузочную камеру со...
Тип: Изобретение
Номер охранного документа: 0002672755
Дата охранного документа: 19.11.2018
Showing 21-22 of 22 items.
10.05.2023
№223.018.5368

Способ получения свинцово-латунных порошков из отходов сплава лс58-3 в дистиллированной воде

Изобретение относится к порошковой металлургии, в частности к производству металлических свинцово-латунных порошков. Может использоваться для изготовления деталей, работающих на трение, для мелких деталей в микротехнике, для напыления декоративных покрытий. Свинцово-латунный порошок получают...
Тип: Изобретение
Номер охранного документа: 0002795306
Дата охранного документа: 02.05.2023
10.05.2023
№223.018.537e

Способ получения свинцово-сурьмянистого сплава из порошков, полученных электроэрозионным диспергированием отходов сплава ссу-3 в воде

Изобретение относится к порошковой металлургии, в частности к получению сплавов методом искрового плазменного сплавления. Может использоваться при получении свинцовых сплавов для решеток свинцовых аккумуляторов. Свинцово-сурьмянистый сплав получают путем искрового плазменного сплавления...
Тип: Изобретение
Номер охранного документа: 0002795311
Дата охранного документа: 02.05.2023
+ добавить свой РИД