×
18.07.2018
218.016.7200

Результат интеллектуальной деятельности: Способ нелинейного управления инерционным приводом антенны, обеспечивающий высокую устойчивость сопровождения интенсивно маневрирующих объектов

Вид РИД

Изобретение

Аннотация: Изобретение относится к нелинейным системам управления угломером, в частности к системам управления пеленгаторами, следящими за интенсивно маневрирующими целями. Достигаемый технический результат – повышение устойчивости и точности сопровождения маневрирующих целей. Указанный результат достигается за счет обеспечения адаптивной чувствительности сигналов управления к ошибкам сопровождения, при этом сигнал управления приводом угломера формируют по определенному закону. 8 ил.

Изобретение относится к системам автоматического сопровождения целей по угловым координатам.

Расширение номенклатуры сверхманевренных и гиперзвуковых летательных аппаратов (ЛА) приводит к усложнению взаимодействия ЛА, что проявляется в значительном усложнении законов изменения входных воздействий для БРЛС. В связи с этим, к РЛС ЛА и беспилотных летательных аппаратов (БЛА) предъявляются высокие требования к точности, быстродействию и устойчивости сопровождения целей [1]. При этом необходимо отметить, что среди всех видов информационных датчиков наибольшее влияние на точность и устойчивость наведения ЛА оказывают угломерные каналы бортовых РЛС [1, 2].

В связи с этим при оптимизации систем радиоуправления первоочередной задачей является расширение диапазонов углов и угловых скоростей устойчивого сопровождения целей угломером и улучшение его точности.

Особенностью функционирования существующих угломеров с типовой моноимпульсной пеленгацией [2] является ограничение допустимых ошибок Δϕ захвата и сопровождения величиной, соответствующей половине ширины θ диаграммы направленности антенны.

Причиной этого является специфика пеленгационной характеристики угломера, которая предопределяет изменение знака сигналов отрицательной обратной связи на положительную при выполнении условия |Δϕ|>θ/2, что автоматически приводит к срыву сопровождения.

Эта особенность предопределяет необходимость формирования требуемых сигналов управления

только при выполнении условия

Достоинством классического метода управления (1) является его простота. Недостаток - одинаковая чувствительность (скорость изменения сигналов управления) как к большим, так и малым ошибкам сопровождения. В то же время желательно иметь вблизи границы устойчивой работы угломера (Δϕ≈θ/2) значительно большую скорость нарастания сигнала управления, обеспечивающую ускоренную ликвидацию опасных ошибок сопровождения, уменьшая тем самым риск срыва сопровождения.

Задачей изобретения является разработка способа управления угломером, обеспечивающего высокую устойчивость сопровождения интенсивно маневрирующих целей.

Поставленная задача достигается тем, что сигнал управления, определяемый взвешенной суммой ошибок функционирования, дополняется слагаемыми, имеющими квадратичную и кубическую зависимости от ошибок сопровождения, что позволит обеспечить высокую скорость нарастания сигнала управления вблизи границы устойчивой работы угломера.

Технический результат, который может быть получен от использования предлагаемого изобретения, заключается в повышении устойчивости и точности сопровождения маневрирующих целей, за счет адаптивной чувствительности сигналов управления к ошибкам сопровождения.

Сущность предлагаемого изобретения заключается в том, что в системе измеряют фазовые координаты состояния входящих в систему подсистем в процессе их совместного функционирования и формируют сигнал управления в виде взвешенной суммы линейных и нелинейных комбинаций оценок ошибок сопровождения.

Задача будет решаться на основе математического аппарата статистической теории управления [3] с использованием аппарата локальной оптимизации [4], который позволяет для системы

предназначенной для отработки процесса

сформировать сигнал управления

оптимальный по минимуму квадратично-биквадратного функционала качестве

Здесь хт и ху - n-мерные векторы требуемых и управляемых координат;

Fт и Fy - матрицы внутренних связей векторов (3) и (4);

Ву - матрица эффективности r-мерного (r≤n) вектора и сигналов управления;

ξт и ξу - векторы центрированных гауссовских возмущений состояния;

и - векторы оптимальных оценок процессов (4) и (3);

Q - матрица штрафов за точность приближения ху к хт;

Р - матрица взаимовлияния линейной и кубичной составляющих управления (5);

t - текущее время.

В ходе решения задачи будет считаться, что сигналы управления в горизонтальной и вертикальной плоскостях не влияют друг на друга, в связи с чем далее будет рассмотрено формирование сигнала управления только в горизонтальной плоскости.

В математическом плане задача формулируется следующим образом.

Для типового привода антенны, определяемого моделью [1]

предназначенного для сопровождения цели, движущейся по закону [1]

необходимо сформировать сигнал управления uω, оптимальный по минимуму функционала качества

где

при условии, что измеряется бортовой пеленг цели

Здесь ϕг и ϕу - бортовой пеленг цели и угол поворота антенны угломера в горизонтальной плоскости;

ωг и ωу - угловые скорости линии визирования и поворота антенны;

b и Т - коэффициент передачи и постоянная времени привода;

ξг и ξу - центрированные гауссовские шумы состояния (9) и (10);

Д и - дальность до цели и скорость ее изменения;

ϕуи - измерения датчика углового положения антенны;

Δϕпи - измерения моноимпульсного пеленгатора.

Геометрические соотношения между всеми координатами состояния и измерениями показаны на фигуре 1, на которой

Он и Оц - точки расположения носителя и цели;

Vн и Vц - векторы скорости носителя и цели;

Хрсн - положение равносигнального направления в пространстве.

Необходимо отметить адекватность модели (10) широкому полю условий применения, так как манипулируя законами изменения jг, можно реализовать изменения угловых координат практически любой сложности.

Поскольку исходные модели (9), (10) и (13) линейные, функционал (11) представляет разновидность квадратичного, а возмущения гауссовские (ЛКГ-задача) [5], то на основании теоремы разделения задача управления может решаться в детерминированной постановке, независимо от задачи фильтрации, при условии, что в полученном результате координаты состояния будут заменены их оптимальными оценками.

Поставив в соответствие (9) - (11) с (3) - (8), получим

Тогда, используя (14) в (5), будем иметь:

где в соответствии с выводами теоремы разделения

Анализ (15), (16) позволяет сделать следующие выводы.

Следящий угломер представляет многоконтурную систему с обратными связями по углу и угловой скорости.

В состав сигнала управления входят линейная составляющая, определяемая первыми двумя слагаемыми, и нелинейная составляющая в виде третьего, четвертого и пятого слагаемых.

Сигнал управления зависит не только от ошибок Δϕ и Δω, но и от их соотношений и сочетаний Δϕ2Δω и ΔϕΔω2.

Сигнал управления зависит не от абсолютных значений коэффициентов штрафов, а от их соотношений q21/kω, q22/kω и p21/kω, p22/kω. При этом степень влияния нелинейных слагаемых на величину сигнала управления определяются значениями коэффициентов матрицы Р.

Для получения сигнала управления достаточно иметь оценки бортового пеленга, угловой скорости линии визирования и угла поворота антенны и скорости его изменения, что не накладывает ограничений на возможность его реализации.

Полагая в (15) матрицы М и Р диагональными, можно получить более простые варианты сигналов управления.

Исследование полученного алгоритма проводилось по результатам имитационного моделирования сложных пространственных эволюций интенсивно маневрирующей цели, содержащих высокие производные угловых координат, определяемых законами изменения угла и угловой скорости:

с устранением первоначальных ошибок захвата различного сочетания

Следует отметить, что исследования проводились для наиболее жестких условий, когда законы (17) и (18) не соответствуют модели (10), положенной в основу синтеза закона управления. Достоинством (17) и (18) является то, что манипулируя ϕц(θ), , , , , А, с1, можно получить законы изменения ϕц практически любой сложности. Наряду с моделированием (10), моделировался привод (9) и алгоритм управления (15).

В ходе моделирования полученный закон сравнивался с используемым на практике прототипом, в котором используются только компоненты, линейно зависящие от ошибок по углу и угловой скорости:

Эффективность сравниваемых законов управления оценивалась по величинам текущих ошибок сопровождения и времени регулирования.

Исследования проводились в несколько этапов.

На первом этапе исследовалась способность управления (15) функционировать при различных постоянных времени привода, результаты моделирования приведены на фигурах 2 и 3. При этом на фигуре 2 показана зависимость относительных текущих ошибок по углу и угловой скорости для вариантов а) Т=1с; б) Т=2с; в) Т=3с; г) Т=4с; д) Т=5с. На фигуре 3 приведена зависимость времени регулирования от постоянной времени угломера. Из рисунков следует, что исследуемый угломер способен ликвидировать ошибки захвата даже при очень большой инерционности привода. Однако при этом значительно увеличиваются текущие ошибки как по углу (фигура 2а), так и по угловой скорости (фигура 2б).

На втором этапе исследовались показатели точности и быстродействия при сложном (17) законе изменения угловых координат. На фигурах 4а, б и 5а, б показаны зависимости относительных текущих ошибок сопровождения от времени при движении цели по закону (17) с использованием законов управления (15) (фигура 4а, б) и (20) (фигура 5а, б) при различных вариантах первоначальных ошибок захвата (19).

На третьем этапе исследовалась эффективность угломера при самом сложном для сопровождения законе (змейке) (18) со сменой знаков производных. Показатели текущих относительных ошибок сопровождения цели, выполняющей маневр «змейка», приведены на фигурах 6а, б (для алгоритма (15)) и 7а, б (для алгоритма (20)). Следует отметить, что при использовании алгоритма (20) ошибки сопровождения неограниченно возрастают, что приводит к срыву сопровождения, в то время как при использовании алгоритма (15) обеспечиваются более высокие показатели устойчивости и точности по сравнению с законом (20).

По результатам моделирования можно сделать следующие выводы:

- предложенный алгоритм нелинейного управления угломером позволяет обеспечить бессрывное высокоточное сопровождение целей, движущихся по очень сложным законам, в том числе и со сменой знаков производных;

- система устойчиво отрабатывает начальные ошибки захвата любых знаков при любом их сочетании, даже при достаточно большой постоянной времени привода угломера.

- манипулируя в (15) коэффициентами матриц М и Р, можно получить широкий спектр разновидностей нелинейного управления.

Упрощенная структура системы, реализующей предложенный способ, показана на фигуре 8, где

1 - антенна, формирующая наблюдения z и передающая их на фильтр 2;

2 - фильтр, принимающий на вход наблюдения антенны 1, формирующий оценки , , , и передающий их на усилители 3-7;

3 - усилитель, получающий оценки , , формирующий сигнал - и передающий его на сумматор 8;

4 - усилитель, получающий оценки , , формирующий сигнал - и передающий его на сумматор 8;

5 - усилитель, получающий оценки , , , , формирующий сигнал и передающий его на сумматор 8;

6 - усилитель, получающий оценки , , , , формирующий сигнал и передающий его на сумматор 8;

7 - усилитель, получающий оценки , , формирующий сигнал и передающий его на сумматор 8;

8 - сумматор, получающий на вход сигналы из усилителей 3-7, формирующий сигнал управления ua и передающий его на привод антенны 9;

9 - привод антенны, получающий на вход сигнал управления ua и формирующий положение антенны 1.

Функциональное назначение представленной на фигуре 8 структурной схемы управления заключается в формировании сигнала в виде взвешенной суммы оценок и фазовых координат системы и их нелинейных комбинаций , и .

Использование изобретения позволит осуществлять бессрывное высокоточное сопровождение целей, движущихся по очень сложным законам, в том числе и со сменой знаков производных. Также следует отметить, что информационное обеспечение предлагаемого алгоритма управления может быть осуществлено в существующих системах с учетом реальных ограничений, что свидетельствует о возможности практической реализации метода.

Список использованных источников

1. Меркулов В.И., Дрогалин В.В., Канащенков А.И. и др. Авиационные системы радиоуправления. Т. 2. Радиоэлектронные системы самонаведения. /Под ред. А.И. Канащенкова и В.И. Меркулова - М.: Радиотехника, 2003.

2. Леонов А.И., Фомичев К.И. Моноимпульсная радиолокация. - М.: Радио и связь, 1984.

3. Сейдж Э., Уайт Ш Ч.С. Оптимальное управление системами. / Пер. с англ. - М.: Радио и связь, 1982.

4. Меркулов В.И. Оптимизация систем управления по локальным квадратично-биквадратным функционалам качества. //Информационно-измерительные и управляющие системы. 2016. №11. С. 27-33.

5. Черноусько Ф.А., Колмановский В.Б. Оптимальное управление при случайных возмущениях. - М.: Наука, 1978.


Способ нелинейного управления инерционным приводом антенны, обеспечивающий высокую устойчивость сопровождения интенсивно маневрирующих объектов
Способ нелинейного управления инерционным приводом антенны, обеспечивающий высокую устойчивость сопровождения интенсивно маневрирующих объектов
Способ нелинейного управления инерционным приводом антенны, обеспечивающий высокую устойчивость сопровождения интенсивно маневрирующих объектов
Способ нелинейного управления инерционным приводом антенны, обеспечивающий высокую устойчивость сопровождения интенсивно маневрирующих объектов
Способ нелинейного управления инерционным приводом антенны, обеспечивающий высокую устойчивость сопровождения интенсивно маневрирующих объектов
Способ нелинейного управления инерционным приводом антенны, обеспечивающий высокую устойчивость сопровождения интенсивно маневрирующих объектов
Способ нелинейного управления инерционным приводом антенны, обеспечивающий высокую устойчивость сопровождения интенсивно маневрирующих объектов
Способ нелинейного управления инерционным приводом антенны, обеспечивающий высокую устойчивость сопровождения интенсивно маневрирующих объектов
Способ нелинейного управления инерционным приводом антенны, обеспечивающий высокую устойчивость сопровождения интенсивно маневрирующих объектов
Источник поступления информации: Роспатент

Showing 21-30 of 66 items.
25.08.2017
№217.015.9ffa

Способ изменения направления и уменьшения расходимости излучения полупроводникового вертикально излучающего лазера

Способ изменения направления и уменьшения расходимости излучения полупроводникового вертикально излучающего лазера включает в себя измерение диаграммы направленности VCSEL. Используют модель излучения для моделирования дифракционной решетки таким образом, чтобы обеспечить требуемый поворот...
Тип: Изобретение
Номер охранного документа: 0002606702
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.ae94

Способ временного закрепления подложек на технологическом основании

Изобретение относится к радиоэлектронике и может быть использовано, например, при изготовлении гибридных интегральных схем, высокоплотных электронных модулей, а также при корпусировании многокристальных электронных компонентов, содержащих утоненные полупроводниковые кристаллы в составе единого...
Тип: Изобретение
Номер охранного документа: 0002612879
Дата охранного документа: 13.03.2017
25.08.2017
№217.015.bba6

Сверхширокополосный радиолокатор с активной многочастотной антенной решеткой

Изобретение относится к радиолокации и может быть использовано в различных радиолокационных системах, где требуется высокое разрешение по дальности. Достигаемый технический результат - увеличение разрешающей способности по дальности. Указанный технический результат достигается тем, что...
Тип: Изобретение
Номер охранного документа: 0002615996
Дата охранного документа: 12.04.2017
25.08.2017
№217.015.bcc1

Способ многоступенчатой фильтрации для систем автосопровождения

Изобретение относится к радиоэлектронным системам сопровождения интенсивно маневрирующих целей, в частности к следящим дальномерам и угломерам бортовых РЛС. Достигаемый технический результат - обеспечение бессрывного сопровождения интенсивно маневрирующих целей с высокоточным оцениванием...
Тип: Изобретение
Номер охранного документа: 0002616188
Дата охранного документа: 13.04.2017
25.08.2017
№217.015.c0f0

Способ подготовки кристаллической или поликристаллической подложки под металлизацию

Изобретение относится к радиоэлектронике, а точнее к технологии производства печатных плат. Сущность способа подготовки кристаллической или поликристаллической подложки под металлизацию заключается в том, что кристаллическую или поликристаллическую подложку стандартным образом шлифуют, на...
Тип: Изобретение
Номер охранного документа: 0002617461
Дата охранного документа: 25.04.2017
25.08.2017
№217.015.c2a7

Способ устранения несоответствия динамичности подсистем в составе сложных технических систем и система обеспечения бессрывного сопровождения интенсивно маневрирующей цели

Изобретение относится к системам управления. Способ формирования сигнала управления для сопровождения цели заключается в том, что сигнал управления формируется по закону на основе динамических матриц внутренних связей систем, обобщенного вектора состояния системы и вектора сигналов управления....
Тип: Изобретение
Номер охранного документа: 0002617870
Дата охранного документа: 28.04.2017
25.08.2017
№217.015.c615

Система автоматизированного модального управления бокового движения летательного аппарата

Система автоматизированного модального управления (САМУ) боковым движением летательных аппаратов содержит датчик угловой скорости крена, два изодромных фильтра, два ограничителя, четыре сумматора, два звена с зоной нечувствительности, два звена с зоной нечувствительности и ограничением, привод...
Тип: Изобретение
Номер охранного документа: 0002618652
Дата охранного документа: 05.05.2017
25.08.2017
№217.015.d157

Способ изготовления межслойного перехода между печатными проводниками на кристаллической или поликристаллической подложке

Изобретение относится к радиоэлектронике, а точнее к технологии производства печатных плат. Технический результат изобретения - создание способа изготовления межслойного перехода между печатными проводниками на кристаллической или поликристаллической подложке, улучшающего адгезию за счет...
Тип: Изобретение
Номер охранного документа: 0002622038
Дата охранного документа: 09.06.2017
25.08.2017
№217.015.d230

Способ контроля поверхности

Изобретение относится к визуальной оценке качества поверхностей плоских подложек для оптико-электронных компонентов и может быть использовано при техническом контроле состояния поверхности крупных партий деталей в электротехнической промышленности. В заявленном способе контроля поверхности на...
Тип: Изобретение
Номер охранного документа: 0002621469
Дата охранного документа: 06.06.2017
26.08.2017
№217.015.edf9

Способ регулировки яркости отображения информации на оптоэлектронном табло с жидкокристаллическим дисплеем

Изобретение относится к области отображения информации средствами, основанными на жидкокристаллических элементах, и может быть использовано при визуальном считывании показаний с оптоэлектронных табло. Техническим результатом изобретения является упрощение методики создания оптоэлектронных табло...
Тип: Изобретение
Номер охранного документа: 0002628917
Дата охранного документа: 22.08.2017
Showing 21-30 of 48 items.
14.07.2018
№218.016.710d

Способ траекторного управления беспилотным летательным аппаратом для облета городской застройки в вертикальной плоскости

Изобретение относится к способу траекторного управления беспилотным летательным аппаратом (БЛА). Способ заключается в том, что производят вывод БЛА с диспетчерского пункта на траекторию с заданным углом наклона, корректируют угол наклона траектории при сближении с группой препятствий, каждое из...
Тип: Изобретение
Номер охранного документа: 0002661269
Дата охранного документа: 13.07.2018
07.09.2018
№218.016.84c2

Способ перехвата интенсивно маневрирующих высокоскоростных воздушно-космических объектов

Изобретение относится к системам наведения на высокоскоростные и маневрирующие цели, в частности к системам наведения на гиперзвуковые летательные аппараты (ГЗЛА). Система управления обеспечивает перехват цели с высокой точностью, учитывая только ошибки наведения по углу и угловой скорости. С...
Тип: Изобретение
Номер охранного документа: 0002666069
Дата охранного документа: 05.09.2018
20.02.2019
№219.016.c09a

Способ управления летательными аппаратами по курсу в угломерной двухпозиционной радиолокационной системе

Изобретение относится к технике управления и может применяться для наведения летательных аппаратов (ЛА) на радиоизлучающие воздушные цели с использованием угломерных двухпозиционных радиолокационных систем. Техническим результатом является уменьшение кривизны траектории ЛА и плавный вывод его в...
Тип: Изобретение
Номер охранного документа: 0002308093
Дата охранного документа: 10.10.2007
01.03.2019
№219.016.c9cd

Полимерная композиция

Изобретение относится к полимерным композициям и может найти применение в различных областях народного хозяйства, в частности в кабельной промышленности. Полимерная композиция включает, мас.ч.: хлоропреновый каучук или его комбинацию с бутадиеннитрильным каучуком - 100, вулканизующий агент -...
Тип: Изобретение
Номер охранного документа: 0002291884
Дата охранного документа: 20.01.2007
01.03.2019
№219.016.c9de

Электроизоляционная композиция

Изобретение относится к электроизоляционным композициям и может быть использовано при конструировании электрических кабелей для подвижного состава метрополитена и других видов транспорта. Описывается электроизоляционная композиция на основе силоксанового каучука, содержащая органическую...
Тип: Изобретение
Номер охранного документа: 0002293095
Дата охранного документа: 10.02.2007
01.03.2019
№219.016.cdc9

Информационно-вычислительная система беспилотного самолета-истребителя

Изобретение относится к области приборостроения и может быть использовано для управления беспилотными самолетами-истребителями. Технический результат - расширение функциональных возможностей. Для достижения данного результата информационно-вычислительная система (ИБС) беспилотного...
Тип: Изобретение
Номер охранного документа: 0002418267
Дата охранного документа: 10.05.2011
10.04.2019
№219.017.0054

Способ измерения дальности в импульсно-доплеровских радиолокационных станциях

Способ измерения дальности в импульсно-доплеровских радиолокационных станциях (РЛС) заключается в том, что излучают линейно-частотно-модулированное(ЛЧМ) радиоимпульсы с крутизной, обеспечивающей однозначное измерение дальности до любого летательного аппарата (ЛА), находящегося в пределах...
Тип: Изобретение
Номер охранного документа: 0002296346
Дата охранного документа: 27.03.2007
10.04.2019
№219.017.0055

Способ обнаружения и анализа радиосигналов

Способ обнаружения и анализа радиосигналов заключается в том, что задают: первый порог, определяемый уровнем шума приемного устройства, третий порог, определяемый мощностью помеховых сигналов, четвертый порог, определяемый величиной эффективной площади отражения (ЭПО) обнаруживаемых объектов, а...
Тип: Изобретение
Номер охранного документа: 0002296349
Дата охранного документа: 27.03.2007
10.04.2019
№219.017.02ed

Радиолокационная система для обнаружения проводов линий электропередач

Изобретение относится к радиолокации и может быть использовано на летательных аппаратах при совершении ими маловысотных полетов. Предлагаемая радиолокационная система для обнаружения проводов линий электропередач за счет использования специального вычислителя, оптимизированного на решение...
Тип: Изобретение
Номер охранного документа: 0002310885
Дата охранного документа: 20.11.2007
19.04.2019
№219.017.1d96

Способ автоматического группового целераспределения истребителей с учетом возможного выбывания участников

Изобретение относится к способу автоматического группового целераспределения истребителей с учетом возможного выбывания участников, который заключается в том, что для каждого перехватчика формируют функционал эффективности перехвата, путем решения множества численных уравнений получают...
Тип: Изобретение
Номер охранного документа: 0002684963
Дата охранного документа: 16.04.2019
+ добавить свой РИД