×
21.07.2018
218.016.7303

Результат интеллектуальной деятельности: СПОСОБ КОНТРОЛЯ СИСТЕМЫ УПРАВЛЕНИЯ ГАЗОТУРБИННЫМ ДВИГАТЕЛЕМ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области авиационного двигателестроения и может быть использовано в электронно-гидромеханических системах автоматического управления (САУ) газотурбинных двигателей (ГТД). В процессе штатной работы системы управления (СУ) с помощью встроенной системы контроля (ВСК) ЭР, являющегося одной из составных частей СУ, определяется отклонение фактического значения скорости перемещения дозирующего элемента (ДЭ) гидромеханической части (ГМЧ) СУ от его расчетно-экспериментального значения, при определенных значениях сигнала управления, полученных расчетно-экспериментальным путем, как при увеличении, так и при его уменьшении, и при недопустимом значении этого отклонения в течение наперед заданного времени, определяемого расчетно-экспериментальным путем, формируется сигнал «Отказ канала управления расходом топлива от электронной части системы», переводится управление расходом топлива в двигатель на резервный ГМР. Техническим результатом изобретения является повышение качества контроля СУ ГТД за счет сокращения времени обнаружения отказов и, как следствие, повышение надежности ГТД и безопасности полета ЛА. 2 ил.

Изобретение относится к области авиационного двигателестроения и может быть использовано в электронно-гидромеханических системах автоматического управления (САУ) газотурбинных двигателей (ГТД).

Известен способ контроля электронно-гидромеханической САУ ГТД, заключающийся в том, что контролируют работоспособность электронного регулятора (ЭР) и при его отказе переводят управление ГТД на резервный гидромеханический регулятор (ГМР) (В.И. Васильев «Автоматический контроль и диагностика систем управления силовыми установками летательных аппаратов», М.: «Машиностроение», 1989 г., с. 23-27).

Недостатком этого способа является неполнота контроля состояния элементов САУ системой встроенного контроля. Поскольку контроль осуществляется постоянно, пока ГТД работает, соответственно, работоспособность гидромеханического регулятора (ГМР) оценивается только косвенно (по параметрам ГТД). Это может привести к тому, что при незафиксированном отказе в полете возникнет аварийная ситуация. В свою очередь, это может послужить причиной уменьшения надежности работы ГТД и, как следствие, снижения безопасности летательного аппарата (ЛА).

Наиболее близким к данному изобретению по технической сущности является способ контроля системы управления (СУ) ГТД, заключающийся в том, что контролируют работоспособность ЭР и при его отказе переводят управление ГТД на резервный гидромеханический регулятор (ГМР). При этом дополнительно на взлете самолета при исправном ЭР определяют заданный расход топлива в камеру сгорания (КС) двигателя по измеренным положению рычага управления двигателем (РУД), температуре и давлению воздуха на входе в двигатель, давлению воздуха за компрессором, температуре газов за турбиной и частоте вращения ротора двигателя по известным зависимостям.

По измеренному положению дозатора топлива и первой заранее заданной зависимости, формируемой расчетно-экспериментальным путем, определяют текущий расход топлива в КС двигателя. По измеренным положению РУД и давлению воздуха на входе в двигатель и второй заранее заданной зависимости, формируемой расчетно-экспериментальным путем, определяют минимально допустимый расход топлива в КС для текущего режима работы двигателя и высоты полета самолета. Затем сравнивают текущий расход топлива и минимально допустимый, если текущий расход топлива больше минимально допустимого, сравнивают заданный расход топлива и минимально допустимый, если заданный расход топлива становится меньше минимально допустимого, блокируют изменение текущего расхода топлива в течение наперед заданного времени, определяемого расчетно-экспериментальным путем. Если по истечении этого времени заданный расход топлива не стал больше минимально допустимого, переводят управление двигателем на ГМР, формируют сигнал «Управление двигателем от ГМР» и подают его на табло в кабине пилота (см. патент RU 2468229, опубл. 27.11.2012 г., кл. F02C 9/00).

К недостаткам этого способа можно отнести низкую эффективность с точки зрения обнаружения зарождающихся в СУ ГТД дефектов и времени их обнаружения, так как признак отказа формируется по результатам сравнения текущего и заданного значений расходов топлива с минимально допустимым значением, а перевод управления двигателем на ГМР осуществляется только по истечении наперед заданного времени, определяемого расчетно-экспериментальным путем, в течение которого значение заданного расхода топлива сохраняется меньше допустимого, хотя по иным критериям отказ мог бы быть обнаружен раньше.

Это может привести к тому, что значения основных параметров ГТД (тяга, мощность) на момент формирования признака отказа окажутся меньше значений тех же параметров, соответствующих программам регулирования, заложенным в ГМР, и переход управления на ГМР будет сопровождаться переходным процессом восстановления этих параметров. Это является причиной снижения надежности работы ГТД и, как следствие, безопасности полета ЛА.

Техническим результатом, на достижение которого направлено предлагаемое изобретение, является повышение качества контроля СУ ГТД за счет сокращения времени обнаружения отказов и, как следствие, повышение надежности ГТД и безопасности полета ЛА.

Поставленная цель достигается тем, что в способе контроля системы управления газотурбинным двигателем контролируют работоспособность электронного регулятора (ЭР) и при его отказе переводят управление ГТД на резервный гидромеханический регулятор (ГМР). В отличие от прототипа в данном способе в процессе штатной работы СУ, с помощью встроенной системы контроля (ВСК) ЭР, являющегося одной из составных частей СУ, определяют отклонение фактического значения скорости перемещения дозирующего элемента (ДЭ) гидромеханической части (ГМЧ) СУ от его расчетно-экспериментального значения при определенных значениях сигнала управления, полученных расчетно-экспериментальным путем, как при увеличении, так и при его уменьшении. При недопустимом значении этого отклонения в течение наперед заданного времени, определяемого расчетно-экспериментальным путем, формируют сигнал «Отказ канала управления расходом топлива от электронной части системы», подают его на табло в кабине пилота и одновременно переводят управление расходом топлива в двигатель на резервный ГМР.

При существенном (превышающем значение, определяемое расчетно-экспериментальным путем) отличии фактического значения скорости перемещения ДЭ от его значения, определенного заранее расчетно-экспериментальным путем, для конкретного значения отклонения сигнала управления от его «равновесного» значения, в течение промежутка времени, также определяемого расчетно-экспериментальным путем, ВСК формирует сигнал «Отказ канала управления расходом топлива», по которому ЭР переводит управление двигателем на ГМР, формирует сигнал «Управление двигателем от ГМР» и подает его на табло в кабине пилота.

Отличительный признак, а именно: сравнение ВСК фактического значения скорости перемещения ДЭ дозатора топлива при конкретном значении сигнала управления со значением, определенным заранее расчетно-экспериментальным путем, позволяет сократить время обнаружения сбоев и отказов, предотвращая ухудшение основных параметров ГТД, тем самым повышая надежность ГТД, качество контроля СУ ГТД и обеспечивая безопасность полета ЛА.

На фиг. 1 представлена схема устройства, реализующая заявляемый способ, с одноканальной электронно-гидромеханической СУ. На фиг. 2 изображена двухканальная электронно-гидромеханическая СУ ГТД.

Устройство (см. фиг. 1) содержит блок датчиков (БД) 1, ЭР 2, исполнительный механизм (ИМ) 3 ЭР 2, селектор 4 «электроника-гидромеханика», управляемый по командам ЭР 2 с помощью электромагнитного клапана (ЭМК) 5, дозатор 6 с датчиком положения 7 ДЭ, блок датчиков 8 ГМР 9, выход которого подключен к селектору 4, блок 10 ВСК, входы которого подключены к выходам БД 1, ЭР 2 и датчика положения 7 ДЭ дозатора 6, первый выход - к ЭР 2, второй - к табло 11 «Управление двигателем от ГМР».

Устройство (см. фиг. 2) дополнительно повышает надежность системы. Оно содержит в электронной части два блока датчиков БД 1 и 12, два электронных регулятора ЭР 2 и 13, двухканальный (двухобмоточный) ИМ 3 ЭР 2 и 13, селектор 4 «электроника-гидромеханика», управляемый по командам ЭР 2 или 13 с помощью двухканального (двухобмоточного) ЭМК 5, дозатор 6 с двухканальным (двухобмоточным) датчиком положения 7 ДЭ, БД 8 ГМР 9, выход которого подключен к селектору 4, блок 10 ВСК, входы которого подключены к выходам БД 1 и одного из каналов датчика положения 7 ДЭ дозатора 6, первый выход - к ЭР 2, второй - к табло 11 «Управление двигателем от ГМР», блок 14 ВСК, входы которого подключены к выходам БД 12, ЭР 13 и второго канала датчика положения 7 ДЭ дозатора 6, первый выход - к ЭР 13, второй - к табло 11 «Управление двигателем от ГМР».

Устройство с одноканальной СУ (фиг. 1) работает следующим образом.

ЭР 2 по информации с БД 1 по известным зависимостям (см., например, Шевяков А.А. «Теория автоматического управления силовыми установками летательных аппаратов», М., «Машиностроение», 1976 г., с. 123-144) формирует воздействие для управления дозатором 6. ГМР 9 формирует воздействие для управления дозатором 6 по тем же зависимостям по информации с блока 8.

По информации, получаемой с БД 1 и ЭР 2, блок 10 по известным зависимостям (см., например, Васильев В.И. «Автоматический контроль и диагностика систем управления силовыми установками летательных аппаратов», М.: «Машиностроение», 1989 г., с. 23-27) контролирует работоспособность ЭР 2, а также контролирует работоспособность датчика 7, ЭМК 5 и ИМ 3 (например, путем контроля целостности (отсутствие обрыва и/или короткого замыкания) электрических цепей всех этих элементов и допускового контроля выходного сигнала датчика положения 7).

При положительных результатах проведенного контроля ЭР 2 по команде блока 10 подает команду на ЭМК 5, при этом селектор 4 устанавливается в положение «электроника», в котором к дозатору 6 через ИМ 3 поступает управляющее воздействие от ЭР 2, а управляющее воздействие от ГМР 9 блокируется.

При отрицательных результатах контроля ЭР 2 по команде блок 10 снимает команду с ЭМК 5, при этом селектор 4 устанавливается в положение «гидромеханика», в котором к дозатору 6 поступает управляющее воздействие уже от ГМР 9, а блокируется управляющее воздействие от ЭР 2.

В процессе управления двигателем от ЭР 2 и непрерывного контроля работоспособности его самого и всех элементов СУ, участвующих в управлении расходом топлива, блок 10 контролирует фактические значения скорости перемещения ДЭ дозатора 6 (по величине скорости изменения выходного сигнала датчика 7) и фактическое значение сигнала управления, подаваемого ЭР 2 на ИМ 3.

Предварительно, при проектировании и испытаниях опытных образцов дозатора 6, расчетно-экспериментальным путем определяются «равновесное» (соответствующее отсутствию перемещения дозирующего элемента дозатора 6) значение сигнала управления, а также значения скорости перемещения дозирующего элемента при тех или иных значениях величины и знака отклонения сигнала управления от его «равновесного» значения, которые затем фиксируются в памяти ЭР 2.

При существенном (превышающем значение, определяемое расчетно-экспериментальным путем) отличии фактического значения скорости перемещения ДЭ дозатора 6 от его значения, определенного заранее расчетно-экспериментальным путем и зафиксированного в памяти ЭР 2, для конкретного значения величины и знака отклонения сигнала управления от его «равновесного» значения, в течение промежутка времени, также определяемого расчетно-экспериментальным путем, ВСК формирует сигнал «Отказ канала управления расходом топлива», по которому ЭР 2 переводит управление двигателем на ГМР, формирует сигнал «Управление двигателем от ГМР» и подает его на табло в кабине пилота.

Двухканальная СУ ГТД (фиг. 2) работает следующим образом.

ЭР 2 по информации с БД 1 формирует воздействие для управления дозатором 6. ГМР 9 формирует воздействие для управления дозатором 6 по информации с блока 8. По информации, получаемой с БД 1 и ЭР 2, блок 10 контролирует работоспособность ЭР 2, а также контролирует работоспособность датчика 7, ЭМК 5 и ИМ 3.

В процессе управления двигателем от ЭР 2 и непрерывного контроля работоспособности его самого и всех элементов СУ, участвующих в управлении расходом топлива, блок 10 контролирует фактические значения скорости перемещения ДЭ дозатора 6 (по величине скорости изменения выходного сигнала датчика 7) и фактическое значение сигнала управления, подаваемого ЭР 2 на ИМ 3.

При существенном отличии фактического значения скорости перемещения ДЭ дозатора 6 от его значения, ВСК первого канала формирует сигнал «Отказ канала управления расходом топлива», по которому ЭР 2 переводит управление двигателем на второй канал.

ЭР 13 по информации с БД 12 формирует воздействие для управления дозатором 6. ГМР 9 формирует воздействие для управления дозатором 6 по информации с блока 8. По информации, получаемой с БД 12 и ЭР 13, блок 14 контролирует работоспособность ЭР 13, а также контролирует работоспособность датчика 7, ЭМК 5 и ИМ 3.

При отклонении фактического значения скорости перемещения ДЭ дозатора 6 от его значения, ВСК второго канала формирует сигнал «Отказ канала управления расходом топлива», по которому ЭР 13 переводит управление двигателем на ГМР 9, формирует сигнал «Управление двигателем от ГМР» и подает его на табло в кабине пилота.

Отличие в работе устройства с двухканальной СУ ГТД (фиг. 2) от работы устройства с одноканальной СУ (фиг. 1) заключается в том, что управление двигателем первоначально осуществляется от одного канала управления, условно говоря - первого, при его отказе и формировании ВСК этого канала сигнала «Отказ канала управления расходом топлива», осуществляется переход на второй канал, а перевод управления на ГМР с формированием сигнала «Управление двигателем от ГМР» осуществляется в том случае, если отказал второй канал и ВСК этого канала сформировала сигнал «Отказ канала управления расходом топлива».

Таким образом, способ контроля системы управления ГТД, заключающийся в сравнении ВСК фактического значения скорости перемещения ДЭ дозатора топлива при конкретном значении сигнала управления со значением, определенным заранее расчетно-экспериментальным путем, позволяет сократить время обнаружения сбоев и отказов, предотвращая ухудшение основных параметров ГТД, тем самым повышая надежность ГТД, качество контроля СУ ГТД и обеспечивая безопасность полета ЛА.

Способ контроля системы управления газотурбинным двигателем (ГТД), заключающийся в том, что контролируют работоспособность электронного регулятора (ЭР), и при его отказе переводят управление ГТД на резервный гидромеханический регулятор (ГМР), отличающийся тем, что в процессе штатной работы системы управления (СУ), с помощью встроенной системы контроля (ВСК) ЭР, являющегося одной из составных частей СУ, определяют отклонение фактического значения скорости перемещения дозирующего элемента (ДЭ) гидромеханической части (ГМЧ) СУ от его расчетно-экспериментального значения, при определенных значениях сигнала управления, полученных расчетно-экспериментальным путем, как при увеличении, так и при его уменьшении, и, при недопустимом значении этого отклонения в течение наперед заданного времени, определяемого расчетно-экспериментальным путем, формируют сигнал «Отказ канала управления расходом топлива от электронной части системы», переводят управление расходом топлива в двигатель на резервный ГМР.
СПОСОБ КОНТРОЛЯ СИСТЕМЫ УПРАВЛЕНИЯ ГАЗОТУРБИННЫМ ДВИГАТЕЛЕМ
СПОСОБ КОНТРОЛЯ СИСТЕМЫ УПРАВЛЕНИЯ ГАЗОТУРБИННЫМ ДВИГАТЕЛЕМ
Источник поступления информации: Роспатент

Showing 11-20 of 22 items.
23.02.2019
№219.016.c5f0

Способ контроля технического состояния свечей зажигания авиационных гтд и промышленных гту при их изготовлении и при проведении ремонта двигателей

Изобретение относится к газотурбостроению, в частности к оценке технического состояния свечей зажигания, имеющих хотя бы один из контактов электродов из материала, содержащего палладий, при изготовлении свечей или при проверке их технического состояния после проведения ремонта. При проведении...
Тип: Изобретение
Номер охранного документа: 0002680477
Дата охранного документа: 21.02.2019
23.02.2019
№219.016.c5f2

Двухканальная система топливопитания и регулирования газотурбинного двигателя (гтд)

Двухканальная система топливопитания и регулирования ГТД относится к области авиационного двигателестроения и предназначена для автоматического управления ГТД на всех режимах работы двигателя. Система содержит основной и резервный каналы управления, междроссельную камеру, регулируемые дроссели,...
Тип: Изобретение
Номер охранного документа: 0002680475
Дата охранного документа: 21.02.2019
28.02.2019
№219.016.c84f

Способ контроля емкостной системы зажигания двигателей летательных аппаратов

Изобретение относится к контролю емкостных систем зажигания в двигателях летательных аппаратов. Технический результат заключается в повышении достоверности контроля работоспособности систем зажигания без выполнения измерения давления окружающей среды в объеме, в котором размещен рабочий торец...
Тип: Изобретение
Номер охранного документа: 0002680724
Дата охранного документа: 26.02.2019
26.07.2019
№219.017.b952

Дозатор газообразного топлива

Дозатор газообразного топлива относится к области регулирования газотурбинных двигателей (ГТД), работающих на газообразном топливе, и может быть использован для подачи газообразного топлива в камеру сгорания ГТД. Дозатор газообразного топлива содержит дозирующую иглу. Дозирующая игла связана с...
Тип: Изобретение
Номер охранного документа: 0002695445
Дата охранного документа: 24.07.2019
02.10.2019
№219.017.d0ab

Двухканальная система топливопитания и регулирования газотурбинного двигателя

Двухканальная система топливопитания и регулирования газотурбинного двигателя (ГТД) относится к области авиационного двигателестроения и предназначена для автоматического управления ГТД на всех режимах работы двигателя. Система содержит золотник-селектор переключения с основного канала...
Тип: Изобретение
Номер охранного документа: 0002700989
Дата охранного документа: 24.09.2019
25.03.2020
№220.018.0f65

Способ контроля технического состояния свечей зажигания авиационных гтд

Изобретение относится к авиационному двигателестроению, в частности к оценке технического состояния свечей зажигания при их эксплуатации и при ремонте авиационных двигателей для анализа возможности их дальнейшего применения на авиационных двигателях. Способ контроля технического состояния...
Тип: Изобретение
Номер охранного документа: 0002717457
Дата охранного документа: 23.03.2020
09.07.2020
№220.018.308c

Центробежно-шестеренный насос

Изобретение относится к области авиационных газотурбинных двигателей, использующих блок совмещённых насосов, состоящих из центробежной ступени (ЦС) низкой напорности и шестерённой ступени (ШС) высокой напорности. Центробежно-шестерённый насос (ЦШН) содержит корпус, в котором расположены ЦС с...
Тип: Изобретение
Номер охранного документа: 0002725915
Дата охранного документа: 07.07.2020
09.07.2020
№220.018.30c9

Способ контроля технического состояния насоса топливорегулирующей системы газотурбинного двигателя

Изобретение относится к области машиностроения и может быть использовано для диагностирования технического состояния насоса топливорегулирующей системы газотурбинного двигателя (ГТД). Способ диагностирования насоса топливорегулирования ГТД заключается в том, что на выбранной частоте вращения...
Тип: Изобретение
Номер охранного документа: 0002725919
Дата охранного документа: 07.07.2020
14.05.2023
№223.018.54c1

Струйный датчик температуры

Изобретение предназначено для измерения температуры газовых потоков, например, в газотурбинном двигателе. Предложенный струйный датчик температуры содержит струйный генератор, снабженный резонансной камерой с разделителем, входным соплом и выпускным отверстием, которое через канал отвода газа...
Тип: Изобретение
Номер охранного документа: 0002737596
Дата охранного документа: 01.12.2020
14.05.2023
№223.018.551a

Способ измерения объемного расхода струйным преобразователем

Изобретение относится к области определения объемного расхода газа или жидкости и может быть использовано в теплоэнергетической, газовой и других отраслях промышленности. Способ измерения объемного расхода струйным преобразователем (СПР) заключается в том, что газ или жидкость пропускают через...
Тип: Изобретение
Номер охранного документа: 0002735899
Дата охранного документа: 09.11.2020
Showing 11-13 of 13 items.
26.08.2017
№217.015.ec0a

Способ контроля емкостного агрегата зажигания с индукционной катушкой в составе системы зажигания

Изобретение относится к технике розжига горючих смесей с помощью электрической искры, в частности к емкостным агрегатам зажигания, и может быть использовано для контроля технического состояния системы зажигания, установленной на двигатель, в перерывах между запусками двигателей летательных...
Тип: Изобретение
Номер охранного документа: 0002628224
Дата охранного документа: 17.08.2017
22.09.2018
№218.016.8965

Двухканальная система регулирования подачи топлива в газотурбинный двигатель

Двухканальная система регулирования подачи топлива в газотурбинный двигатель относится к области авиационного двигателестроения и предназначена для автоматического управления ГТД на всех режимах работы двигателя. Система содержит основной и резервный каналы управления, междроссельную камеру,...
Тип: Изобретение
Номер охранного документа: 0002667201
Дата охранного документа: 17.09.2018
02.10.2019
№219.017.d0ab

Двухканальная система топливопитания и регулирования газотурбинного двигателя

Двухканальная система топливопитания и регулирования газотурбинного двигателя (ГТД) относится к области авиационного двигателестроения и предназначена для автоматического управления ГТД на всех режимах работы двигателя. Система содержит золотник-селектор переключения с основного канала...
Тип: Изобретение
Номер охранного документа: 0002700989
Дата охранного документа: 24.09.2019
+ добавить свой РИД