×
26.07.2018
218.016.758c

Результат интеллектуальной деятельности: Способ изготовления полупроводниковой структуры, содержащей p-n-переход под пленкой пористого кремния для реализации фотоэлектрического преобразователя

Вид РИД

Изобретение

Аннотация: Изобретение относится к области изготовления полупроводниковых структур с p-n-переходом и может быть использовано для изготовления фотоэлектрических преобразователей (ФЭП) солнечной энергии. Предложен способ изготовления полупроводниковой структуры, содержащей p-n-переход под пленкой пористого кремния для реализации фотоэлектрического преобразователя. Согласно изобретению предлагается выращивать пленку пористого кремния, содержащую в своем объеме примесь диффузанта - фосфора, на поверхности монокристаллической кремниевой подложки p-типа электрохимическим анодным травлением в электролите, состоящем из плавиковой кислоты (HF), этанола (СНОН) и ортофосфорной кислоты (НРО), после чего проводится термическая диффузия фосфора из пленки пористого кремния с примесью фосфора в монокристаллическую кремниевую подложку. Технический результат состоит в создании способа изготовления полупроводниковой структуры с p-n-переходом под пленкой пористого кремния, которая играет роль антиотражающего покрытия, способствуя увеличению эффективности преобразования ФЭП, также минимизируется число технологических операций, снижается трудоемкость и повышается производительность процесса изготовления ФЭП, что важно в условиях массового производства. 3 ил.

Область техники, к которой относится изобретение

Изобретение относится к области изготовления полупроводниковых структур с p-n-переходом и может быть использовано для изготовления фотоэлектрических преобразователей (ФЭП) солнечной энергии.

Уровень техники

Из существующего уровня техники известен способ изготовления ФЭП с p-n-переходом под пленкой пористого кремния, заключающийся в следующем [1]. Производится формирование р-n-перехода на поверхности зеркально полированной кремниевой пластины р-типа проводимости, с удельным сопротивлением 1 Ом⋅см и ориентацией (100) методом термической диффузии фосфора при температуре 920°C в течение 8 минут из жидкого источника POCl3. Затем с поверхности удаляется фосфоросиликатное стекло и с помощью плазменного травления изолируются паразитные краевые p-n-переходы. Далее методом трафаретной печати создают проводящую серебряную контактную сетку на фронтальной поверхности и серебряно-алюминиевый контакт к тыльной поверхности. На заключительном этапе формируют пленку пористого кремния на фронтальной поверхности в электролите HF:HNO3:H2O в течение 20 секунд [1]. Пленка пористого кремния играет роль антиотражающего покрытия.

Недостатком данного способа является то, что пленку пористого кремния формируют после изготовления p-n-перехода и контактной сетки на фронтальной поверхности, при этом проводники контактной сетки могут быть повреждены агрессивными компонентами электролита (в первую очередь HNO3). Другим существенным недостатком способа, предложенного в [1] является то, что ФЭП формируется на зеркально полированной подложке, в то время как применение текстурированной подложки позволяет существенно снизить потери света на отражение и повысить эффективность ФЭП [2]. Также важным недостатком способа, предложенного в [1], является возможность прокола p-n-перехода нижней границей растущей пленки пористого кремния, что приведет к возникновению рекомбинационно-генерационных дефектов в области пространственного заряда и снизит эффективность ФЭП.

Известен способ изготовления ФЭП с пленкой пористого кремния [3], включающий легирование фосфором лицевой стороны пластин кремния, избирательное нанесение металлических контактов на контактные участки кремния и создание просветляющей пленки пористого кремния между контактными участками, отличающийся тем, что после легирования поверхности пластин кремния на нее наносят кислотостойкую защитную маску в форме контактного рисунка, погружением в кислотный раствор, на свободных от маски участках поверхности кремния создают пленку пористого кремния и после удаления маски на занимаемые ею участки кремния проводят избирательное осаждение металлических контактов. Дополнительное повышение эффективности ФЭП в изобретении [3] достигается тем, что при создании p-n-перехода толщину легированного фосфором слоя на участках образования пористого кремния делают меньше, чем на контактных участках.

Недостатком данного изобретения является добавление операций создания на фронтальной и тыльной сторонах ФЭП кислотостойкой полимерной маски в форме будущего контактного рисунка между процессами формирования p-n-перехода и роста пленки пористого кремния. Это приводит к увеличению трудоемкости технологического процесса изготовления ФЭП. Другим недостатком изобретения [3] является необходимость проведения двойной диффузии для того, чтобы глубина залегания p-n-перехода на контактных участках была больше, чем на участках, покрытых пористым кремнием. Это приведет к увеличению продолжительности технологического процесса изготовления ФЭП, повышению трудоемкости. Кроме того, возрастает вероятность прокола р-n-перехода нижней границей растущей пленки пористого кремния, что приведет к возникновению рекомбинационно-генерационных дефектов в области пространственного заряда и снизит эффективность ФЭП.

Наиболее близким техническим решением к заявляемому изобретению является солнечный элемент с улучшенной эффективностью и способ его изготовления, включающий в себя формирование пористого слоя на поверхности полупроводниковой подложки; распыление соединения, содержащего диффузант на пористом слое; формирование эмиттерного слоя на поверхности полупроводниковой подложки путем диффузии легирующей примеси [4].

Недостаток данного изобретения состоит в том, что формирование пористого слоя и нанесение диффузанта - две отдельные операции. Это увеличивает трудоемкость изготовления ФЭП и требует дополнительного оборудования на этапе нанесения диффузанта на поверхность пористого слоя.

Раскрытие сущности изобретения

Задачей, на решение которой направлено заявляемое изобретение, является создание способа изготовления полупроводниковой структуры, содержащей p-n-переход под пленкой пористого кремния и предназначенной для реализации ФЭП.

Для решения этой задачи предложено выращивать пленку пористого кремния, содержащую в своем объеме примесь диффузанта - фосфора, на поверхности монокристаллической кремниевой подложки р-типа электрохимическим анодным травлением в электролите, состоящем из плавиковой кислоты (HF), этанола (С2Н5ОН) и ортофосфорной кислоты (H3PO4), после чего проводится термическая диффузия фосфора из пленки пористого кремния с примесью фосфора в монокристаллическую кремниевую подложку.

Сущность изобретения заключается в использовании для выращивания на поверхности монокристаллической кремниевой подложки пленки пористого кремния с примесью фосфора, электролита, состоящего из плавиковой кислоты (HF), этанола (С2Н5ОН) и ортофосфорной кислоты (H3PO4), после чего для формирования p-n-перехода проводится термическая диффузия фосфора из пленки пористого кремния в монокристаллическую кремниевую подложку.

Технический результат от использования изобретения заключается в получении полупроводниковой структуры с p-n-переходом под пленкой пористого кремния, которая играет роль антиотражающего покрытия, способствуя увеличению эффективности преобразования ФЭП, также минимизируется число технологических операций, снижается трудоемкость и повышается производительность процесса изготовления ФЭП, что важно в условиях массового производства.

Осуществление изобретения

Способ изготовления полупроводниковой структуры, содержащей р-n-переход под пленкой пористого кремния для реализации ФЭП, заключается в следующем.

Технологический процесс изготовления полупроводниковой структуры проводится в два этапа:

1) рост пленки пористого кремния, содержащей примесь фосфора на поверхности кремниевой монокристаллической подложки р-типа;

2) термическая диффузия фосфора из пленки пористого кремния в монокристаллическую подложку.

В результате формируется n+-р-переход в монокристаллическом кремнии в непосредственной близости от границы раздела слоя пористого кремния и подложки.

Пленка пористого кремния изготавливается методом анодного электрохимического травления монокристаллической кремниевой пластины р-типа проводимости. Электролит представляет собой состав HF:C2H5OH:H3PO4 с соотношением компонентов 1:1:1. При указанном соотношении компонентов формируются наиболее качественные пленки пористого кремния в широком диапазоне значений плотностей тока (10-50 мА/см2) анодного электрохимического травления. При увеличении содержания ортофосфорной кислоты формировались рыхлые пленки пористого кремния с большим содержанием аморфной фазы и плохой адгезией с подложкой. Во время высушивания в сушильном шкафу после изготовления такие пленки частично отслаиваются и разрушаются.

Диффузия фосфора из пленки пористого кремния в монокристаллическую кремниевую подложку р-типа проводимости осуществлялась в один этап в течение 10 минут при температуре 1100°C.

Проводились сравнительные измерения спектров отражения фронтальных поверхностей предлагаемой полупроводниковой структуры, содержащей p-n-переход под пленкой пористого кремния и традиционного кремниевого ФЭП с p-n-переходом и антиотражающей пленкой фосфоросиликатного стекла. Спектры отражения (фиг. 1) измерялись при облучении образцов вдоль нормали к поверхности светом от лампы накаливания. Отраженное излучение регистрировалось под углом 15° относительно нормали к поверхности образца объективом спектрометра USB-4000-VIS-NIR (Ocean Optic, США) в диапазоне длин волн 350-1050 нм.

Сравнение кривых 1 и 2 на фиг. 1 показывает, что отражательная способность фронтальной поверхности предлагаемой полупроводниковой структуры с p-n-переходом под пленкой пористого кремния и традиционного кремниевого ФЭП близки в рассматриваемом спектральном диапазоне. Поэтому предлагаемая полупроводниковая структура перспективна для применения в качестве ФЭП.

Измерения методом поверхностной термоэдс, которые проводились после термической диффузии и полного стравливания пористого слоя в водном растворе HF, показали, что поверхность монокристаллического кремния имеет n-тип проводимости. Следовательно, произошло диффузионное легирование монокристаллического кремния фосфором из пористого слоя.

Для исследования созданного p-n-перехода проводились измерения вольт-амперных характеристик (ВАХ) и вольт-фарадных характеристик (ВФХ) обсуждаемой полупроводниковой структуры при температуре 300 K.

Прямая ветвь ВАХ (фиг. 2) характерна для диода с p-n-переходом и может быть представлена зависимостью

где I - ток через диод при прямом смещении,

q - элементарный заряд,

U - приложенное внешнее напряжение смещения,

n - показатель неидеальности р-n-перехода,

Т - абсолютная температура [2].

Для исследуемой партии, состоящей из 10 образцов, изготовленных при одинаковых условиях, величина n изменялась в пределах 0,8-1,3. Следовательно, при прямом смещении токопрохождение определяется рекомбинацией носителей в области пространственного заряда р-n-перехода [2].

Вольт-фарадная характеристика исследуемого p-n-перехода была измерена с помощью цифрового измерителя иммитанса Е7-20 (МНИЛИ, Белоруссия) на частоте 1 МГЦ. На фиг. 3 измеренная ВФХ представлена в виде зависимости барьерной емкости p-n-перехода от напряжения смещения в координатах С-2=f(V).

Так как ВФХ в координатах С-2=f(V) (фиг. 3) практически линейна, то исследуемый p-n-переход можно считать резким. Значение концентрации мелкой акцепторной примеси в базовой области исследуемой структуры, определенное по наклону прямой на фиг. 3, составляет 1,41⋅1016 см-3. Это значение близко к концентрации акцепторной примеси в монокристаллической кремниевой подложке (1,50⋅1016 см-3), которая является базовой областью исследуемой полупроводниковой структуры.

На основании полученных экспериментальных данных можно заключить, что предлагаемая полупроводниковая структура с р-n- переходом под пленкой пористого кремния пригодна для создания ФЭП.

Физико-химические процессы насыщения пленки пористого кремния фосфором при ее формировании способом анодного электрохимического травления можно объяснить следующим образом.

Процесс формирования пленки пористого кремния при анодном электрохимическом травлении монокристаллического кремния в электролите, состоящем из HF и С2Н5ОН, достаточно подробно описан в [5].

Электролиз ортофосфорной кислоты согласно [6] можно представить химическим уравнением:

откуда следует, что вблизи анода, в роли которого выступает монокристаллическая кремниевая пластина с формирующимся пористым слоем, образуется пероксофосфорная кислота . Эта кислота способна окисляться до пероксопирофосфорной кислоты согласно уравнению

в результате данной реакции в растворе электролита опять образуется ортофосфорная кислота [6].

Одновременно с ростом пленки пористого кремния происходит насыщение пространства между кремниевыми кристаллитами пероксопирофосфорной кислотой. Последующий термический отжиг приводит к диффузии фосфора в монокристаллическую подложку и наиболее крупные кремниевые кристаллиты, приводя к образованию р-n-перехода.

Таким образом, предлагаемый способ изготовления полупроводниковой структуры с p-n-переходом под пленкой пористого кремния обладает следующими преимуществами:

1. Отсутствует возможность прокола p-n-перехода нижней границей пленки пористого кремния, так как p-n-переход формируется после выращивания пленки пористого кремния на поверхности монокристаллической кремниевой подложки.

2. Формирование пленки пористого кремния позволит реализовать ФЭП с более высокой эффективностью преобразования солнечного излучения за счет снижения отражательной способности фронтальной поверхности, по сравнению с техническим решением, предложенным в [1].

3. Предложенный способ совмещает процесс формирования слоя пористого кремния, играющего роль антиотражающего слоя ФЭП, и насыщения его примесью диффузанта (фосфора). В результате минимизируется число технологических операций, снижается трудоемкость и повышается производительность процесса изготовления ФЭП, что важно в условиях массового производства.

Краткое описание чертежей

Фиг. 1. Спектры отражения фронтальной поверхности полупроводниковой структуры с p-n-переходом под пленкой пористого кремния (1) и традиционного ФЭП (2).

Фиг. 2. Вольт-амперная характеристика полупроводниковой структуры с p-n-переходом при T=300 K.

Фиг. 3. Вольт-фарадная характеристика полупроводниковой структуры с p-n-переходом при T=300 K.

Литература

1. Chaoui R., Messaoud A. Screen-printed solar cells with simultaneous formation of porous silicon selective emitter and antireflection coating / Desalination, 209, 2007, p. 118-121.

2. С. Зи. Физика полупроводниковых приборов: В 2-х томах, т. 2. - М.: Мир, 1984, 456 с.

3. Заддэ В.В., Стребков Д.С., Поляков В.И., Старшинов И.П. Способ изготовления фотопреобразователей с пленкой пористого кремния / Патент RU 2151449.

4. Solar cell and its method of manufacture / United States patent US 8.227.881 B2, Jul. 24, 2012.

5. Горячев Д.Н., Беляков Л.В., Сресели O.M. Формирование толстых слоев пористого кремния при недостаточной концентрации неосновных носителей // Физика и техника полупроводников. 2004. Т. 38. №6. С. 739-744.

6. Лидин, Р.А. Химические свойства неорганических веществ [Текст] / Р.А. Лидин, В.А. Молочко, Л.Л. Андреева. - М.: КолосС, 2006. - 480 с.

Способ изготовления полупроводниковой структуры, содержащей p-n-переход под пленкой пористого кремния для реализации фотоэлектрического преобразователя, отличающийся тем, что предлагается выращивать пленку пористого кремния, содержащую в своем объеме примесь диффузанта - фосфора, на поверхности монокристаллической кремниевой подложки p-типа электрохимическим анодным травлением в электролите, состоящем из плавиковой кислоты (HF), этанола (СНОН) и ортофосфорной кислоты (НРО), после чего проводится термическая диффузия фосфора из пленки пористого кремния с примесью фосфора в монокристаллическую кремниевую подложку.
Способ изготовления полупроводниковой структуры, содержащей p-n-переход под пленкой пористого кремния для реализации фотоэлектрического преобразователя
Способ изготовления полупроводниковой структуры, содержащей p-n-переход под пленкой пористого кремния для реализации фотоэлектрического преобразователя
Способ изготовления полупроводниковой структуры, содержащей p-n-переход под пленкой пористого кремния для реализации фотоэлектрического преобразователя
Источник поступления информации: Роспатент

Showing 1-4 of 4 items.
25.08.2017
№217.015.9de0

Способ адаптивной передачи информации по каналу связи в реальном времени и система для его осуществления

Изобретение относится к области радиосвязи. Технический результат заключается в повышении пропускной способности при передаче данных. В способе на передающей стороне запоминают в массиве передаваемые блоки данных, накапливая оптимальный объем блока, в другом массиве - запросы на повтор от...
Тип: Изобретение
Номер охранного документа: 0002610686
Дата охранного документа: 14.02.2017
28.07.2018
№218.016.76af

Способ изготовления отрицательного электрода литий-ионного аккумулятора

Изобретение относится к электротехнике и может быть использовано при изготовлении отрицательных электродов литий-ионных аккумуляторов. Способ изготовления состоит в соединении металлической, преимущественно медной, подложки (для токосъема) и суспензии кремниевого материала. Материал электрода...
Тип: Изобретение
Номер охранного документа: 0002662454
Дата охранного документа: 26.07.2018
08.03.2019
№219.016.d3f1

Высоковольтное реле

Изобретение относится к области электротехники, а именно к высоковольтным вакуумным реле, и может быть использовано также для переключения различных высоковольтных слаботочных цепей. Техническим результатом, достигаемым при этом, является увеличение величины коммутируемого напряжения....
Тип: Изобретение
Номер охранного документа: 0002681200
Дата охранного документа: 05.03.2019
12.10.2019
№219.017.d4f5

Способ упрочнения металлических поверхностей

Изобретение относится к упрочнению поверхности металлической детали. Поверхность детали обрабатывают ударами тел массой от 0,1 до 1000 граммов механическим импульсом с кинетической энергией до 10 Дж. В зону обработки подают упрочняющие микронаночастицы. В результате обеспечивается создание на...
Тип: Изобретение
Номер охранного документа: 0002702670
Дата охранного документа: 09.10.2019
Showing 1-3 of 3 items.
20.11.2015
№216.013.91da

Способ получения пористого кремния со стабильной фотолюминесценцией

Изобретение относится к области изготовления наноструктурных материалов и может быть использовано в оптоэлектронике для производства светоизлучающих индикаторов. Способ получения пористого кремния со стабильной фотолюминесценцией согласно изобретению осуществляют путем анодного...
Тип: Изобретение
Номер охранного документа: 0002568954
Дата охранного документа: 20.11.2015
16.06.2018
№218.016.6335

Способ стимулирования роста растений на ранних стадиях развития воздействием электромагнитного поля крайневысокой частоты

Изобретение относится к сельскому хозяйству. Предложен способ стимулирования роста растений на ранних стадиях развития воздействием электромагнитного поля. При этом семена растений или черенки картофеля обрабатывают электромагнитным полем крайневысокой частоты при мощности потока излучения...
Тип: Изобретение
Номер охранного документа: 0002657476
Дата охранного документа: 14.06.2018
09.08.2018
№218.016.784d

Способ тестирования эффективности рострегулирующего воздействия на растения

Изобретение относится к сельскому хозяйству, а именно к способам тестирования эффективности регуляторов роста растений с помощью оптических характеристик, поскольку количество метаболитов, образующихся в процессе прорастания семян, характеризует степень их прорастания. Для этого водные...
Тип: Изобретение
Номер охранного документа: 0002663284
Дата охранного документа: 03.08.2018
+ добавить свой РИД