×
02.08.2018
218.016.7731

Результат интеллектуальной деятельности: Способ контроля изменений уровней дебитов твердых включений и капельной влаги в газовом потоке в трубопроводе

Вид РИД

Изобретение

Аннотация: Изобретение относится к области газодобывающей промышленности и может быть использовано для контроля изменений уровней дебитов различных компонент взвесенесущего газового потока в эксплуатационных условиях газовых скважин. Техническим результатом, полученным от внедрения изобретения, является дополнительный контроль уровня гидратообразования на скважине путем использования информативного сигнала с датчика акустического, резонансного, эмиссионного типа и дополнительной информации о газодинамических условиях, в которых получается информация датчика. Для достижения поставленного технического результата в известном способе контроля изменений уровней дебита твердых включений и капельной влаги в газовом потоке в трубопроводе на устье скважины в моменты контроля дебитов твердых включений и капельной влаги в газовом потоке в трубопроводе на устье скважины дополнительно синхронно измеряют перепады температуры и избыточного давления потока, обусловливающие фазовые превращения в газовой смеси, по значению которых контролируют уровни образования гидратных структур и оценивают уровень гидратообразования на устье скважины, а контроль изменений уровней дебитов фаз проводят, когда уровень гидратообразования на устье скважины не превышает наперед заданного порогового значения. 3 з.п. ф-лы, 9 ил.

Изобретение относится к области измерительной техники, телемеханики, в частности к акустическим методам измерения и контроля содержания твердых и жидких примесей в газожидкостном потоке скважин. Оно может быть использовано в газовой, нефтяной промышленности, в частности, при добыче и подземном хранении газа, для контроля изменений уровней содержания и количества различных компонент взвесенесущего потока при эксплуатации скважин.

Известен способ контроля изменений уровней дебитов твердых включений и капельной влаги в газовом потоке в трубопроводе на устье скважины, заключающийся в приеме и преобразовании акустических сигналов, пропорциональных уровням дебитов твердых включений и капельной влаги в газовом потоке с помощью пьезодатчика акустического, эмиссионного, резонансного типа, с последующей фильтрацией и детектированием выходных сигналов с пьезодатчика и дальнейшей их оцифровкой с помощью аналого-цифрового преобразователя, при этом для отдельных выборок сигнала по времени, полученных на одной или нескольких кратно-разнесенных рабочих частотах, из оцифрованных выборок сигнала строят распределения дискретизированных по времени точек этого сигнала по его величине с заданным шагом дискретизации, образующим шкалу уровней сигнала, затем определяют максимумы в построенных распределениях и от максимумов вверх по величине сигнала определяют крутизну спадов полученных распределений и сравнивают ее с наперед заданными порогами крутизны спадов для различных компонент контролируемого потока и по результатам сравнения диагностируют наличие твердых включений и капельной влаги в газовом потоке по выносу песка и влаги (ВПВ), при этом количественные значения уровней дебита твердых включений и капельной влаги в контролируемом потоке, а также влияние внешних воздействий на трубопровод определяют по положению максимумов построенных распределений на шкале уровней сигнала при использовании градуировочных зависимостей, предварительно полученных при метрологических испытаниях трубопроводов однотипной конфигурации в натурных условиях /Патент RU 2389002, кл. G01F 1/74, G01N 29/00, H04R 29/00, 2009/.

Данный способ принят за прототип.

Недостатком прототипа является отсутствие в нем возможности контроля рисков гидратообразования на устье скважины и в трубопроводах при резких изменениях термобарических параметров газовой смеси, которое может привести как к ее остановке, так и к нарушению режима работы газопровода. Гидратные образования, также как и выносимый пластовый песок, представляют собой твердую фазу в потоке газа. Гидратообразования обусловлены аварийными ситуациями, связанными с вероятностью накопления гидратов и возникновением пробок на определенных участках газотранспортной системы, влекущие за собой прекращение подачи газа. Убытки от рисков определяются потерями в добыче газа из-за простоя скважин и материально- техническими затратами, связанными с ликвидацией гидратных пробок.

Техническим результатом, получаемым от внедрения изобретения, является обеспечение дополнительного контроля уровня гидратообразования в фонтанной арматуре скважины путем использования и синхронной обработки информативного сигнала с датчика акустического в части упругости ударов твердых частиц и дополнительной информации о текущих термобарических параметрах газовой смеси с датчиков температуры и давления.

Данный технический результат достигают за счет того, что в известном способе контроля изменений уровней дебитов твердых включений и капельной влаги в газовом потоке в трубопроводе на устье скважины, заключающемся в приеме и преобразовании акустических сигналов, пропорциональных уровням дебитов твердых включений и капельной влаги в газовом потоке с помощью пьезодатчика акустического, эмиссионного, резонансного типа, с последующей фильтрацией и детектированием выходных сигналов с пьезодатчика и дальнейшей их оцифровкой с помощью аналого-цифрового преобразователя, при этом для отдельных выборок сигнала по времени, полученных на одной или нескольких кратно-разнесенных рабочих частотах, из оцифрованных выборок сигнала строят распределения дискретизированных точек этого сигнала по его величине с заданным шагом дискретизации, образующим шкалу уровней сигнала, затем определяют максимумы в построенных распределениях и от максимумов вверх по величине сигнала определяют крутизну спадов полученных распределений, и сравнивают ее с наперед заданными порогами крутизны спадов для различных компонент контролируемого потока и по результатам сравнения диагностируют наличие твердых включений и капельной влаги в газовом потоке, при этом количественные значения уровней дебита твердых включений и капельной влаги в контролируемом потоке, а также влияние внешних воздействий на трубопровод определяют по положению максимумов построенных распределений на шкале уровней сигнала при использовании градуировочных зависимостей, предварительно полученных при метрологических испытаниях трубопроводов однотипной конфигурации в натурных условиях, в моменты контроля дебитов твердых включений и капельной влаги в газовом потоке в трубопроводе на устье скважины дополнительно синхронно измеряют перепады температуры и избыточного давления потока, обусловливающие фазовые превращения в газовой смеси, по значению которых контролируют уровни образования гидратных структур и оценивают уровень гидратообразования на устье скважины, а контроль изменений уровней дебитов фаз проводят, когда уровень гидратообразования на устье скважины не превышает наперед заданного порогового значения.

Измерение перепада температуры проводят на стенке и внутри канала фонтанной арматуры скважины.

При оценке уровня гидратообразования на устье скважины при обнаружении ударов твердых частиц на кратно разнесенных частотах проводят сравнение амплитуд и дисперсии сигналов, по результатам которого выделяют неупругие удары частиц гидрата.

Уровень гидратообразования на устье скважины оценивают в соответствии с термобарическими условиями образования и появления гидрата в газожидкостном потоке.

Изобретение поясняется чертежами. На фиг. 1 представлена схема реализации способа, на фиг. 2…9 - диаграммы, поясняющие существо способа.

На выходном трубопроводе 1 устья скважины смонтирован датчик 2 акустический (ДА), эмиссионный, резонансного типа (как в прототипе).

Выход датчика 2 соединен с блоком обработки 3, содержащим входной усилитель 4, узкополосный фильтр 5 с низкочастотным детектором, АЦП 6 и амплитудный дискриминатор, и анализатор на основе микроконтроллера 7, осуществляющего также обработку показаний датчиков температуры 8 и давления 9 газа.

Таким образом, согласно фиг. 1 в схему дополнительно включены датчик температуры 8 и датчик избыточного давления 9, выходы которых также соединены с соответствующими каналами в блоке обработки 3.

Реализация способа с помощью представленной на фиг. 1 схемы основана на следующем.

Фазовое состояние взвесенесущего газового потока определяется расходом газа (дебитом), влажностью и термобарическими параметрами: Рг - давление газа в трубопроводе, Тг - температура газа, Тв - температура окружающей среды, ветровая нагрузка (скорость ветра) - Vв. При изобарическом процессе охлаждения газа ниже значений температуры фазового перехода возникают условия для конденсации паров влаги. При этом возможен переход паровой влаги как в капельное состояние, так и в твердое с образованием гидратных структур (десублимация). При конденсации пара выделяется теплота фазового перехода (скрытая теплота парообразования), поэтому процесс конденсации неразрывно связан с конвективным теплообменом в поперечном и продольном сечении трубопровода.

Температура фазового перехода (точка росы) и количество конденсата зависят от влагосодержания газовой смеси. При этом:

- чем ниже влажность, тем точка росы ниже фактической (текущее значение) температуры;

- чем выше влажность, тем точка росы выше и ближе к фактической температуре;

- если относительная влажность составляет 100%, то точка росы совпадает с фактической температурой.

Поэтому в отличие от прототипа на устье скважины для контроля термобарических параметров газовой смеси в блок обработки сигналов 3 дополнительно включены каналы приема и синхронной обработки показаний температуры и давления газа с соответствующими датчиками 8 и 9.

При этом способ обработки сигналов отличается тем, что акустический канал, работая на двух кратно разнесенных частотах, контролирует моменты проявлений упругих (песок) и неупругих (гидрат) ударов твердых включений и капельной влаги, а каналы контроля температуры и давления регистрируют перепады этих параметров в моменты проявлений твердых включений и капельной влаги, величина и знак изменений которых позволяет идентифицировать уровень гидратообразования на устье скважины, оценивая его в соответствии с термобарическими условиями образования гидратных структур.

Когда измеренные таким образом пороговые уровни содержания частиц гидрата на устье скважины превышают наперед заданный порог, блок обработки 3 (фиг. 1) по интерфейсу RS45 передает верхней телеметрической системе управления по оптимизации добычи газа сигнал превышения, по которому принимается решение о подаче на устье скважины соответствующей уровню гидратообразования порции ингибитора.

Лабораторными исследованиями установлен характер отличия импульсов-откликов воздействия упругих ударов песка и упругопластических ударов частиц гидрата. Имитатором гидрата служил при этом пористый селикагель, по физическим свойствам близкий к частицам гидрата. На фиг. 2 приведен фрагмент хронограммы ударов селикагеля (гидрата) о металлическую стенку трубопровода, на фиг. 3 - ударов частиц песка (на частоте 200 кГц и на частоте 640 кГц). По оси X - отложено время в секундах, а по оси Y - уровень сигнала в дБ.

Из приведенных хронограмм видно, что задний фронт импульсов от ударов гидрата существенно положе, чем от ударов песка. Практически каждый удар частиц песка является упругим, т.к. имеет отклик на обеих частотах, в то время как упругопластические удары селикагеля (гидрата) имеют отклик чаще только на более низкой частоте. Сравнительная статистика откликов на двух частотах позволяет выделить из общего количества импульсов отклики - импульсы упругопластических ударов частиц гидрата о стенку трубопровода в потоке газа на скважине.

На фиг. 4 представлен фрагмент показаний датчика 2 (фиг. 1) при изменяющихся метеоусловиях (отрицательной температуре наружного воздуха и скорости ветра). Из графика видно, что наблюдается прямая зависимость понижения температуры с началом регистрации превышения первого, а затем и второго уровня содержания твердых включений, которое связано с началом образования гидратных структур при прохождении пластовой смеси по каналу фонтанной арматуры. Постепенное снижение температуры окружающей трубопровод среды при неизменной ветровой нагрузке (3÷5) м/с усиливает теплообменные процессы на поверхности фонтанной арматуры, что приводит к понижению температуры внутреннего приповерхностного слоя газового потока.

На фиг. 5 представлена графическая интерпретация динамики изменения соотношения «давление - температура» ((Р/Т) - как безразмерного параметра) и зарегистрированные датчиком 2 (фиг. 1) уровни образования твердых включений - гидратных структур.

Пунктирная линия термодинамического параметра (Р/Т) условно делит значения уровней содержания гидрата в потоке газа на две области. Значениям соотношения (Р/Т), находящимся ниже величины 4,95, соответствует 1-й уровень выноса твердых фракций и воды (на графике уровни ВПВ). Значениям (Р/Т), находящимся выше величины 4,95, - 2-й уровень ВПВ. Таким образом, можно представить механизм образования гидратных структур при прохождении потока газа по каналу фонтанной арматуры как результат интенсификации теплообменного процесса в условиях воздействия наружной конвекции.

На фиг. 6 и 7 представлены показания датчика 2 по наличию твердых включений и воды в потоке газа, а также скачок давления как результат фазовых превращений с выбросом продуктов деструкции гидрата в виде капельной влаги.

Из приведенных диаграмм видно, что перепады температуры газа, провоцирующие процесс гидратообразования, могут составлять от (0,5÷0,7)°С до нескольких град. С, а длительность их зависит от динамики изменения значений температуры поверхности трубы и метеоусловий. Провоцируемые при этом выбросы ВПВ сопровождаются перепадами давления от 0,5 кг/см2 до (1,5÷2) кг/см2. Зафиксированные значения перепадов и их продолжительность практически могут быть использованы для оценки уровня гидратообразования как в режиме текущего мониторинга показаний ВПВ, так и при анализе архивированных данных.

Фазовые превращения, наблюдаемые при переменных значениях термобарических параметров газожидкостного потока под влиянием резких изменений метеоусловий (см. фиг. 8), приводят, как правило, к образованию, и выносу гидрата. Это, в свою очередь, вызывает резкое изменение режима работы скважины (см. фиг. 9), вплоть до полной ее остановки. Наиболее вероятным местом начала образования гидрата в фонтанной арматуре скважины является внутренний канал углового штуцера (см. фиг. 1). Это обусловлено наличием дополнительных негативных факторов для начала образования гидратных структур: сужение проходного сечения канала (100/60 мм), повышенная зона турбулентности и изменения направления потока газа (90°), увеличенная поверхность теплообмена. Из приведенных на фиг. 9 данных видно, что при достижении лавинообразного выноса гидрата датчик 2 (фиг. 1) регистрирует пиковые значения содержания твердых включений до 5-го уровня. Накопление гидрата в канале фонтанной арматуры и выходном газопроводе вызвало снижение устьевого давления газа в течение 9 часов и привело к остановке скважины. На фиг. 9 видно, что продувка и прогрев скважины через газофакельную установку (ГФУ) сопровождались выносом гидратного массива (до 5-го уровня по твердым включениям) и двух пачек воды (до 4-го уровня по капельной фракции). После пуска скважины в работу ее параметры были выведены на рабочий режим.

Промысловыми исследованиями скважин с использованием предложенного способа установлено, что в осенне-зимний-весенний периоды требуется постоянный мониторинг и контроль гидратообразования с целью оптимизации режима работы скважин, газосборной сети и экономии ингибитора. При обработке сигналов предложенным способом акустический канал, работая на двух кратно разнесенных частотах, контролирует моменты проявлений упругих (песок) и неупругих (гидрат) ударов твердых включений и капельной влаги, а каналы контроля температуры и давления синхронно регистрируют перепады этих параметров в периоды фазовых превращений на фоне проявлений твердых включений и капельной влаги, величина и знак изменений которых позволяет идентифицировать уровень гидратообразования на устье скважины, оценивая уровень в соответствии с термобарическими условиями образования гидратных структур.


Способ контроля изменений уровней дебитов твердых включений и капельной влаги в газовом потоке в трубопроводе
Способ контроля изменений уровней дебитов твердых включений и капельной влаги в газовом потоке в трубопроводе
Способ контроля изменений уровней дебитов твердых включений и капельной влаги в газовом потоке в трубопроводе
Способ контроля изменений уровней дебитов твердых включений и капельной влаги в газовом потоке в трубопроводе
Способ контроля изменений уровней дебитов твердых включений и капельной влаги в газовом потоке в трубопроводе
Источник поступления информации: Роспатент

Showing 1-10 of 11 items.
27.12.2014
№216.013.13eb

Способ разработки многопластового месторождения газа

Изобретение относится к газодобывающей промышленности и может быть применено для разработки трудноизвлекаемых залежей газа. Способ включает бурение основного ствола, спуск эксплуатационной колонны, проведение геофизических исследований, бурение горизонтального участка в продуктивном пласте. При...
Тип: Изобретение
Номер охранного документа: 0002536523
Дата охранного документа: 27.12.2014
20.08.2015
№216.013.7209

Способ освоения и разработки многопластового месторождения с низкими фильтрационно-емкостными коллекторами

Способ относится к области газодобывающей промышленности и может быть использован при разработке трудноизвлекаемых запасов газа из подземных залежей. Технический результат - повышение эффективности разработки трудноизвлекаемых запасов газа на месторождениях, залежи которых представлены...
Тип: Изобретение
Номер охранного документа: 0002560763
Дата охранного документа: 20.08.2015
10.08.2016
№216.015.565b

Способ пошагового регулирования добычи газа

Изобретение относится к газовой промышленности и может быть использовано для увеличения коэффициента извлекаемости газа путем пошагового регулирования режимов добычи. Технический результат - исключение преждевременного поступления пластовой воды в продукцию скважины, минимизация обводнения...
Тип: Изобретение
Номер охранного документа: 0002593287
Дата охранного документа: 10.08.2016
13.02.2018
№218.016.24b3

Реагент для удаления конденсационной жидкости с примесью пластовой из газовых скважин

Изобретение относится к области добычи газа, а именно к химическим реагентам для удаления жидкости из скважин газовых месторождений, в продукции которых содержится конденсационная жидкость с примесью пластовой. Технический результат - обеспечение эффективного удаления конденсационной жидкости с...
Тип: Изобретение
Номер охранного документа: 0002642680
Дата охранного документа: 25.01.2018
20.06.2018
№218.016.63ea

Реагент для удаления конденсационной жидкости из газовых скважин

Изобретение относится к области добычи газа, а именно к химическим реагентам для удаления жидкости из скважин газовых месторождений, в продукции которых содержится конденсационная жидкость. Технический результат - обеспечение эффективного удаления конденсационной жидкости из газовых скважин...
Тип: Изобретение
Номер охранного документа: 0002657918
Дата охранного документа: 18.06.2018
19.07.2018
№218.016.724e

Способ построения карты изобар для многопластовых месторождений нефти и газа

Изобретение относится к области добычи природного газа, а именно к способу контроля за разработкой многопластовых месторождений газа, при расчете пластового давления, как по отдельным пластам, так и по месторождению в целом. Техническим результатом является повышение точности прогноза...
Тип: Изобретение
Номер охранного документа: 0002661501
Дата охранного документа: 17.07.2018
11.03.2019
№219.016.d8d8

Способ контроля изменений уровней дебита твердых включений и капельной влаги в газовом потоке в трубопроводе, датчик акустический, эмиссионный резонансного типа для его реализации и способ калибровки этого датчика

Изобретения относятся к области газодобывающей промышленности и могут быть совместно использованы для измерений дебитов и количеств различных компонент взвесенесущего газового потока в эксплуатационных условиях газовых скважин. Техническим результатом группы изобретений является снижение...
Тип: Изобретение
Номер охранного документа: 0002389002
Дата охранного документа: 10.05.2010
18.12.2019
№219.017.ee49

Способ адаптации гидродинамической модели продуктивного пласта нефтегазоконденсатного месторождения с учетом неопределенности геологического строения

Изобретение относится к способу адаптации гидродинамической модели с учетом неопределенности геологического строения. Техническим результатом является минимизация погрешности расчета технологических показателей разработки месторождения с применением гидродинамических моделей. Способ включает...
Тип: Изобретение
Номер охранного документа: 0002709047
Дата охранного документа: 13.12.2019
18.12.2019
№219.017.ee5a

Способ построения карт изобар

Изобретение относится к нефтегазовой промышленности и может быть использовано при построении карт изобар для разрабатываемых нефтегазоконденсатных месторождений. Техническим результатом является повышение точности оперативного построения карты изобар месторождения ИУС промысла в автоматическом...
Тип: Изобретение
Номер охранного документа: 0002709046
Дата охранного документа: 13.12.2019
08.02.2020
№220.018.005d

Способ повышения отдачи конденсата эксплуатируемым объектом нефтегазоконденсатного месторождения

Изобретение относится к нефтегазовой промышленности и может быть использовано при разработке газоконденсатных месторождений для обеспечения максимального текущего и потенциально возможного конечного коэффициентов конденсатоотдачи благодаря оперативной оптимизации технологического режима...
Тип: Изобретение
Номер охранного документа: 0002713553
Дата охранного документа: 05.02.2020
+ добавить свой РИД