×
24.07.2018
218.016.742c

Результат интеллектуальной деятельности: Способ выплавки с направленной кристаллизацией магнитного сплава системы Fe-Al-Ni-Co

Вид РИД

Изобретение

Аннотация: Изобретение относится к области металлургии, а именно к технологии производства магнитных сплавов системы железо-алюминий-никель-кобальт, применяемых для получения постоянных магнитов электродвигателей и навигацинных устройств. Способ включает размещение поликристаллической заготовки из сплава на затравке в керамической форме, размещение керамической формы в области нагревателя над охладителем и проведение процесса направленной кристаллизации сплава при наличии температурного градиента перед фронтом кристаллизации, при этом поликристаллическую заготовку из сплава предварительно расплавляют и повышают ее температуру до 1580-1620°С, расплавленную поликристаллическую заготовку заливают в подогретую до температуры 1500-1600°С керамическую форму, выдерживают в ней 0,5-1 мин и проводят процесс направленной кристаллизации сплава посредством перемещения керамической формы в жидкометаллический охладитель с температурой 300-320°С со скоростью 1-5 мм/мин в условиях температурного градиента на фронте кристаллизации 100-150 град/см. Техническим результатом изобретения является получение заготовок магнитного сплава системы железо-алюминий-никель-кобальт с разориентацией кристаллов в пределах 5 градусов, а также обеспечение высоких магнитных свойств (остаточной индукции В, коэрцитивной силы по индукции Н, максимального энергетического произведения (ВН)) сплавов. 1 з.п. ф-лы, 3 табл.

Изобретение относится к области металлургии, а именно к способам выплавки с направленной кристаллизацией магнитных сплавов системы железо-алюминий-никель-кобальт, применяемых для получения постоянных магнитов электродвигателей и навигационных устройств.

Основной проблемой повышения эксплуатационных характеристик постоянных магнитов (магнитных свойств и температурной стабильности) является создание технологии получения совершенной кристаллической структуры материала. Получение монокристаллической заготовки возможно за счет создания контролируемого (постоянного) высокого температурного градиента при затвердевании расплава в процессе кристаллизации и использования специальных монокристаллических затравок.

Известен способ получения ориентированных монокристаллических заготовок из сплавов с перитектическим превращением, включающий изготовление поликристаллической заготовки, ее повторное расплавление на монокристаллической затравке и направленное затвердевание с температурным градиентом, при этом используют монокристаллическую затравку из состава сплава твердого раствора, первоначально кристаллизующегося до начала перитектической реакции (RU 2084561 С1, 20.07.1997).

Недостатком описанного способа является трудоемкий процесс подбора химического состава материала затравки и расчет индивидуального химического состава для каждой марки сплава.

Известен способ получения литых монокристаллических заготовок с использованием затравки из сплава, содержащего все компоненты требуемого состава поликристаллической заготовки, кроме титана, причем содержание титана в исходной поликристаллической заготовке увеличивают по сравнению с требуемым составом на величину, определяемую из формулы: ΔCзаг=Cспл⋅(h/H), где Сспл - требуемое содержание титана в монокристаллической заготовке, %; Н - высота исходной поликристаллической заготовки, см; h - высота зоны приплавления к затравке, см; при этом содержание одного или нескольких компонентов в монокристаллической затравке увеличивают на величину содержания титана в сплаве, а в поликристаллической заготовке содержание этих компонентов, соответственно, уменьшается (RU 2127774 С1, 20.03.1999).

Недостатком описанного способа является трудоемкий процесс подбора материала затравки, расчет индивидуального химического состава для каждой марки сплава и проведение дополнительной плавки заготовок для затравок.

Наиболее близким аналогом предложенного способа является способ выращивания монокристаллов магнитных сплавов, включающий размещение поликристаллической заготовки на затравке в керамической форме из окиси алюминия, размещение керамической формы в тепловом узле многопозиционной установки «Кристаллизатор-203» над охладителем и проведение процесса направленной кристаллизации при наличии температурного градиента перед фронтом кристаллизации. С целью увеличения производительности способа, выхода годных монокристаллов и кратности использования огнеупорных форм градиент температуры в расплаве перед фронтом кристаллизации создают величиной G=1-10 град/мм, а кристаллизацию ведут со скоростью V=1-100 мм/мин (SU 1807101 А1, 07.04.1993).

Проведение процесса направленной кристаллизации на установке «Кристаллизатор-203» (описание установки «Кристаллизатор 203» на сайте производителя ВНИИТВЧ им. В.П. Вологдаина: vniitvch.ru/?part=&sp=140; Пикунов М.В., И.В. Беляев, Сидоров Е.В. Кристаллизация сплавов и направленное затвердевание отливок. Владимир: Владимирский государственный университет. 2002. 213 с.) предусматривает переплавление заготовки из магнитного сплава путем перемещения нагревателя от затравки, расположенной в нижней части формы, к верхней части заготовки, при этом положение заготовки относительно охладителя остается неизменным. Отдаление фронта кристаллизации от охладителя приводит к постепенному снижению температурного градиента между фронтом кристаллизации и охладителем по мере подъема нагревателя, что влечет за собой образование равноосных зерен. Поскольку в процессе перекристаллизации заготовки температурный градиент между фронтом кристаллизации и охладителем снижается, для обеспечения формирования монокристаллической структуры необходимо использовать затравку близкого к заготовке состава (за исключением титана). В виду кристаллизации заготовки без ее предварительного расплавления исключается возможность скорректировать ее химический состав.

Технической задачей предложенного изобретения является разработка способа выплавки с направленной кристаллизацией магнитного сплава системы железо-алюминий-никель-кобальт с улучшенными магнитными свойствами и температурной стабильностью.

Техническим результатом предложенного изобретения является получение заготовок магнитного сплава системы железо-алюминий-никель-кобальт с разориентацией кристаллов в пределах 5 градусов, а также обеспечение высоких магнитных свойств (остаточной индукции Вr, коэрцитивной силы по индукции Нсb, максимального энергетического произведения (ВН)mах) сплавов системы железо-алюминий-никель-кобальт.

Технический результат достигается предложенным способом направленной кристаллизации магнитного сплава системы железо-алюминий-никель-кобальт, включающим размещение поликристаллической заготовки из сплава на затравке в керамической форме, размещение керамической формы в области нагревателя над охладителем и проведение процесса направленной кристаллизации сплава при наличии температурного градиента перед фронтом кристаллизации, при этом поликристаллическую заготовку из сплава предварительно расплавляют и повышают ее температуру до 1580-1620°С, расплавленную поликристаллическую заготовку заливают в подогретую до температуры 1500-1600°С керамическую форму, выдерживают в ней 0,5-1 мин и проводят процесс направленной кристаллизации сплава посредством перемещения керамической формы в жидкометаллический охладитель с температурой 300-320°С со скоростью 1-5 мм/мин в условиях температурного градиента на фронте кристаллизации 100-150 град/см.

Поликристаллическую заготовку из сплава, дополнительно содержащего медь, расплавляют в печи, в которой предварительно создают вакуум от 1⋅10-2 до 5⋅10-3 мм рт.ст. и напускают аргон до давления 0,1-0,5 атм.

Вначале заготовку из высокочистых шихтовых материалов помещают в тигель установки высокоградиентной направленной кристаллизации и расплавляют, после чего расплав перегревают до температуры 1580-1620°С. При необходимости состав заготовки можно скорректировать, добавив шихтовые материалы в тигель перед расплавлением. Перегрев до более низких температур влечет за собой образование «паразитных» зерен на карбидах титана, присутствующих в структуре титановых сплавов.

При выплавке магнитных сплавов системы железо-алюминий-никель-кобальт, также содержащих медь, шихтовую заготовку предпочтительно расплавлять в печи, в которой предварительно создают вакуум от 1⋅10-2 до 5⋅10-3 мм рт.ст. и напускают аргон до давления 0,1-0,5 атм. Подача аргона позволяет избежать снижения концентрации меди вследствие ее испарения при плавке в вакууме.

После этого расплав заливают в подогретую до температуры 1500-1600°С керамическую форму, в нижней части которой предварительно размещают затравку. Расплав выдерживают в подогретой керамической форме 0,5-1 мин. Выдержка обеспечивает подплавление затравки и передачу заданной кристаллографической ориентации от затравки к заготовке.

Затравку предпочтительно использовать из сплава ЮНДК25БА для того, чтобы параметры кристаллической решетки затравки были близки с параметрами кристаллической решетки получаемых заготовок магнитных сплавов.

Далее проводят процесс направленной кристаллизации сплава посредством перемещения керамической формы в жидкометаллический охладитель с температурой 300-320°С со скоростью 1-5 мм/мин. Фронт кристаллизации металла находится между краем нагревателя и поверхностью жидкометаллического охладителя, что обеспечивает постоянный температурный градиент по всей высоте заготовки.

Выбранные режимы нагрева расплава, подогрева керамической формы, температуры жидкометаллического охладителя и скорости перемещения в него керамической формы обеспечивают температурный градиент перед фронтом кристаллизации в интервале 100-150 град/см. Высокий и неизменный температурный градиент обеспечивает минимальную разориентацию кристаллов по всей длине заготовки (не более 5 град). При более низком температурном градиенте возможно образование на карбидах титана, присутствующих в структуре титановых сплавов, «паразитных» зерен с большей степенью разориентации.

В предложенном способе используются затравки из сплава ЮНДК25БА диметром 7-8 мм, а к рабочей части заготовки магнита направленная структура передается через конусообразную стартовую зону, благодаря чему обеспечивается снижение расхода шихтовых материалов и трудозатрат на изготовление затравки диаметром, равным диаметру заготовки постоянного магнита, как в прототипе.

После получения отливки с монокристаллической структурой ее охлаждают до комнатной температуры, удаляют прибыльную часть, участок стартовой зоны 20 мм и контролируют качество структуры металлографическими и рентгеновскими методами.

Примеры осуществления изобретения.

Для проведения процесса направленной кристаллизации были подготовлены

поликристаллические заготовки, состоящие из высокочистых шихтовых компонентов: железо АРМКО тип 1, кобальт К0, никель Н1У, алюминий А99, медь М0, титан ВТ1-00, ниобий НБШ-0, с содержанием газов (кислорода и азота) не более 0,001 масс. %.

Химический состав обрабатываемых сплавов приведен в таблице 1.

Шихтовую заготовку массой 2,5 кг поместили в тигель, расположенный в вакуумной печи установки высокоградиентной направленной кристаллизации УВНС-5. Перед расплавлением сплава из камеры откачали воздух до давления 1⋅10-2- 5⋅10-3 мм рт.ст. и напустили аргон.

Далее шихтовую заготовку нагревали до получения расплава, после чего температуру расплава продолжали увеличить.

Далее расплав заливали в керамическую форму, в нижней части которой были расположены затравки диаметром 7-8 мм из сплава ЮНДК25БА, и выдерживали.

После этого включили механизм перемещения формы с заданной скоростью в жидкометаллический охладитель.

Температурный градиент оценивали с помощью термопар, установленных на керамической форме, по кривым распределения температуры в процессе кристаллизации.

Режимы направленной кристаллизации приведены в таблице 2.

Далее отливку охлаждали до комнатной температуры, срезали прибыльную часть и 20 мм стартовой зоны. Контролировали качество структуры на поверхности стартовой зоны металлографическими и рентгеновскими методами.

Полученные образцы имели отклонение кристаллографического направления <100> от направления протяжки не более 5 град.

Измерение магнитных свойств (остаточной индукции Вr, коэрцитивной силы по индукции Нсb, максимального энергетического произведения (ВН)mах) проводили методом медленно меняющегося магнитного поля на установке Permagraph С-300 по ГОСТ 8.286-77. Магнитные свойства, превышающие требования ГОСТ 17809-72, представлены в таблице 3.

Таким образом, как показали экспериментальные данные, предложенный способ обеспечивает получение заготовок магнитного сплава системы железо-алюминий-никель-кобальт с разориентацией кристаллов в пределах 5 градусов. Улучшение кристаллической структуры сплава, в свою очередь, обеспечивает высокие магнитные свойства - остаточную индукцию Вr 0,96-1,31 Тл, коэрцитивную силу по индукции Нсb 62,5-119 кА/м, максимальное энергетическое произведение (ВН)mах 53-74 кДж/м3.

Источник поступления информации: Роспатент

Showing 171-180 of 354 items.
25.08.2017
№217.015.b32f

Лаковая композиция

Изобретение относится к лакокрасочным покрытиям, в частности к лаковым композициям с высокими электроизоляционными свойствами и низкой влагопроницаемостью, предназначенным для защиты плат печатного монтажа и элементов радиоэлектронной аппаратуры (РЭА), и может быть использовано в авиастроении,...
Тип: Изобретение
Номер охранного документа: 0002613915
Дата охранного документа: 22.03.2017
25.08.2017
№217.015.b346

Способ получения деформированных полуфабрикатов из интерметаллидных титановых сплавов

Изобретение относится к области металлургии, а именно к горячей обработке давлением сплавов на основе интерметаллида титана, и может использоваться при изготовлении деталей газотурбинных двигателей. Способ получения деформированных полуфабрикатов из гамма-сплава Ti-43Al-3Nb-2W-0,5Si включает...
Тип: Изобретение
Номер охранного документа: 0002613829
Дата охранного документа: 21.03.2017
25.08.2017
№217.015.b375

Способ изготовления расходуемых электродов из сплавов на основе интерметаллидов титана и алюминия

Изобретение относится к изготовлению расходуемого электрода для выплавки слитков титан-алюминиевых сплавов, содержащих 15-63 мас. % алюминия. Способ включает приготовление шихты путем смешивания титановой губки и алюминиевого полуфабриката, подачу порций шихты в коническую матрицу и последующее...
Тип: Изобретение
Номер охранного документа: 0002613832
Дата охранного документа: 21.03.2017
25.08.2017
№217.015.b37b

Способ получения полуфабрикатов из двухфазных титановых сплавов

Изобретение относится к металлургии, в частности к способу получения полуфабрикатов из двухфазных титановых сплавов, и может быть использовано в авиастроении и машиностроении. Способ получения полуфабрикатов из двухфазных титановых сплавов, включающий нагрев в β-области, деформацию, охлаждение...
Тип: Изобретение
Номер охранного документа: 0002613828
Дата охранного документа: 21.03.2017
25.08.2017
№217.015.b514

Сплав на основе титана и изделие, выполненное из него

Изобретение относится к области металлургии, а именно к сплавам на основе тинана, и может быть использовано при изготовлении тяжелонагруженных деталей и узлов, работающих при температуре до 600°С. Сплав на основе титана содержит, мас. %: алюминий 6,0-8,0, молибден - 0,4-1,3, олово - 1,5-3,5,...
Тип: Изобретение
Номер охранного документа: 0002614355
Дата охранного документа: 24.03.2017
25.08.2017
№217.015.b555

Сплав на основе гамма-алюминида титана

Изобретение относится к области металлургии, а именно к жаропрочным сплавам на основе интерметаллидов титана и алюминия, и может быть использовано для изготовления методами литья или обработки давлением изделий, предназначенных для применения в конструкции авиационных газотурбинных двигателей и...
Тип: Изобретение
Номер охранного документа: 0002614354
Дата охранного документа: 24.03.2017
25.08.2017
№217.015.b58e

Сплав на основе титана и изделие, выполненное из него

Изобретение относится к области цветной металлургии, а именно к созданию титановых сплавов, предназначенных для использования в качестве высокопрочного конструкционного термически упрочняемого материала. Сплав на основе титана содержит, мас.%: алюминий 1,5-4,5; ванадий 13,5-19,0; хром 2,0-5,0;...
Тип: Изобретение
Номер охранного документа: 0002614356
Дата охранного документа: 24.03.2017
25.08.2017
№217.015.b69f

Эпоксидное связующее для производства самозатухающих стеклопластиков методом пултрузии

Изобретение относится к разработке не поддерживающего горение эпоксидного связующего для производства методом пултрузии высокопрочных профильных стеклопластиков электротехнического назначения. Связующее включает галоидсодержащие эпоксидные смолы, отвердитель и ускоритель отверждения, при этом...
Тип: Изобретение
Номер охранного документа: 0002614701
Дата охранного документа: 28.03.2017
25.08.2017
№217.015.b6cd

Способ очистки деталей топливных коллекторов газотурбинных двигателей от нагара и углеродных загрязнений

Изобретение относится к области очистки деталей топливного коллектора газотурбинного двигателя от нагара и углеродных загрязнений. Выдержку деталей осуществляют при температуре от 100 до 150°C в водном растворе щелочи, содержащем от 600 до 800 г/л гидроксида натрия и дополнительно содержащем от...
Тип: Изобретение
Номер охранного документа: 0002614441
Дата охранного документа: 28.03.2017
25.08.2017
№217.015.b878

Эпоксивинилэфирное связующее, препрег и изделие из него

Изобретение относится к области создания полимерных связующих на основе эпоксивинилэфирного олигомера с наполнителем в виде коротких волокон для полимерных композиционных материалов (ПКМ), получаемых из листового полуфабриката (SMC-препрега) методом прямого прессования (sheet molding compound -...
Тип: Изобретение
Номер охранного документа: 0002615374
Дата охранного документа: 04.04.2017
Showing 171-180 of 323 items.
25.08.2017
№217.015.ad69

Полимерный звукопоглощающий материал и способ его изготовления

Изобретение относится к области звукопоглощающих полимерных композиционных материалов. При изготовлении полимерного звукопоглощающего материала разрезают и размещают внутри слоя ячеистой структуры пористый звукопоглощающий наполнитель толщиной не менее 3 мм посредством его вдавливания. Затем...
Тип: Изобретение
Номер охранного документа: 0002612674
Дата охранного документа: 13.03.2017
25.08.2017
№217.015.b2a4

Волокнистый композиционный материал

Изобретение относится к области металлургии, в частности к волокнистым композиционным материалам, армированным непрерывными и дискретными волокнами оксида алюминия, предназначенным для использования в качестве конструкционного материала для изготовления изделий, таких как корпуса вентилятора...
Тип: Изобретение
Номер охранного документа: 0002613830
Дата охранного документа: 21.03.2017
25.08.2017
№217.015.b32f

Лаковая композиция

Изобретение относится к лакокрасочным покрытиям, в частности к лаковым композициям с высокими электроизоляционными свойствами и низкой влагопроницаемостью, предназначенным для защиты плат печатного монтажа и элементов радиоэлектронной аппаратуры (РЭА), и может быть использовано в авиастроении,...
Тип: Изобретение
Номер охранного документа: 0002613915
Дата охранного документа: 22.03.2017
25.08.2017
№217.015.b346

Способ получения деформированных полуфабрикатов из интерметаллидных титановых сплавов

Изобретение относится к области металлургии, а именно к горячей обработке давлением сплавов на основе интерметаллида титана, и может использоваться при изготовлении деталей газотурбинных двигателей. Способ получения деформированных полуфабрикатов из гамма-сплава Ti-43Al-3Nb-2W-0,5Si включает...
Тип: Изобретение
Номер охранного документа: 0002613829
Дата охранного документа: 21.03.2017
25.08.2017
№217.015.b375

Способ изготовления расходуемых электродов из сплавов на основе интерметаллидов титана и алюминия

Изобретение относится к изготовлению расходуемого электрода для выплавки слитков титан-алюминиевых сплавов, содержащих 15-63 мас. % алюминия. Способ включает приготовление шихты путем смешивания титановой губки и алюминиевого полуфабриката, подачу порций шихты в коническую матрицу и последующее...
Тип: Изобретение
Номер охранного документа: 0002613832
Дата охранного документа: 21.03.2017
25.08.2017
№217.015.b37b

Способ получения полуфабрикатов из двухфазных титановых сплавов

Изобретение относится к металлургии, в частности к способу получения полуфабрикатов из двухфазных титановых сплавов, и может быть использовано в авиастроении и машиностроении. Способ получения полуфабрикатов из двухфазных титановых сплавов, включающий нагрев в β-области, деформацию, охлаждение...
Тип: Изобретение
Номер охранного документа: 0002613828
Дата охранного документа: 21.03.2017
25.08.2017
№217.015.b514

Сплав на основе титана и изделие, выполненное из него

Изобретение относится к области металлургии, а именно к сплавам на основе тинана, и может быть использовано при изготовлении тяжелонагруженных деталей и узлов, работающих при температуре до 600°С. Сплав на основе титана содержит, мас. %: алюминий 6,0-8,0, молибден - 0,4-1,3, олово - 1,5-3,5,...
Тип: Изобретение
Номер охранного документа: 0002614355
Дата охранного документа: 24.03.2017
25.08.2017
№217.015.b555

Сплав на основе гамма-алюминида титана

Изобретение относится к области металлургии, а именно к жаропрочным сплавам на основе интерметаллидов титана и алюминия, и может быть использовано для изготовления методами литья или обработки давлением изделий, предназначенных для применения в конструкции авиационных газотурбинных двигателей и...
Тип: Изобретение
Номер охранного документа: 0002614354
Дата охранного документа: 24.03.2017
25.08.2017
№217.015.b58e

Сплав на основе титана и изделие, выполненное из него

Изобретение относится к области цветной металлургии, а именно к созданию титановых сплавов, предназначенных для использования в качестве высокопрочного конструкционного термически упрочняемого материала. Сплав на основе титана содержит, мас.%: алюминий 1,5-4,5; ванадий 13,5-19,0; хром 2,0-5,0;...
Тип: Изобретение
Номер охранного документа: 0002614356
Дата охранного документа: 24.03.2017
25.08.2017
№217.015.b69f

Эпоксидное связующее для производства самозатухающих стеклопластиков методом пултрузии

Изобретение относится к разработке не поддерживающего горение эпоксидного связующего для производства методом пултрузии высокопрочных профильных стеклопластиков электротехнического назначения. Связующее включает галоидсодержащие эпоксидные смолы, отвердитель и ускоритель отверждения, при этом...
Тип: Изобретение
Номер охранного документа: 0002614701
Дата охранного документа: 28.03.2017
+ добавить свой РИД