×
19.07.2018
218.016.7228

Результат интеллектуальной деятельности: СПОСОБ ОПТИМИЗАЦИИ ПЕРИОДИЧНОСТИ ГАЗОДИНАМИЧЕСКИХ ИССЛЕДОВАНИЙ СКВАЖИН НА НЕФТЕГАЗОКОНДЕНСАТНЫХ МЕСТОРОЖДЕНИЯХ КРАЙНЕГО СЕВЕРА

Вид РИД

Изобретение

Аннотация: Изобретение относится к нефтегазовой промышленности и может быть использовано для оптимизации периодичности газодинамических исследований (ГДИ) скважин на нефтегазоконденсатных месторождениях Крайнего Севера. Автоматизированная система управления технологическими процессами (АСУ ТП) выдает команду системе телемеханики кустов скважин (СТКС) на проведение испытаний. Получив команду, ее контролируемый пункт (КП) фиксирует на выбранной скважине значения забойного, устьевого и затрубного (если датчик установлен) давления, температуру газа на устье и дебит. Значение забойного давления КП определяют расчетным путем по соответствующей формуле. Затем КП останавливает работу выбранной скважины и заданным шагом дискретизации контролирует давление на устье и/или за колонной до полной его стабилизации. Далее КП во время сеансов связи эту информацию, сформированную в виде пакета, передает через ДП в АСУ ТП, которая на основе этой полученной информации от СТКС формирует кривую восстановления давления КВД скважины и сохраняет ее в своей базе данных (БД). После стабилизации давления по команде, поступивший из АСУ ТП в СТКС, КП осуществляет пуск скважины в работу с минимальным предварительно заданным дебитом Q и регистрирует с заданным шагом дискретизации во времени фактический дебит, устьевое и/или затрубное давление скважины. По окончании этого цикла система переключается на проведение испытаний скважины обратным ходом, с больших дебитов скважин к меньшим. Расчетным путем определяет значения забойного давления р скважины и коэффициенты фильтрационного сопротивления а и b. Эти параметры система использует для обработки результатов ГДИ на основе уравнения , описывающего приток газа к забою скважины, где р - пластовое давление, р - забойное давление. Когда изменение параметров а, b и рпосле предыдущих испытаний укладывается в рамки допусков утвержденной модели разработки месторождения, на этом процесс ГДИ скважины заканчивается. Технический результат заключается в повышении эффективности способа оптимизации газодинамических исследований скважины, улучшении экологической безопасности.

Изобретение относится к нефтегазовой промышленности и может быть использовано для оптимизации периодичности проведения газодинамических исследований (ГДИ) газовых и газоконденсатных скважин.

Цель изобретения - повышение эффективности и экологической безопасности эксплуатации газовых и газоконденсатных скважин.

Газодинамические исследования являются основным источником информации об изменении продуктивности скважин в процессе их эксплуатации. ГДИ включают: снятие кривой восстановления давления (КВД) после остановки; снятие кривых стабилизации давления и дебита при пуске скважины в работу на конкретном режиме (с определенным диаметром шайбы, штуцера, диафрагмы) и снятие индикаторной кривой, отражающей зависимость между забойным давлением и дебитом при работе скважины на различных режимах.

Периодичность проведения ГДИ скважин устанавливается проектным документом по разработке месторождения и, как правило, для нефтегазоконденсатных месторождений, расположенных в районах Крайнего Севера, в силу трудоемкости работ, составляет один раз в 2-3 года.

Исследования показали, что основные фильтрационные характеристики пласта и скважины в период постоянных отборов газа являются медленно меняющимися функциями времени. Вместе с тем, вследствие наличия литологических окон, эксплуатации скважин с повышенной нагрузкой, вследствие сезонных колебаний потребительского спроса возможен преждевременный прорыв воды к интервалу перфорации и разрушение призабойной зоны пласта, снижающие продуктивность скважины. Продуктивность газоконденсатных скважин может снижаться за счет насыщения порового пространства пласта-коллектора жидкой фазой конденсата по мере снижения пластового давления. Кроме того, имеет место естественное ухудшение фильтрационно-емкостных свойств пласта за счет сжатия породы под действием горного давления при выработке запасов. При переходе разработки месторождения в стадию падающей добычи ситуация имеет тенденцию к значительному ухудшению.

Это требует увеличения дискретизации исследований. Данное решение, при использовании общепринятых методов, имеет ряд существенных недостатков.

Известен способ проведения исследований газовых и газоконденсатных скважин на стационарных режимах фильтрации с использованием диафрагменного измерителя критического течения (ДИКТ) [Гриценко А.И, Алиев З.С., Ермилов О.М., Ремизов В.В., Зотов Г.А. «Руководство по исследованию скважин». - М.: Наука, 1995, стр. 21-22, 175-178, 487-489.], включающий остановку скважины, замер статического давления на устье и пластового давления, пуск скважины на факельную линию с определением дебита газа и конденсата на нескольких режимах работы с использованием ДИКТ, замер динамического давления на устье и забойного давления на каждом режиме, снятие кривой стабилизации давления и кривой восстановления давления, замер температуры газа на забое и устье скважины на каждом режиме, пуск скважины в газосборный коллектор, определение коэффициентов фильтрационного сопротивления а и b.

Существенным недостатком способа является выпуск газа в атмосферу, связанный с использованием ДИКТ. Условие критического истечения газа через диафрагму или штуцер при исследовании скважины не позволяет ей работать в общий кустовой газосборный коллектор, что исключает использование газа, поступающего из скважины во время испытаний. Именно поэтому исследования проводятся со сбросом газа по факельной линии в атмосферу (сжигание). При проведении ГДИ указанным способом невозможно добиться исключения выпуска газа в атмосферу с бесполезным сжиганием его в факельных установках, не исключается вредное воздействие на окружающую среду и персонал, выполняющий исследовательские работы на скважинах. Среди вредных факторов можно указать токсикологическое воздействие на сотрудников и окружающую среду метанола, СО, СО2, частично несгоревшего природного газа и других продуктов горения, а также шум, возникающий при сбросе газа, достигающий 120 дБ.

Другим недостатком способа является невысокая точность определения величины расхода (дебита) газа, связанная с абразивным износом диафрагм. Так при изменении диаметра шайбы на 0,05 мм относительная ошибка определяемого дебита составляет 8-10%.

Кроме того, реализация известного способа требует постоянного наличия обслуживающего персонала у контролируемой скважины, что крайне нежелательно в зимних условиях Крайнего Севера.

Наиболее близким по технической сущности к заявляемому изобретению является способ группового проведения исследований кустовых газовых и газоконденсатных скважин на стационарных режимах фильтрации, который включает остановку скважины, замер статического давления на устье и пластового давления, пуск скважины в газосборный коллектор и замер дебита газа на нескольких режимах работы методом переменного перепада давления на сужающем устройстве, замер динамического давления на устье и забойного давления на каждом режиме, снятие кривой стабилизации давления и кривой восстановления давления, замер температуры газа на забое и устье скважины на каждом режиме и определение коэффициентов фильтрационного сопротивления а и b, при этом исследуемые скважины разделяют на пары, имеющие максимальную степень наложения контуров питания, и относят каждую из скважин пары к разным группам, и одновременно исследуют две группы скважин, состоящих из одноименных пар, причем одну группу на режимах обратного хода с уменьшением дебита до полной остановки, а другую - на режимах прямого хода с увеличением дебита до предельно допустимой величины, а затем направление изменения дебита в обоих группах меняют на противоположное, при этом контролируют суммарный дебит каждой пары скважин и общий дебит куста, удерживая их близкими к постоянным значениям для каждой пары скважин с точностью до 30%, а для шлейфа с точностью до 10% [см. патент на изобретение РФ №2338877, опубликовано: 20.11.2008, бюл. №32].

Существенным недостатком указанного способа для многопластовых месторождений является то, что не всегда количество скважин на кусте может быть четным, чтобы образовать пары, и нет ни какой гарантии того, что все имеющиеся на кусте скважины предназначены для добычи газа с одного пласта, т.е. нет гарантии возможности подбора пары скважин для проведения ГДИ.

Задачей, на решение которой направлено предлагаемое изобретение, является создание способа по оптимизации периодичности проведения газодинамических исследований скважин на нефтегазоконденсатных месторождениях Крайнего Севера.

Техническим результатом, достигаемым от реализации предлагаемого изобретения, является обоснование выбора скважин для проведения стандартных ГДИ, благодаря чему появляется возможность существенно снизить затраты на дорогостоящие исследования, сократить технологические потери газа, улучшить экологическую безопасность, так как основная масса стандартных ГДИ скважин выполняется с выпуском газа на факел.

Указанная задача решается, а технический результат достигается тем, что способ оптимизации периодичности газодинамических исследований скважин на нефтегазоконденсатных месторождениях Крайнего Севера обеспечивает обоснование выбора скважин для проведения стандартных гидродинамических исследований скважин (ГДИ). Для этого при осуществлении плановых остановок скважин, проводимых в соответствии с рекомендациями проектных документов на разработку месторождения, с периодичностью не реже 1-2 раза в год с целью контроля величины статического устьевого и пластового давления, снимают кривую восстановления давления (КВД) после остановки скважины. Также снимают кривые стабилизации давления и дебита при пуске скважины в работу на заданных геологами режимах расхода и снимают индикаторную кривую, отражающую зависимость между забойным давлением и дебитом при работе скважины на различных режимах.

Команду на проведение испытаний скважин подает автоматизированная система управления технологическими процессами (АСУ ТП) установки комплексной/предварительной подготовки газа (УКПГ/УППГ), которая для установления статического давления на устье скважин куста выдает системе телемеханики кустов скважин (СТКС) команду на остановку их работы.

СТКС состоит из диспетчерского пункта ДП и связанных с ним каналами связи контролируемых пунктов КП, которые устанавливают по одному на каждом кусте скважин и подключают к датчикам измерения параметров и исполнительным механизмам своего куста скважин. На устьях скважин устанавливают датчики расхода, температуры и давления газа, измеряют устьевое давление и, при наличии затрубного датчика давления, заколонное давление.

Решения о проведении испытаний скважин принимают геологи, и по их команде АСУ ТП приступает к проведению ГДИ скважин. С этой целью она выдает команду СТКС на проведение испытаний. Получив команду, ее КП фиксирует на выбранной скважине значения забойного, устьевого и затрубного (если датчик установлен) давления, температуру газа на устье и дебит. Значение забойного давления КП определяют расчетным путем по соответствующей формуле. Затем КП останавливает работу выбранной скважины и заданным шагом дискретизации контролирует давление на устье и/или заколонное до полной его стабилизации. Далее КП во время сеансов связи эту информацию, сформированную в виде пакета, передает через ДП в АСУ ТП, которая на основе этой полученной информации от СТКС формирует кривую восстановления давления КВД скважины и сохраняет ее в своей базе данных БД. После стабилизации давления по команде, поступивший из АСУ ТП в СТКС, КП осуществляет пуск скважины в работу с минимальным предварительно заданным дебитом Q и регистрирует с заданным шагом дискретизации во времени фактический дебит, устьевое и затрубное давление (если датчик установлен) скважины. После этого КП во время сеансов связи передает эту информацию, сформированную в виде пакета, через ДП в АСУ ТП. АСУ ТП на основе этой полученной от СТКС информации формирует кривую стабилизации устьевого (затрубного) и забойного давления, а также соответствующего им фактического дебита. При этом значение забойного давления определяется системой расчетным путем по соответствующей формуле. И как только давление и дебит скважины стабилизируются, фиксируется время окончания стабилизации, регистрируются соответствующие этому моменту времени давление на устье (в затрубном пространстве), забойное давление и дебит скважины, а также температура газа на устье в качестве установившихся параметров первого режима исследования. Вся эта информация хранится в БД АСУ ТП.

После этого АСУ ТП совместно с СТКС переходит к испытанию скважины на следующем режиме, повторяя описанную процедуру заранее заданное число раз с заданными значениями дебита скважины, определяемыми геологами. По окончании этого цикла система переключается на проведение испытаний скважины обратным ходом, с больших дебитов скважин к меньшим, повторяя описанную процедуру заданное число раз с заранее заданными значениями дебита скважины. При этом в процессе проведения замеров, в зависимости от конструкции и паспортных данных скважин, расчетным путем по измеряемым параметрам при каждом цикле опроса АСУ ТП определяет значения забойного давления р3 скважины и коэффициенты фильтрационного сопротивления а и b. Эти параметры система использует для обработки результатов ГДИ на основе уравнения , описывающего приток газа к забою скважины, где рпл - пластовое давление, рз - забойное давление. И если в результате анализа ГДИ выясниться, что изменение параметров а, b и рпл после предыдущих испытаний укладывается в рамки допусков утвержденной модели разработки месторождения, то на этом процесс ГДИ скважины заканчивается. Но если выяснится, что изменение параметров a, b и рпл вышло за допустимые пределы, производится анализ статистики накопленных данных и трендов изменения контролируемых и вычисляемых параметров, а также тренд снижения продуктивности скважины. Об этом система сообщает оператору для принятия необходимых управляющих решений, в том числе рекомендует и меры по проведению стандартных ГДИ данной скважины.

Описываемый способ осуществляют следующим образом.

ГДИ скважин проводят с помощью автоматизированной системы управления технологическими процессами (АСУ ТП) установки комплексной/предварительной подготовки газа (УКПГ/УППГ) и системы телемеханики кустов скважин (СТКС) (далее такой тип проводимых ГДИ назовем ГДИ в усеченном варианте). При этом соблюдаются требования Инструкции по комплексным исследованиям газовых и газоконденсатных скважин. Часть 2. Р Газпром 086-2010. П. 4.2.2. Технология исследований.

СТКС является одной из подсистем АСУ ТП УКПГ/УППГ. СТКС, в свою очередь, состоит из диспетчерского пункта (ДП) и контролируемых пунктов (КП). Учитывая что на каждом кусте скважин устанавливается по одному КП, то количество КП равно количеству кустов скважин на газовом промысле. На устье каждой скважины устанавливаются датчики расхода, температуры, давления и исполнительные механизмы. Датчики давления измеряют устьевое и при наличии заколонного датчика давления заколонное давление. Все имеющиеся датчики и исполнительные механизмы на кусте подключаются к КП. КП с заданной дискретностью опрашивает указанные датчики, и результаты измерения сохраняет в своей памяти. Во время сеанса связи между КП и ДП вся накопленная в процессе измерений информация в КП передается в ДП СТКС и далее в АСУ ТП УКПГ/УППГ, которая сохраняет ее в своей базе данных (БД). Одновременно, также во время сеансов связи, АСУ ТП УКПГ/УППГ передает в СТКС команды управления кустами скважин, например остановка скважины, запуск ее в работу, установка дебита скважины, которые реализуются соответствующим КП в соответствии с заданием.

Согласно технологии исследования работающей скважины в газосборную сеть, по поступившей команде из АСУ ТП КП фиксирует ее забойное, устьевое и затрубное (если датчик установлен) давление, температуру газа на устье и дебит. При этом значение забойного давления определяется расчетным путем, который описан ниже.

Затем КП останавливает ее работу. С момента остановки скважины и до полного восстановления давления на устье скважины, т.е. до статического давления - Рстат., КП СТКС фиксирует давление с заданным шагом дискретизации. Далее, АСУ ТП на основе этой, полученной информации от СТКС, формирует КВД скважины и хранит ее в своей БД.

Как правило, ГДИ скважины проводятся, начиная с меньших дебитов скважин к большим (прямой ход). После установления статического давления - Pстат. на устье скважины, СТКС, по команде из АСУ ТП, пускает в работу скважину с небольшим предварительно заданным дебитом до полной стабилизации давления и дебита. Одновременно КП с заданным шагом дискретизации снимает данные для формирования кривых стабилизации устьевого (затрубного) и забойного давления, а также соответствующего им фактического дебита. При этом значение забойного давления определяется системой расчетным путем. Как только давление и дебит скважины стабилизируются, фиксируется время окончания стабилизации и регистрируются соответствующие этому моменту времени давление на устье (в затрубном пространстве), забойное давление и дебит газа, а также его температура на устье в качестве установившихся параметров первого режима исследования. Все результаты полученных в этом цикле измерений данных передаются СТКС в АСУ ТП для формирования кривых восстановления давления и хранятся в ее БД.

После этого система приступает к реализации следующего режима исследований, для чего останавливает скважину и выжидает достижения статического давления на устье - Pстат. Одновременно КП СТКС по вышеописанному порядку снимает и записывает данные для формирования КВД и передает их в БД АСУ ТП.

Далее АСУ ТП с помощью КП СТКС проводит ГДИ по вышенаписанному порядку не менее чем на 5-6 режимах прямого (а при численном методе определения коэффициентов фильтрационного сопротивления а и b на 10-14) с меньших дебитов скважин к большим и 2-3 режимах обратного хода (а при численном методе определении коэффициентов фильтрационного сопротивления а и b на 5-6) с больших дебитов скважин к меньшим. На всех режимах АСУ ТП с помощью КП СТКС соблюдает условия, которые были описаны выше.

Для каждого режима ГДИ скважины необходимое значение дебита выдается АСУ ТП УКПГ/УППГ на основании величин, задаваемых геологами.

Во время проведения замеров с учетом конструкции и паспортных данных скважин расчетным путем по измеряемым параметрам при каждом цикле опроса определяют значение забойного давления рз скважины.

При известном значении затрубного давления значение забойного давления рз скважин определяется из соотношения [см. например, Гриценко А.И., Алиев З.С. и др. Руководство по исследованию скважин. -М.: Наука, 1995. - 523 с, стр. 110, формула (3.3)]:

,

где ;

ри - статическое затрубное давление скважины, измеряют средствами СТКС;

- относительная плотность газа;

L - глубина скважины;

zcp - среднее значение коэффициента сверхсжимаемости газа;

Tср - средняя температура газа в интервале между нейтральным слоем земли в данном регионе и глубиной L.

Среднюю температуру газа Tср определяют по формуле:

,

где Tнс - температура нейтрального слоя земли;

TL - температура газа на глубине L, т.е. на расчетной глубине.

А если с момента остановки скважины прошло не более десяти часов, то среднюю температуру газа Tср определяют по формуле:

,

где Ту.и - температура газа на устье скважины.

При работающей скважине забойное давление скважины рз можно определить по устьевому давлению из следующего выражения [см. например, Гриценко А.И., Алиев З.С. и др. Руководство по исследованию скважин. - М.: Наука, 1995. - 523 с., стр. 117, формула (3.3)]:

,

где ,

,

D - внутренний диаметр фонтанных труб, м,

Q - дебит скважины, тыс. м3/сут,

рз - давление на забое скважины, МПа,

ру - давление устья фонтанных труб, МПа,

L - расстояние от устья до забоя скважины, м,

Zcp - средний коэффициент сверхсжимаемости газа,

T - средняя по стволу скважины температура газа, К,

- средняя по стволу скважины плотность газа, кг/м3,

λ - коэффициент сопротивления труб, зависящий от числа Рейнольдса, средней скорости потока и вязкости газа. Для обработки результатов ГДИ можно использовать уравнение притока газа к забою скважины, характеризующее зависимость потерь пластовой энергии () от дебита газа, которая имеет вид:

,

где , - соответственно пластовое и забойное давление, МПа;

а и b - коэффициенты фильтрационного сопротивления, зависящие от параметров призабойной зоны пласта и конструкции забоя скважины (а - коэффициент линейной составляющей фильтрационного сопротивления, МПа2/(тыс. м3/сут); b - коэффициент квадратичной составляющей фильтрационного сопротивления, МПа2/(тыс. м3/сут2), зависящие от фильтрационно-емкостных свойств пласта, несовершенства скважины, геометрии зоны дренирования, свойств газа);

Значение коэффициентов а и b можно определить из следующего выражения [например, см. стр. 73, Инструкция по комплексным исследованиям газовых и газоконденсатных скважин, часть I, Р Газпром 086-2010, Издание официальное]:

где P - значение стандартного давления, МПа;

Тпл - значение пластовой температуры, К;

Тст - значение стандартной температуры, К;

k - проницаемость пласта, мкм2;

h - толщина пласта, м;

l - коэффициент макрошероховатости пласта, мкм;

ρст - плотность газа при стандартных условиях, кг/м3;

C1, C3 - коэффициенты совершенства скважины по степени вскрытия пласта, доли ед. и 1/м соответственно;

С2, С4 - коэффициенты совершенства по характеру вскрытия пласта, б/р и 1/м соответственно;

Rк и Rc - радиус контура питания и радиус скважины, м.

Порядок определения параметров, входящих в формулы (1) и (2), можно найти в [Инструкция по комплексным исследованиям газовых и газоконденсатных скважин, часть I и часть II, Р Газпром 086-2010, Издание официальное].

Значение коэффициентов а и b (в случае если неизвестно пластовое давление) можно определить численно из следующих выражений [стр. 118, Инструкция по комплексным исследованиям газовых и газоконденсатных скважин, часть II, Р Газпром 086-2010, Издание официальное]:

,

,

где pзi, рзn - забойные давления на i-м (i=1, 2, 3, …, n-1) и n-м режиме соответственно;

Qi, Qn - дебит скважины на i-м режиме (i=1, 2, 3, …, n-1) и n-м режиме соответственно;

i - порядковый номер режима;

n - количество режимов.

Определив а и b, можно вычислить пластовое давление из формулы, описывающей приток газа к забою скважины:

.

Далее АСУ ТП УКПГ/УППГ эту информацию записывает и хранит в своей БД. И каждый раз, когда появляется возможность, либо по команде оператора УКПГ/УППГ, либо по заранее заложенному алгоритму АСУ ТП УКПГ/УППГ, используя СТКС, проводит ГДИ скважин в усеченном варианте по вышеописанному порядку. Получаемые результаты исследования АСУ ТП хранит в своей БД, включая всю историю этих исследований.

Заявляемое изобретение отработано и реализовано на газовых промыслах ООО «Газпром добыча Ямбург».

Применение заявленного способа позволяет:

- проводить стандартные ГДИ скважин по мере необходимости. Это приводит к существенному снижению затрат на дорогостоящие исследования, к сокращению технологических потерь газа, благодаря чему снижается себестоимость добываемой скважинной продукции;

- улучшить экологическую ситуацию на газовом промысле, так как значительно сокращается выпуск газа на факел для сжигания;

- проводить ГДИ скважин дистанционно не только в дневное рабочее время, а в любое время суток, многократно, практически без материальных затрат;

- выбирать режимы эксплуатации скважин на основе оперативной информации, в том числе и в автоматическом режиме, что значительно повышает эффективность разработки месторождения;

- определять среднегодовой тренд пластового давления Pпл по результатам периодических остановок скважин;

- накопить статистическую информацию по фактическим изменениям дебита Q, устьевого давления Pуст и забойного давления Pз.

- производить с заданным временным интервалом уточнение фильтрационных коэффициентов а и b;

- определять продуктивность пласта, приведенную к начальному

пластовому давлению Рпл.н;

- рассчитать тренд снижения продуктивности скважины, контролировать его, и, при достижении заданных (определенных) параметров, требующих проведения специальных исследований скважины, выдавать оператору предложение о необходимости проведения таких испытаний.

Способ оптимизации периодичности газодинамических исследований ГДИ скважин, включающий снятие кривой восстановления давления КВД после остановки, снятие кривых стабилизации давления и дебита при пуске скважины в работу на каждом конкретном режиме и снятие индикаторной кривой, отражающей зависимость между забойным давлением и дебитом при работе скважины на различных режимах, отличающийся тем, что проведение ГДИ скважин осуществляется с помощью автоматизированной системы управления технологическими процессами АСУ ТП установки комплексной/предварительной подготовки газа УКПГ/УППГ и системой телемеханики кустов скважин СТКС, являющейся одной из подсистем АСУ ТП УКПГ/УППГ и содержащей диспетчерский пункт ДП и связанные с ним каналами связи контролируемые пункты КП, которые устанавливают по одному на каждом кусте скважин и подключают к датчикам измерения параметров и исполнительным механизмам своего куста скважин, на устьях которых устанавливают датчики расхода, температуры и давления газа, при этом датчики давления измеряют устьевое и, при наличии затрубного датчика давления, давление в затрубном пространстве, и по команде АСУ ТП, поступившей в СТКС, которая формируется на основании принятого геологами решения о проведении испытаний, КП фиксирует на выбранной для испытания скважине значения забойного, устьевого и заколонного (если датчик установлен) давления, температуру газа на устье и дебит, при этом значение забойного давления определяется расчетным путем по соответствующей формуле, затем КП останавливает работу выбранной скважины и с заданным шагом дискретизации контролирует давление на устье и за колонной до полной его стабилизации, далее КП во время сеансов связи эту информацию, сформированную в виде пакета, передает через ДП в АСУ ТП, которая на основе этой, полученной от СТКС информации, формирует кривую восстановления давления КВД скважины и сохраняет ее в своей базе данных БД, и после стабилизации давления, по команде, поступивший из АСУ ТП в СТКС, КП осуществляет пуск скважины в работу с минимальным предварительно заданным дебитом Q и регистрирует с заданным шагом дискретизации во времени фактический дебит, устьевое и затрубное давление скважины, далее КП во время сеансов связи эту информацию, сформированною в виде пакета, передает через ДП в АСУ ТП, которая на основе этой полученной информации от СТКС формирует кривую стабилизации устьевого (заколонного) и забойного давления, а также соответствующего им фактического дебита, при этом значение забойного давления определяется системой расчетным путем по соответствующей формуле, и как только давление и дебит скважины стабилизируются, фиксируется время окончания стабилизации, регистрируются соответствующие этому моменту времени давление на устье (в затрубном пространстве), забойное давление и дебит скважины, а также температура газа на устье в качестве установившихся параметров первого режима исследования, и вся эта информация хранится в БД АСУ ТП, после чего АСУ ТП совместно с СТКС переходит к испытанию скважины на следующем режиме, повторяя описанную процедуру заранее заданное число раз с заданными значениями дебита скважины, определяемыми геологами, и по окончании этого цикла система переключается на проведение испытаний скважины обратным ходом, с больших дебитов скважин к меньшим, повторяя описанную процедуру заданное число раз с заранее заданными значениями дебита скважины, при этом, в процессе проведения замеров, в зависимости от конструкции и паспортных данных скважин, расчетным путем по измеряемым параметрам при каждом цикле опроса АСУ ТП определяет значения забойного давления p скважины и коэффициенты фильтрационного сопротивления а и b, которые она использует для обработки результатов ГДИ на основе уравнения , описывающего приток газа к забою скважины, где p - пластовое давление, p - забойное давление, и если в результате анализа ГДИ выясниться, что изменение параметров a, b и p после предыдущих испытаний укладывается в рамки допусков утвержденной модели разработки месторождения, то на этом процесс ГДИ скважины заканчивается, но если выяснится, что изменение параметров , b и p вышло за допустимые пределы, производится анализ статистики накопленных данных и трендов изменения контролируемых и вычисляемых параметров, а также тренд снижения продуктивности скважины, и об этом сообщается оператору для принятия необходимых управляющих решений по проведению стандартных ГДИ данной скважины.
СПОСОБ ОПТИМИЗАЦИИ ПЕРИОДИЧНОСТИ ГАЗОДИНАМИЧЕСКИХ ИССЛЕДОВАНИЙ СКВАЖИН НА НЕФТЕГАЗОКОНДЕНСАТНЫХ МЕСТОРОЖДЕНИЯХ КРАЙНЕГО СЕВЕРА
СПОСОБ ОПТИМИЗАЦИИ ПЕРИОДИЧНОСТИ ГАЗОДИНАМИЧЕСКИХ ИССЛЕДОВАНИЙ СКВАЖИН НА НЕФТЕГАЗОКОНДЕНСАТНЫХ МЕСТОРОЖДЕНИЯХ КРАЙНЕГО СЕВЕРА
Источник поступления информации: Роспатент

Showing 61-69 of 69 items.
27.05.2023
№223.018.7130

Способ автоматического поддержания плотности нестабильного газового конденсата с применением турбодетандерных агрегатов на выходе установок низкотемпературной сепарации газа северных нефтегазоконденсатных месторождений рф

Изобретение относится к области добычи и подготовки газа и газового конденсата к дальнему транспорту, в частности к автоматическому поддержанию плотности нестабильного газового конденсата (НТК) с применением турбодетандерных агрегатов (ТДА) в установках низкотемпературной сепарации газа (далее...
Тип: Изобретение
Номер охранного документа: 0002768837
Дата охранного документа: 24.03.2022
27.05.2023
№223.018.7221

Способ автоматического распределения нагрузки между технологическими линиями низкотемпературной сепарации газа на установках комплексной подготовки газа нефтегазоконденсатных месторождений севера рф

Изобретение относится к области добычи и подготовки природного газа к дальнему транспорту на установках комплексной подготовки газа (УКПГ) нефтегазоконденсатных месторождений (НГКМ) Севера РФ. Способ включает контроль средствами автоматизированной системы управления технологическим процессами...
Тип: Изобретение
Номер охранного документа: 0002743870
Дата охранного документа: 01.03.2021
27.05.2023
№223.018.7222

Способ автоматического распределения нагрузки между технологическими линиями низкотемпературной сепарации газа на установках комплексной подготовки газа, с применением аппаратов воздушного охлаждения, нефтегазоконденсатных месторождений севера рф

Изобретение относится к области добычи и подготовки природного газа к дальнему транспорту на установках комплексной подготовки газа (УКПГ) нефтегазоконденсатных месторождений (НГКМ) Севера РФ. Способ включает контроль средствами автоматизированной системы управления технологическими процессами...
Тип: Изобретение
Номер охранного документа: 0002743869
Дата охранного документа: 01.03.2021
27.05.2023
№223.018.7223

Способ автоматического распределения нагрузки между технологическими линиями низкотемпературной сепарации газа с турбодетандерными агрегатами на установках комплексной подготовки газа севера рф

Изобретение относится к области добычи и подготовки природного газа валанжинских залежей (далее природный газ) к дальнему транспорту на установках комплексной подготовки газа (УКПГ) нефтегазоконденсатных месторождений (НГКМ) Севера РФ. Способ включает контроль средствами автоматизированной...
Тип: Изобретение
Номер охранного документа: 0002743690
Дата охранного документа: 24.02.2021
16.06.2023
№223.018.7cc2

Способ оптимизации процесса отмывки ингибитора из нестабильного газового конденсата на установках низкотемпературной сепарации газа нефтегазоконденсатных месторождений севера рф

Изобретение относится к области подготовки природного газа и газового конденсата к дальнему транспорту, в частности к автоматическому управлению отмывкой ингибитора – метанола - из нестабильного газового конденсата (НГК) на установках низкотемпературной сепарации газа, расположенных в районах...
Тип: Изобретение
Номер охранного документа: 0002743711
Дата охранного документа: 24.02.2021
16.06.2023
№223.018.7cca

Способ оптимизации процесса отмывки ингибитора из нестабильного газового конденсата на установках низкотемпературной сепарации газа нефтегазоконденсатных месторождений севера рф

Изобретение относится к области подготовки природного газа и газового конденсата к дальнему транспорту, в частности к автоматическому управлению отмывкой ингибитора - метанола из нестабильного газового конденсата (НГК) на установках низкотемпературной сепарации (НТС) газа (далее установка),...
Тип: Изобретение
Номер охранного документа: 0002743726
Дата охранного документа: 25.02.2021
17.06.2023
№223.018.7e2d

Способ смазки шкворневого узла ветрогенератора

Изобретение относится к способам технического обслуживания ветрогенераторов и может найти применение в смазке шкворневого узла ветрогенератора Whisper-200 производства компании Southwest Wind Power. Способ смазки шкворневого узла ветрогенератора Whisper-200 включает выполнение с наружной...
Тип: Изобретение
Номер охранного документа: 0002771265
Дата охранного документа: 29.04.2022
17.06.2023
№223.018.7eb4

Способ подачи поверочной газовой смеси детектору углеводородных газов при его калибровке

Изобретение относится к способам проведения калибровок детектора углеводородных газов. Способ подачи поверочной газовой смеси детектору углеводородных газов при его калибровке характеризуется тем, что выполняют сквозное отверстие во фланце рядом с кабельным вводом, в которое вставляют штуцер,...
Тип: Изобретение
Номер охранного документа: 0002775932
Дата охранного документа: 12.07.2022
17.06.2023
№223.018.7edc

Стенд для устранения деформации основания ротора ветрогенератора и способ устранения деформаций основания ротора с помощью данного стенда

Изобретение относится к ветроэнергетике и может быть использовано в ветрогенераторах для устранения биения их роторов вследствие деформации их основания. На корпус ветрогенератора устанавливают кронштейн с закрепленным к нему на специальной площадке с отверстием индикатором часового типа (далее...
Тип: Изобретение
Номер охранного документа: 0002774009
Дата охранного документа: 14.06.2022
Showing 61-70 of 89 items.
03.07.2019
№219.017.a3e8

Способ определения минерализации пластовой жидкости в обсаженных нефтегазовых скважинах на основе стационарных нейтронных методов

Изобретение относится к нефтегазодобывающей промышленности, к методам нейтронного каротажа для определения минерализации скважинной жидкости по химическим элементам с аномальным поглощением нейтронов, с целью определения геологических параметров разрезов обсаженных нефтегазовых скважин....
Тип: Изобретение
Номер охранного документа: 0002693102
Дата охранного документа: 01.07.2019
15.08.2019
№219.017.bff4

Способ автоматического поддержания плотности нестабильного газового конденсата, подаваемого в магистральный конденсатопровод, с применением турбодетандерного агрегата, на установках низкотемпературной сепарации газа в районах крайнего севера

Изобретение относится к области добычи и подготовки газа и газового конденсата к дальнему транспорту. Способ предусматривает очистку поступающей газоконденсатной смеси, поступающей из добывающих скважин, от механических примесей в сепараторе первой ступени сепарации. На установке осуществляют...
Тип: Изобретение
Номер охранного документа: 0002697208
Дата охранного документа: 13.08.2019
02.10.2019
№219.017.cbee

Способ идентификации источника и времени загрязнения окружающей среды и биологических субстратов человека пестицидом ддт в регионах крайнего севера

Изобретение относится к экологии и может быть использовано для идентификации источника и времени загрязнения окружающей среды дихлордифенилтрихлорэтаном (ДДТ) в регионах Крайнего Севера. Для этого отбирают репрезентативные пробы почвы, воды, крови или грудного молока человека. Пробы анализируют...
Тип: Изобретение
Номер охранного документа: 0002701554
Дата охранного документа: 30.09.2019
02.10.2019
№219.017.cdd8

Способ автоматического поддержания плотности нестабильного газового конденсата, подаваемого в магистральный конденсатопровод, на установках низкотемпературной сепарации газа в районах крайнего севера

Изобретение относится к области добычи и подготовки газа и газового конденсата к дальнему транспорту, в частности к автоматическому поддержанию на установке низкотемпературной сепарации газа плотности нестабильного газового конденсата (НГК), подаваемого в магистральный конденсатопровод (МКП) в...
Тип: Изобретение
Номер охранного документа: 0002700310
Дата охранного документа: 16.09.2019
17.10.2019
№219.017.d724

Способ контроля герметичности муфтовых соединений эксплуатационной колонны и выявления за ней интервалов скоплений газа в действующих газовых скважинах стационарными нейтронными методами

Изобретение относится к газодобывающей отрасли и может быть использовано для контроля герметичности муфтовых соединений эксплуатационных колонн (ЭК) в действующих газовых скважинах, а также для выявления интервалов скоплений газа за ЭК с использованием многозондового нейтронного каротажа....
Тип: Изобретение
Номер охранного документа: 0002703051
Дата охранного документа: 15.10.2019
18.12.2019
№219.017.ee24

Способ оптимизации процесса отмывки ингибитора из нестабильного газового конденсата на установках низкотемпературной сепарации газа

Способ предназначен для оптимизации процесса отмывки ингибитора из нестабильного газового конденсата (НТК) на установках низкотемпературной сепарации (НТС) газа, реализуемый автоматизированной системой управления технологическими процессами (АСУ ТП). Способ включает автоматическое управление...
Тип: Изобретение
Номер охранного документа: 0002709119
Дата охранного документа: 16.12.2019
18.12.2019
№219.017.ee49

Способ адаптации гидродинамической модели продуктивного пласта нефтегазоконденсатного месторождения с учетом неопределенности геологического строения

Изобретение относится к способу адаптации гидродинамической модели с учетом неопределенности геологического строения. Техническим результатом является минимизация погрешности расчета технологических показателей разработки месторождения с применением гидродинамических моделей. Способ включает...
Тип: Изобретение
Номер охранного документа: 0002709047
Дата охранного документа: 13.12.2019
18.12.2019
№219.017.ee50

Способ автоматического управления подачей ингибитора для предупреждения гидратообразования на установках низкотемпературной сепарации газа, эксплуатируемых на крайнем севере

Изобретение относится к горному делу и может быть применено для предупреждения гидратообразования и разрушения гидратов на установках низкотемпературной сепарации (НТС) газа. Ингибитор подают в точки перед защищаемыми участками, комплекс которых представляет собой установку низкотемпературной...
Тип: Изобретение
Номер охранного документа: 0002709048
Дата охранного документа: 13.12.2019
18.12.2019
№219.017.ee5a

Способ построения карт изобар

Изобретение относится к нефтегазовой промышленности и может быть использовано при построении карт изобар для разрабатываемых нефтегазоконденсатных месторождений. Техническим результатом является повышение точности оперативного построения карты изобар месторождения ИУС промысла в автоматическом...
Тип: Изобретение
Номер охранного документа: 0002709046
Дата охранного документа: 13.12.2019
18.12.2019
№219.017.ee5c

Способ автоматического управления производительностью установки низкотемпературной сепарации газа

Изобретение относится к области добычи, сбора и подготовки природного газа и газового конденсата к транспорту, в частности к автоматическому управлению производительностью установок низкотемпературной сепарации газа. Технический результат заключается в: автоматическом поддержании заданного...
Тип: Изобретение
Номер охранного документа: 0002709045
Дата охранного документа: 13.12.2019
+ добавить свой РИД