×
28.07.2018
218.016.7622

Результат интеллектуальной деятельности: СПОСОБ ИЗМЕРЕНИЯ КОМПЛЕКСНЫХ КОЭФФИЦИЕНТОВ ОТРАЖЕНИЯ И ПЕРЕДАЧИ СВЧ ЧЕТЫРЕХПОЛЮСНИКОВ

Вид РИД

Изобретение

№ охранного документа
0002662505
Дата охранного документа
26.07.2018
Аннотация: Изобретение относится к радиоизмерительной технике, в частности к измерению комплексных коэффициентов отражения и передачи СВЧ четырехполюсников. Решение содержит СВЧ генератор с присоединенным к его выходу делителем мощности, два амплитудных модулятора, четыре вентиля. При этом между выходами вентилей и входами исследуемого четырехполюсника в обоих каналах включены трехзондовые измерительные линии, а амплитудные модуляторы имеют разные некратные между собой частоты. Технический результат заключается в повышении производительности измерения комплексного коэффициента отражения и передачи СВЧ четырехполюсников. 2 н.п. ф-лы, 3 ил.

Технической задачей изобретения является повышение производительности измерения комплексного коэффициента отражения и передачи СВЧ четырехполюсников.

Сущность способа заключается в том, что распространяющаяся от СВЧ генератора электромагнитная волна делится на две равные части, в первом и втором каналах падающие волны модулируются по амплитуде гармоническим напряжением с частотами Ω1 и Ω2 соответственно, отраженные от входов исследуемого четырехполюсника волны суммируются с падающими на трех емкостных зондах в каждом из каналов, каждая из суммарных волн детектируется своим СВЧ детектором, в первом и во втором каналах с помощью полосовых фильтров, настроенных соответственно на частоты Ω1 и Ω2, из спектра продетектированных сигналов выделяются гармонические составляющие U1…U3, несущие информацию о комплексном коэффициенте отражения со стороны первого входа четырехполюсника, аналогично из спектра продетектированных сигналов выделяются гармонические составляющие U4…U6, несущие информацию о комплексном коэффициенте отражения со стороны второго входа четырехполюсника, прошедшие с первого канала во второй и из второго в первый через исследуемый четырехполюсник волны доходят до своих зондов, где суммируется с падающими волнами, суммарные сигналы детектируется СВЧ детекторами, с помощью полосовых фильтров, настроенных на частоту Ω312, из спектра продетектированных сигналов выделяются гармонические составляющие U7, U8 в первом и U9, U10 во втором каналах, несущие информацию о комплексном коэффициенте передачи четырехполюсника во взаимообратных направлениях, а модули коэффициентов отражения ГХ1, ГХ2, аргументы коэффициентов отражения ϕГх1, фГх2 от первого и второго входов четырехполюсника соответственно, аргументы коэффициентов передачи αКХ1, αКХ2 четырехполюсника; модули коэффициентов передачи КХ1 - от первого его входа до второго, КХ2 - от второго его входа до первого соответственно определяются по формулам:

где Uki - напряжения на выходах полосовых фильтров, полученные в режиме калибровки;

αi, βi - дифференциальные фазовые сдвиги в каналах СВЧ тракта измерителя, измеренные в режиме калибровки.

Известен способ измерения параметров четырехполюсников, с двумя рефлектометрами (Hoer С.А., A Network Analyser Incorporating two six-port Reflectometr-IEEE Trauson Microwave theory and technigues, 1997, vol. Mtt-25, №12, p. 1070-1074).

Измеряемое устройство по этому способу возбуждается с обоих входов одновременно СВЧ сигналами с разными фазовыми сдвигами. В каждом из трех режимов возбуждения рефлектометры фиксируют отношения комплексных амплитуд отраженных и падающих волн на входах измеряемого устройства. Однако известное устройство позволяет определить параметры только взаимных четырехполюсников.

Известен способ измерения параметров четырехполюсников (авторское свидетельство SU №1677669, кл. G01R 27/28, 15.09.91). Недостатком такого способа является ограниченный динамический диапазон измерений коэффициента передачи S21 в силу того, что определяется не S21, а произведением S12×S21, кроме того, для определения коэффициентов передачи S21 и S12≠S21 невзаимных четырехполюсников требуются специальные меры, усложняющие процесс измерений и снижающие точность измерений.

Известен способ измерения параметров СВЧ четырехполюсников (авторское свидетельство RU №2233454, кл. G01R 27/06, 02.09.2002). Недостатком такого способа является большая трудоемкость измерений, выраженная в двухэтапном цикле измерения и приводящая с снижению производительности измерений.

На фиг. 1 представлена структурная схема измерителя, с помощью которого реализуется предлагаемый способ.

Измеритель содержит СВЧ генератор 1, делитель мощности 2, в первом канале первый ферритовый вентиль 3, амплитудный модулятор 4, второй ферритовый вентиль 5, трехзондовую измерительную линию с СВЧ детекторами 6, во втором канале первый ферритовый вентиль 7, амплитудный модулятор 8, второй ферритовый вентиль 9, трехзондовую измерительную линию с СВЧ детекторами 10, исследуемый четырехполюсник 11, блок аналоговой обработки 12, микроЭВМ 13 и ПЭВМ 14.

Измеритель работает следующим образом. СВЧ генератор 1 вырабатывает электромагнитную волну, которая распространяется к делителю 2. Делитель 2 делит эту волну на две равные части. С первого выхода делителя 2 по первому каналу волна распространяется к первому входу четырехполюсника 11 через, последовательно соединенные, ферритовый вентиль 3, амплитудный модулятор 4, ферритовый вентиль 5 и трехзондовую измерительную линию 6. Аналогично во втором канале волна распространяется ко второму входу четырехполюсника 11 через, последовательно соединенные, ферритовый вентиль 7, амплитудный модулятор 8, ферритовый вентиль 9 и трехзондовую измерительную линию 10. Отраженные от входов четырехполюсника 11 волны суммируются с падающими в плоскостях подключения зондов измерительных линий 6 и 10. Прошедшие во взаимообратном направлении через четырехполюсник 11 волны также суммируются с падающими в плоскостях подключения зондов измерительных линий 6 и 10.

Структурная схема блока аналоговой обработки 12 показана на фиг. 2

Блок аналоговой обработки 12 содержит: в первом канале - предварительные усилители 15…17; полосовые фильтры 18…24; блок синхронных детекторов 25;

во втором канале - предварительные усилители 26…28; полосовые фильтры 29…35; блок синхронных детекторов 36.

Режиму измерения предшествует режим калибровки.

Структурная схема измерителя в режиме калибровки показана на фиг. 3.

На первом этапе калибровки вместо четырехполюсника 11 в СВЧ тракт включаются согласованные нагрузки 15, 16. В режиме калибровки с первого выхода делителя 2 волна распространяется в сторону согласованной нагрузки 15 через последовательно соединенные ферритовый вентиль 3, амплитудный модулятор 4, ферритовый вентиль 5, трехзондовую измерительную линию 6 и полностью нагрузкой 15 поглощается. Аналогично во втором канале волна распространяется в сторону согласованной нагрузки 16 через последовательно соединенные ферритовый вентиль 7, амплитудный модулятор 8, ферритовый вентиль 9, трехзондовую измерительную линию 10 и полностью нагрузкой 16 поглощается. При этом на выходах полосовых фильтров 18, 21, 24 и 29, 32, 35 блока аналоговой обработки 12 появляются напряжения Uk1…Uk3 и Uk4…Uk6 от первого и второго каналов соответственно:

;

;

где Kd1…Kd3, Kd4…Kd6 - коэффициенты преобразования СВЧ детекторов измерительных линий 6, 10 в первом и втором каналах соответственно; ЕП1, ЕП2 - напряженности электромагнитного поля в плоскостях расположения зондов измерительных линий в 6 и 10 в первом и втором каналах соответственно.

С помощью специальной программы оператор осуществляет коррекцию неидентичности амплитудно-частотных характеристик коэффициентов Kd1…Kd3 и Kd4…Kd6 преобразования СВЧ детекторов измерительных линий 6, 10. После такой коррекции выполняются условия:

.

С учетом этого можно записать:

На втором этапе калибровки вместо четырехполюсника 11 в СВЧ тракт вместо согласованных нагрузок 15, 16 включаются эталонные короткозамыкатели. С учетом (1) для напряжений Uk1…Uk9 от первого и Uk10…Uk12 от второго каналов на выходах полосовых фильтров 18, 21, 24 и 29, 32, 35 блока аналоговой обработки 12 можно записать:

;

;

;

;

;

,

где β1…β6 - фазовые набеги в каналах в плоскостях подключения зондов измерительных линий 6, 10 соответственно.

На третьем этапе калибровки модулятор 4 первого канала находится в закрытом состоянии, а модулятор 8 второго канала в режиме амплитудной модуляции. Электромагнитная волна через регулярный волновод, подключенный вместо исследуемого четырехполюсника 11, проходит из второго канала в первый и воздействует на первые два зонда измерительной линии 6. Для напряжений на выходах полосовых фильтров 19, 22 от первого канала, настроенных на частоту Ω2, с учетом (1) можно записать:

;

,

где ЕПР1 - напряженность электромагнитного поля в плоскостях расположения зондов измерительной линии 6.

Аналогично на четвертом этапе калибровки модулятор 8 второго канала находится в закрытом состоянии, а модулятор 4 первого канала в режиме амплитудной модуляции, электромагнитная волна через регулярный волновод, подключенный вместо исследуемого четырехполюсника 11, проходит из первого канала во второй и воздействует на первые два зонда измерительной линии 10. Для напряжений на выходах полосовых фильтров 30, 33 от второго канала, настроенных на частоту Ω1, с учетом (1) можно записать:

;

,

где ЕПР2 - напряженность электромагнитного поля в плоскостях расположения зондов измерительной линии 8.

На пятом этапе калибровки оба канала открыты (модуляторы 4, 8 работают в режиме амплитудной модуляции), электромагнитные волны через регулярный волновод, подключенный вместо исследуемого четырехполюсника 11, проходят во взаимообратных направлениях, воздействует на первые два зонда измерительной линии 6 в первом канале и на первые два зонда измерительной линии 10 во втором канале. При этом для напряжений на выходах полосовых фильтров 20, 23 от первого канала, настроенных на частоту Ω312, с учетом (1) можно записать:

;

,

а на выходах полосовых фильтров 31, 34 от второго канала, настроенных на частоту Ω312 с учетом (1) можно записать:

;

.

Измерительная информация, полученная при калибровке, обрабатывается и запоминается в виде констант, которые используются при измерении параметров исследуемого четырехполюсника 11.

В режиме измерения в первом и втором каналах падающие волны модулируются по амплитуде гармоническим напряжением с частотами Ω1 и Ω2 соответственно, отраженные от входов исследуемого четырехполюсника 11 волны суммируются с падающими на трех емкостных зондах измерительных линий в каждом из каналов, каждая из суммарных волн детектируется своим СВЧ детектором, в первом и во втором каналах с помощью полосовых фильтров 18, 21, 24 от первого канала и 29, 32, 35 от второго канала, настроенных соответственно на частоты Ω1 и Ω2. Из спектра продетектированных сигналов выделяются гармонические составляющие U1…U3 от первого и U4…U6 от второго каналов:

;

;

;

;

;

,

где αXi - аргумент коэффициента отражения исследуемого четырехполюсника 11.

Прошедшая со второго канала в первый через исследуемый четырехполюсник 11 волна доходит до зондов измерительной линии 6, где суммируется с падающими волнами. Суммарные сигналы детектируется СВЧ детекторами этой линии. С помощью полосовых фильтров 20, 23, настроенных на частоту Ω312, из спектра продетектированных сигналов выделяются гармонические составляющие U7, U8.

Прошедшая с первого канала во второй через исследуемый четырехполюсник 11 волна доходит до зондов измерительной линии 10, где суммируется с падающими волнами. Суммарные сигналы детектируется СВЧ детекторами этой линии. С помощью полосовых фильтров 31, 34, настроенных на частоту Ω312, из спектра продетектированных сигналов выделяются гармонические составляющие U9, U10.

При этом для напряжений U7…U10, несущих информацию о комплексных коэффициентах передачи четырехполюсника 11 во взаимообратных направлениях можно записать:

;

;

;

.

При этом модули коэффициентов отражения ГХ1, ГХ2, аргументы коэффициентов отражения ϕГх1, ϕГх2 от первого и второго входов четырехполюсника соответственно, аргументы коэффициентов передачи αКХ1, αКХ2 четырехполюсника; модули коэффициентов передачи КХ1 - от первого его входа до второго, КХ2 - от второго его входа до первого соответственно определяются по формулам:

;

;

;

;

;

;

;

.

Таким образом, измерительный цикл по предлагаемому способу осуществляется в один этап. При этом одновременно измеряются все восемь параметров исследуемого четырехполюсника, что увеличивает производительность измерений по сравнению с прототипом. Измерители, основанные на предлагаемом способе, найдут применение при панорамных измерениях параметров взаимных и невзаимных СВЧ устройств, например, ферритовых вентилей и других СВЧ четырехполюсников.


СПОСОБ ИЗМЕРЕНИЯ КОМПЛЕКСНЫХ КОЭФФИЦИЕНТОВ ОТРАЖЕНИЯ И ПЕРЕДАЧИ СВЧ ЧЕТЫРЕХПОЛЮСНИКОВ
СПОСОБ ИЗМЕРЕНИЯ КОМПЛЕКСНЫХ КОЭФФИЦИЕНТОВ ОТРАЖЕНИЯ И ПЕРЕДАЧИ СВЧ ЧЕТЫРЕХПОЛЮСНИКОВ
СПОСОБ ИЗМЕРЕНИЯ КОМПЛЕКСНЫХ КОЭФФИЦИЕНТОВ ОТРАЖЕНИЯ И ПЕРЕДАЧИ СВЧ ЧЕТЫРЕХПОЛЮСНИКОВ
СПОСОБ ИЗМЕРЕНИЯ КОМПЛЕКСНЫХ КОЭФФИЦИЕНТОВ ОТРАЖЕНИЯ И ПЕРЕДАЧИ СВЧ ЧЕТЫРЕХПОЛЮСНИКОВ
СПОСОБ ИЗМЕРЕНИЯ КОМПЛЕКСНЫХ КОЭФФИЦИЕНТОВ ОТРАЖЕНИЯ И ПЕРЕДАЧИ СВЧ ЧЕТЫРЕХПОЛЮСНИКОВ
СПОСОБ ИЗМЕРЕНИЯ КОМПЛЕКСНЫХ КОЭФФИЦИЕНТОВ ОТРАЖЕНИЯ И ПЕРЕДАЧИ СВЧ ЧЕТЫРЕХПОЛЮСНИКОВ
СПОСОБ ИЗМЕРЕНИЯ КОМПЛЕКСНЫХ КОЭФФИЦИЕНТОВ ОТРАЖЕНИЯ И ПЕРЕДАЧИ СВЧ ЧЕТЫРЕХПОЛЮСНИКОВ
СПОСОБ ИЗМЕРЕНИЯ КОМПЛЕКСНЫХ КОЭФФИЦИЕНТОВ ОТРАЖЕНИЯ И ПЕРЕДАЧИ СВЧ ЧЕТЫРЕХПОЛЮСНИКОВ
СПОСОБ ИЗМЕРЕНИЯ КОМПЛЕКСНЫХ КОЭФФИЦИЕНТОВ ОТРАЖЕНИЯ И ПЕРЕДАЧИ СВЧ ЧЕТЫРЕХПОЛЮСНИКОВ
СПОСОБ ИЗМЕРЕНИЯ КОМПЛЕКСНЫХ КОЭФФИЦИЕНТОВ ОТРАЖЕНИЯ И ПЕРЕДАЧИ СВЧ ЧЕТЫРЕХПОЛЮСНИКОВ
СПОСОБ ИЗМЕРЕНИЯ КОМПЛЕКСНЫХ КОЭФФИЦИЕНТОВ ОТРАЖЕНИЯ И ПЕРЕДАЧИ СВЧ ЧЕТЫРЕХПОЛЮСНИКОВ
СПОСОБ ИЗМЕРЕНИЯ КОМПЛЕКСНЫХ КОЭФФИЦИЕНТОВ ОТРАЖЕНИЯ И ПЕРЕДАЧИ СВЧ ЧЕТЫРЕХПОЛЮСНИКОВ
Источник поступления информации: Роспатент

Showing 11-20 of 29 items.
10.05.2018
№218.016.3df6

Комплекс оборудования для измерения ударных волновых нагрузок на наклонное дно в опытовом бассейне

Изобретение относится к экспериментальной гидромеханике морских инженерных сооружений и касается методов испытания трансформации волн в опытовом бассейне на наклонном дне и оборудования для его проведения. Устройство включает бассейн, оборудованный волнопродуктором, волногасителем, волнографами...
Тип: Изобретение
Номер охранного документа: 0002648297
Дата охранного документа: 23.03.2018
10.05.2018
№218.016.3e4d

Самовентилируемый погружной электродвигатель

Изобретение относится к электротехнике. Технический результат состоит в обеспечении возможности электродвигателей любых типов и исполнения работать в различных средах, в любом пространственном положении. Самовентилируемый погружной электродвигатель отличается магнитным уплотнением вала,...
Тип: Изобретение
Номер охранного документа: 0002648250
Дата охранного документа: 23.03.2018
18.05.2018
№218.016.51d5

Способ выщелачивания урана из пород с незначительным его содержанием

Изобретение относится к переработке твердых низкоактивных отходов горноперерабатывающей промышленности, а именно к извлечению урана из породы с содержанием урана 0,005-0,04%. Способ включает выщелачивание урана с использованием ассоциации тионовых микроорганизмов. При этом выщелачивание ведут...
Тип: Изобретение
Номер охранного документа: 0002653400
Дата охранного документа: 08.05.2018
29.05.2018
№218.016.527f

Шестистепенной эндопротез межпозвонкового диска

Изобретение относится к медицине. Шестистепенной эндопротез межпозвонкового диска содержит верхнюю и нижнюю осесимметрично и оппозитно расположенные опорные пластины с выполненными на их наружных поверхностях пилообразными элементами фиксации в телах позвонков и установленные между пластинами...
Тип: Изобретение
Номер охранного документа: 0002653622
Дата охранного документа: 11.05.2018
09.06.2018
№218.016.5a56

Устройство для преобразования энергии волн

Изобретение относится к плавучим установкам, использующим энергию морских волн. Устройство содержит плавучее основание 1, маятник 5, выполненный с возможностью качания вокруг горизонтальной оси и средство отбора мощности. Ось качания маятника 5 размещена на вертикальных опорах 8, 9. Маятник 5...
Тип: Изобретение
Номер охранного документа: 0002655418
Дата охранного документа: 28.05.2018
12.07.2018
№218.016.705f

Фильтр

Изобретение относится к устройствам для разделения нефтеводяных эмульсий и может быть использовано для очистки судовых нефтесодержащих вод и других нефтесодержащих стоков. Фильтр содержит корпус в виде нескольких цилиндрических обечаек, заполненный гранулами, с верхней и нижней крышками,...
Тип: Изобретение
Номер охранного документа: 0002660875
Дата охранного документа: 10.07.2018
24.07.2018
№218.016.7419

Устройство для преобразования энергии волн

Изобретение относится к области малой энергетики, а именно к плавучим установкам, использующим энергию морских волн. Устройство содержит плавучее основание 1, маятник 5, выполненный с возможностью качания относительно основания 1 вокруг горизонтальной оси, снабженный средствами настройки...
Тип: Изобретение
Номер охранного документа: 0002661974
Дата охранного документа: 23.07.2018
28.07.2018
№218.016.769f

Моделирующее устройство для испытания эндопротезов тазобедренного сустава на износ

Изобретение относится к моделирующим устройствам для испытания искусственных суставов на износ механическими способами и, в частности, для испытания эндопротезов тазобедренного сустава. Моделирующее устройство для испытания эндопротезов тазобедренного сустава на износ состоит из одного или...
Тип: Изобретение
Номер охранного документа: 0002662599
Дата охранного документа: 26.07.2018
02.08.2018
№218.016.7771

Способ сооружения подводных тоннелей

Изобретение относится к гидротехническому строительству, преимущественно к технологии сооружения автодорожного тоннеля под руслом реки или под дном иной акватории. Способ сооружения подводных тоннелей включает рытье траншеи на дне водной акватории, укладку на дно траншеи железобетонных опорных...
Тип: Изобретение
Номер охранного документа: 0002662837
Дата охранного документа: 31.07.2018
09.08.2018
№218.016.7864

Система очистки нефтесодержащих вод

Предлагаемая система относится к области очистки воды от нефтепродуктов и может быть использована для очистки судовых нефтесодержащих вод, а также на всех промышленных предприятиях, имеющих нефтесодержащие стоки. Система содержит сборную емкость нефтесодержащих вод, сепаратор, емкость для сбора...
Тип: Изобретение
Номер охранного документа: 0002663143
Дата охранного документа: 01.08.2018
Showing 1-1 of 1 item.
13.02.2018
№218.016.2424

Способ измерения фазовых сдвигов между двумя гармоническими сигналами одинаковой частоты

Предложен способ измерения фазовых сдвигов между двумя гармоническими сигналами одинаковой частоты, обеспечивающий высокую точность измерения за счет использования свойства симметрии гармонического напряжения. Он может быть использован при разработке измерителей фазовых сдвигов различных...
Тип: Изобретение
Номер охранного документа: 0002642529
Дата охранного документа: 25.01.2018
+ добавить свой РИД