×
14.07.2018
218.016.714f

Результат интеллектуальной деятельности: УСТРОЙСТВО ПИТАНИЯ ДОМКРАТА ГИДРАВЛИЧЕСКОЙ ТЕКУЧЕЙ СРЕДОЙ И МЕХАНИЗМ УПРАВЛЕНИЯ ШАГОМ ЛОПАСТЕЙ ВИНТА ГАЗОТУРБИННОГО ДВИГАТЕЛЯ, СОДЕРЖАЩИЙ ДОМКРАТ

Вид РИД

Изобретение

Правообладатели

№ охранного документа
0002661281
Дата охранного документа
13.07.2018
Аннотация: Изобретение касается гидравлического домкрата, содержащего неподвижную опору (30), подвижный цилиндр (24), выполненный с возможностью поступательного перемещения относительно опоры, неподвижный поршень внутри цилиндра, ограничивающий вместе с цилиндром две камеры, и устройство питания камер гидравлической текучей средой на входе из неподвижной опоры (30,31). Домкрат отличается тем, что устройство питания содержит телескопические трубопроводы (25,26,28), при этом каждый телескопический трубопровод содержит два трубчатых элемента, перемещающиеся скольжением один в другом, при этом первый трубчатый элемент неподвижно соединен с неподвижной опорой (31) одним концом, и второй трубчатый элемент неподвижно соединен с цилиндром по меньшей мере в двух точках, отстоящих друг от друга вдоль образующей цилиндра. Гидравлический домкрат входит в состав механизма управления шагом винта и неподвижно соединен с его статорной частью. Изобретения обеспечивают повышение компактности и надежности. 2 н. и 7 з.п. ф-лы, 12 ил.

ОБЛАСТЬ ТЕХНИКИ

Настоящее изобретение относится к области гидравлических домкратов, в частности домкратов с неподвижным поршнем, при этом управляемое домкратом устройство соединено с цилиндром, который является подвижным и выполнен с возможностью поступательного движения; оно относится к выполнению каналов питания домкратов гидравлической текучей средой. В частности, изобретение касается применения таких домкратов для управления шагом лопастей винта в авиационном тяговом двигателе, таком как двигатель с не капотированными винтами.

ПРЕДШЕСТВУЮЩИЙ УРОВЕНЬ ТЕХНИКИ

Для улучшения характеристик и удельного расхода топлива тяговых двигателей летательных аппаратов была предложена новая архитектура с дублетом винтов противоположного вращения, расположенных либо на входе, либо на выходе газотурбинного двигателя. Такие двигатели называют также английским выражением “open rotor”. Например, двигатель, описанный в патентной заявке FR 2941493 содержит газогенератор классического газотурбинного двигателя, в котором одна или несколько ступеней турбины приводят во вращение не капотированный вентилятор, расположенный снаружи двигателя. В случае газотурбинного двигателя с задним дублетом винтов роторы могут быть также установлены на выходном конструктивном элементе картера и приводятся во вращение свободной турбиной через коробку приводов, например, с эпициклоидной зубчатой передачей.

Как и в случае классических турбовинтовых двигателей, лопасти винтов двигателей “open rotor” являются лопастями с регулируемым углом установки, то есть во время полета можно изменять шаг этих винтов для изменения тяги двигателя и для оптимизации КПД винта в зависимости от скорости летательного аппарата. Можно предусмотреть самые разные устройства для изменения угла установки лопастей, которое, как правило, включает в себя поворот лопасти вокруг ее главной оси при помощи конических шестерен, находящихся под ножкой лопасти. Эти шестерни взаимодействуют с коническими шестернями системы управления.

Во врем фаз полета угол установки винта меняется между двумя пределами, соответствующими положению малого шага на низкой скорости движения, например, порядка 30° по отношению к плоскости вращения винтов, и положению большого шага на высокой скорости, например, порядка 65° по отношению к этой же плоскости вращения винтов. Лопасти могут занимать положение флюгирования, которое соответствует установочному углу, превышающему угол установки большого шага и равному около 90°. В этом положении лобовое сопротивление лопастей является минимальным. Лопасти можно также повернуть в положение реверса тяги с отрицательным установочным углом, например, -30°.

Управлять шагом лопастей можно при помощи привода, подвижный орган которого приводится в поступательное движение в осевом направлении и приводит во вращение поворотные цапфы лопастей вокруг их соответствующей радиальной оси через соответствующую систему рычагов, установленную на подшипнике качения.

Каждый из двух роторов дублета винтов имеет свое собственное устройство привода и управления шагом. В случае устройства переднего ротора часть ограничительных условий связана с ограничением центрального пространства по причине необходимости предусматривать проход для вспомогательных систем ротора, находящегося сзади.

Задачей изобретения является разработка устройства приведения во вращение лопастей вокруг их оси, которое одновременно является компактным и надежным.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

Для решения задачи предложен гидравлический домкрат, содержащий опору, подвижный цилиндр, выполненный с возможностью поступательного перемещения относительно опоры, поршень, неподвижно соединенный с опорой внутри цилиндра и ограничивающий вместе с цилиндром две камеры, и устройство питания камер гидравлической текучей средой на входе из опоры. Этот домкрат отличается тем, что устройство питания содержит телескопические трубопроводы, при этом каждый телескопический трубопровод содержит два трубчатых элемента, перемещающихся скольжением один в другом, при этом первый трубчатый элемент неподвижно соединен с опорой одним концом, и второй трубчатый элемент неподвижно соединен с цилиндром по меньшей мере в двух точках, отстоящих друг от друга вдоль образующей цилиндра, при этом одна из упомянутых камер получает питание через первый телескопический трубопровод на одной части хода цилиндра и через второй телескопический трубопровод на остальной части хода цилиндра.

Преимуществом заявленного домкрата является его компактность в радиальном направлении, поскольку трубопроводы питания гидравлической текучей средой расположены вдоль наружной поверхности подвижного цилиндра. Кроме того, он является надежным, и направление между подвижными деталями хорошо контролируется, в частности, направление между трубчатыми элементами. Благодаря этому, его работа не ухудшается при размерных изменениях, появляющихся в результате явлений теплового расширения, или когда он подвергается деформациям в результате механических напряжений во время различных фаз полета.

Изобретение представляет особый интерес, когда домкрат является кольцевым и когда необходимо освободить пространство во внутреннем объеме, чтобы оставить проход для вспомогательных систем, которые предназначены для устройств, находящихся на выходе относительно опоры домкрата.

Согласно другому отличительному признаку, первый трубопровод содержит первое средство закрывания, выполненное с возможностью перекрывания трубопровода в конце упомянутого хода, второй трубопровод содержит второе средство закрывания, выполненное с возможностью удержания трубопровода закрытым на упомянутой части хода цилиндра и открытым на упомянутой остальной части хода цилиндра.

Предпочтительно средство закрывания первого или второго трубопровода реализуют за счет взаимодействия первого трубчатого элемента и второго трубчатого элемента упомянутого трубопровода, при этом второй трубчатый элемент имеет проход, устанавливающий сообщение между первым трубчатым элементом и упомянутой камерой, и первый трубчатый элемент имеет отверстия, открываемые упомянутым проходом.

Согласно варианту выполнения, первый трубчатый элемент закрыт на своем конце и содержит упомянутые отверстия сбоку, второй трубчатый элемент имеет участок с таким диаметром, который позволяет перекрывать упомянутые боковые отверстия, и участок с более широким диаметром для образования упомянутого прохода. В частности, второй трубопровод соединен с упомянутой камерой через трубчатый элемент, расположенный параллельно второму трубопроводу.

Согласно еще одному отличительному признаку, первые трубчатые элементы трубопроводов соединены с опорой участком S-образной формы.

Заявленный домкрат находит свое предпочтительное применение в механизме управления шагом винта с регулируемым углом установки. Домкрат неподвижно соединен через свою опору со статором винта.

Первый трубопровод питает упомянутую камеру в диапазоне регулировки шага, а второй трубопровод - в диапазоне реверса тяги винта.

Согласно другому отличительному признаку, другая камера получает питание через третий телескопический трубопровод.

КРАТКОЕ ОПИСАНИЕ ФИГУР

Другие отличительные признаки и преимущества будут более очевидны из нижеследующего описания не ограничительного варианта осуществления изобретения со ссылками на прилагаемые чертежи, на которых:

Фиг. 1 изображает схематичный вид в осевом разрезе двигателя с винтами противоположного вращения, для которого применяют изобретение.

Фиг. 2 - схему управления шагом лопастей винта двигателя, показанного на фиг. 1.

Фиг. 3 - вид в изометрии заявленного гидравлического домкрата.

Фиг. 4 - вид в осевом разрезе домкрата, показанного на фиг.3.

Фиг. 5 - вид в поперечном разрезе домкрата, показанного на фиг. 3, на уровне входной крышки.

Фиг. 6-8 - частичный вид в продольном разрезе домкрата, показанного на фиг. 3, на уровне первого трубопровода малого шага в различных фазах полета.

Фиг. 9 - вид в продольном разрезе домкрата, показанного на фиг. 3, на уровне первого трубопровода обратного шага.

Фиг. 10 - частичный вид в продольном разрезе домкрата, показанного на фиг. 3, на уровне перепускного трубопровода.

Фиг. 11 - частичный вид в продольном разрезе домкрата, показанного на фиг. 3, на уровне трубопровода большого шага.

Фиг. 12 - схематичный вид средства закрывания первого трубопровода.

ПОДРОБНОЕ ОПИСАНИЕ ВАРИАНТА ОСУЩЕСТВЛЕНИЯ ИЗОБРЕТЕНИЯ

Как показано схематично на фиг. 1, газотурбинный двигатель 1 с не капотированным вентилятором (“open rotor”) с продольной осью А классически содержит от входа к выходу в направлении прохождения газового потока F внутри гондолы 2 газотурбинного двигателя один или два компрессора 3 в зависимости от архитектуры простого или двухконтурного газогенератора, кольцевую камеру 4 сгорания, турбину высокого давления или две турбины 5 высокого давления с промежуточным давления в зависимости от упомянутой архитектуры и турбину 6 низкого давления, которая вращает через редуктор или коробку 7 приводов с эпициклоидными передачами и с противоположным направлением вращения два винта, входной 8 и выходной 9 по направлению потока F. Винты находятся на одной линии вдоль продольной оси А газотурбинного двигателя и образуют вентилятор. Сопло 10 выпуска газов классически образует задний корпус двигателя.

Винты расположены в параллельных радиальных плоскостях, перпендикулярных к оси А, и приводятся во вращение при помощи турбины 6 и коробки 7 приводов в противоположных направлениях вращения. Они установлены во вращающихся картерах 11,12, например, с многоугольным кольцом, описанным в патентной заявке FR 12 56 323, поданной 2 июля 2012 года заявителем, вокруг которого установлены ножки 14,15 лопастей 16,17.

Лопасти входного 8 и выходного 9 винтов являются лопастями с регулируемым углом установки. Их ориентируют вокруг радиальной поворотной оси В при помощи соответствующего механизма 20 и 20’ таким образом, чтобы они занимали оптимальное угловое положение, определяемое в зависимости от условий работы газотурбинного двигателя и от фаз полета летательного аппарата.

Нижеследующее описание касается системы 20 ориентации лопастей, связанной с входным винтом 8.

Система 20 ориентации, схематично показанная на фиг.2, обеспечивает различные вышеупомянутые функциональные фазы входного винта 8: поворот лопастей в двух направлениях с увеличивающимся, уменьшающимся или обратным шагом, а также возвращение лопастей в положение флюгирования в случае нарушения в работе.

Для этого она содержит кольцевой гидравлический домкрат 21 с осью А и с линейным перемещением, корпус 24 которого, выполненный с возможностью поступательного движения, образован цилиндром, при этом поршень домкрата остается неподвижным. Поступательное движение домкрата передается трансмиссионным механизмом 23, соединяющим корпус 24 домкрата с радиальными валами 18 ножек 14 лопастей 16 винта 8. Этот механизм содержит подшипник качения, внутреннее кольцо которого неподвижно соединено с корпусом 24, и набор рычагов, соединяющих наружное кольцо с радиальными валами, которые приводятся таким образом во вращение вокруг их соответствующей оси в результате поступательного движения корпуса домкрата.

На фиг. 3 представлен вид в перспективе снаружи домкрата 21 с его цилиндром 24. На фиг. 4 представлен вид в осевом разрезе изнутри домкрата, показанного на фиг. 3. Цилиндр 24 является подвижным и установлен с возможностью поступательного движения на трубчатой опоре 30, которая образует неподвижную опору домкрата. На фиг. 4 внутри неподвижной опоры 30 показана часть вала привода выходного ротора, а также кожух, в котором проходят вспомогательные системы для выходного ротора. Неподвижная опора 30 содержит на входе домкрата 21 обечайку 31, через которую распределяются рабочие текучие среды домкрата. Опору называют неподвижной, так как она неподвижно соединена со статорной частью газотурбинного двигателя.

Таким образом, домкрат 21 содержит цилиндр, который в этом варианте выполнения образован цилиндрической частью 241, входной крышкой 243 и выходной крышкой 245. Цилиндр 24 перемещается скольжением на трубчатой части 33 неподвижной опоры 30. С этой трубчатой частью 33 неподвижно соединена перегородка 22, которая вместе с цилиндром 24 образует две камеры: С1 и С2. Камера С1 является входной камерой со стороны обечайки 31 опоры.

На фиг. 3 видны три первых трубчатых элемента, неподвижно соединенные своим входным концом с обечайкой 31, а также четыре трубчатых элемента, которые неподвижно соединены с цилиндром и через которые получают питание камеры С1 и С2 соответственно.

Как показано на фиг. 6-8, первый трубопровод, называемый трубопроводом 25 малого шага, образован первым трубчатым элементом 251 малого шага и вторым трубчатым элементом 252 малого шага. Первый трубчатый элемент малого шага неподвижно соединен с обечайкой 31, через которую он получает питание гидравлической текучей средой, и перемещается скольжением внутри второго трубчатого элемента 252 малого шага, который неподвижно соединен с цилиндром 24 и сообщается с камерой С2 на выходе.

Показанный на фиг. 9 второй трубопровод, называемый трубопроводом 26 обратного шага, образован первым трубчатым элементом 261 обратного шага и вторым трубчатым элементом 262 обратного шага. Первый трубчатый элемент 261 обратного шага неподвижно соединен с обечайкой 31, через которую он получает питание гидравлической текучей средой, и перемещается скольжением внутри второго трубчатого элемента 262 обратного шага, который неподвижно соединен с цилиндром 24 и сообщается с камерой С2 на выходе. Он сообщается с камерой С2 через так называемый перепускной трубопровод 27; их работа будет описана ниже. Второй трубчатый элемент 262 обратного шага сообщается с трубопроводом 27 на уровне входной крышки 243 через канал 263, как показано на фиг. 5 в поперечном разрезе домкрата, показанного на фиг. 3.

Третий трубопровод, называемый трубопроводом 28 большого шага, образован первым трубчатым элементом 281 большого шага и вторым трубчатым элементом 282 большого шага. Первый трубчатый элемент 281 большого шага неподвижно соединен с обечайкой 31, через которую он получает питание гидравлической текучей средой, и перемещается скольжением внутри второго трубчатого элемента 282 большого шага, который неподвижно соединен с цилиндром 24 и сообщается с камерой С1 на входе.

Все три первых трубчатых элемента 251, 261 и 281 закреплены при помощи любого соответствующего средства в их соответствующем гнезде, выполненном в обечайке 31. Они сообщаются с источником текучей среды под давлением через органы управления, описание которых в настоящей заявке не представлено.

Три вторых трубчатых элемента 252, 262 и 282, а также перепускной трубопровод 27 неподвижно соединены с цилиндром 24 и, согласно отличительному признаку изобретения, соответственно закреплены на цилиндре 24 в двух отстоящих друг от друга точках на его образующей. В частности, две точки находятся на их концах в данном случае на уровне входных и выходных крышек 243 и 245 соответственно. Можно предусмотреть другие варианты реализации вторых трубчатых элементов; например, вторые трубчатые элементы можно по меньшей мере частично выполнить путем механической обработки в массе одного из составных элементов цилиндра.

Преимуществом предложенного решения является возможность обеспечения для каждого трубопровода эффективного направления первого трубчатого элемента, когда он перемещается скольжением внутри второго трубчатого элемента. Когда летательный аппарат совершает полет, неподвижная опора 30, а также все детали конструкции двигателя подвергаются действию напряжений, которые могут изменить осевую ориентацию одной детали по отношению к другой; например, трубчатая часть 33 опоры 30 может прогнуться относительно обечайки 31. Без этого направления относительные деформации между деталями могут заблокировать движение цилиндра относительно неподвижной опоры.

Необходимо отметить, что первые трубчатые элементы соединены с обечайкой через участок трубы S-образной формы с двойным изгибом. Это связано с разностью диаметра между цилиндром 24 и выходами распределения текучей среды, выполненными на обечайке 31. Преимуществом такого расположения является обеспечение локального поглощения разности расширения и других деформаций между первыми трубчатыми элементами 251, 261 и 281 и другими деталями.

Далее следует описание работы этого узла и способа питания двух камер в различных фазах полета летательного аппарата, на котором установлен газотурбинный двигатель, чтобы гарантировать надежную работу механизма управления шагом лопастей.

Увеличение объема выходной камеры С2 приводит к перемещению цилиндра 24 вправо относительно неподвижной перегородки 22, показанной на фигурах. Это перемещение соответствует на части хода цилиндра уменьшению шага лопастей, который при нормальной работе изменяется от большого шага к малому шагу, затем регулировке малого шага на земле, например, между значениями 65, 30 и 0°, затем на остальной части хода цилиндра - переходу в положение реверса, например, -30°, когда тягу, производимую винтов, меняют на обратную для обеспечения дополнительного торможения на земле при посадке.

Согласно другому признаку изобретения, описанное ниже решение позволяет избежать непроизвольного и случайного перехода от положительного установочного угла лопастей к положению реверса тяги.

На фиг. 6 слева показано положение упора домкрата, соответствующее крайнему положению флюгирования на 90°. Речь идет об установочном угле безопасности, предназначенном для уменьшения лобового сопротивления винта в случае отказа системы управления шагом. Когда домкрат 24 перемещается из этого положения вправо, установочный угол уменьшается и становится отрицательным, проходя через угол 0°, который является плоскостью вращения винта. В частности, на этой фигуре речь идет о продольном разрезе вдоль первого трубопровода 25 малого шага. Необходимо отметить, что первый трубчатый элемент 251 малого шага перемещается скольжением во втором трубчатом элементе 252 малого шага. На фиг. 7 показано, что домкрат переместился вправо, в данном случае речь идет о положении установочного угла на 0° и о рабочем упоре. Между фиг.6 и фиг. 7 гидравлическая текучая среда перешла из первого трубчатого элемента 251 в камеру С2. Радиальное отверстие, выполненное в выходной крышке 245, обеспечивает переход текучей среды из второго трубчатого элемента 252 в камеру С2. При этом предусмотрено средство закрывания первого трубопровода малого шага, чтобы в этой рабочей фазе это крайнее положение положительного шага не могло перейти в сторону отрицательных шагов. Действительно, необходимо избегать непредвиденного включения реверса тяги, см. фиг. 6-8.

Предпочтительно это средство закрывания трубопровода малого шага просто реализуют следующим образом, как показано на фиг. 12.

Первый трубчатый элемент 251 закрыт на своем конце 251’, противоположном обечайке 31. Он имеет вблизи нее боковые щели 251”, как показано на фиг. 12. Кроме того, второй трубчатый элемент 252 имеет две части разного диаметра, при этом первая часть 252’ имеет диаметр, превышающий диаметр первого трубчатого элемента 251. Таким образом, щели открыты, и текучая среда может переходить из первого трубчатого элемента 251 во второй трубчатый элемент 252 и, в частности, в расширенную часть 252’ этого элемента. Таким образом, в диапазоне шагов от 90° до 0° выходная камера С2 получает питание через первый трубопровод 25 малого шага. Когда шаг приходит к значению 0°, трубопровод 25 закрывается по причине перекрывания щелей 251” частью 252” меньшего диаметра второго трубчатого элемента 252. Независимо от давления, действующего в первом трубчатом элементе, оно не передается в выходную камеру С2, объем которой больше не меняется.

Прохождение этого положения соответствует переходу непосредственно к режиму обратного шага. Это происходит только при совместном действии второго трубопровода 262 обратного шага и перепускного трубопровода 27.

Трубопровод 26 обратного шага имеет такую же конструкцию, что и первая, но перевернутую от входа к выходу. Второй трубчатый элемент 262 имеет часть 262’ большого диаметра и участок 262” меньшего диаметра. Тогда как первый трубчатый элемент имеет закрытый конец и содержит при этом боковые щели, средство закрывания аналогично средству закрывания первого трубопровода, но выполнено в обратном порядке. Во время фазы регулировки шага трубопровод закрыт, пока участок 262” малого диаметра второго трубчатого элемента 262 перекрывает боковые щели первого трубчатого элемента 261. Два средства закрывания трубопроводов 25 и 26 работают согласованно таким образом, чтобы при перемещении, например, к шагу 0° закрывание одного соответствовало открыванию другого. Таким образом, когда шаг находится в положении упора на 0°, необходимо положительное действие, чтобы обеспечивать переход в обратное положение, и наоборот. Это положительное действие является результатом подачи команды обратного шага через второй трубопровод 26.

Когда привод переходит в обратное положение, гидравлическая текучая среда проходит через трубопровод 26 обратного шага, затем через перепускной трубопровод питает выходную камеру С2. Благодаря заявленному устройству, переход в обратное положение предполагает, что домкрат сначала приходит в положение на 0°, затем получает питание при специальном давлении обратного шага через второй трубопровод 26 обратного шага. Текучая среда проходит из трубопровода 26 через трубчатый элемент 261, затем через боковые щели элемента 261 в участок 262’ большего диаметра трубчатого элемента 26 и в трубопровод 27 через перепускной канал 263, см. фиг.5. На фиг. 8 видно, что домкрат переместился вправо, хотя трубопровод 25 закрыт. Питание камеры стало возможным через трубопровод 26 обратного шага, см. фиг. 8, в комбинации с перепускным трубопроводом 27, см. фиг. 9 и 10.

На фиг. 11 показан третий трубопровод, называемый трубопроводом 28 большого шага. Первый трубчатый элемент 281 трубопровода 28 перемещается скольжением внутри трубчатого элемента 282 для питания входной камеры С1. Речь идет о переходе шага от реверса тяги к флюгированию. В случае необходимости, текучую среду, поступающую из входного устройства управления, направляют внутрь элемента 281, затем между ним и вторым трубчатым элементом 282, который имеет больший диаметр.

Таким образом, изобретение позволяет реализовать систему управления шагом винта, которая является компактной, имея небольшой радиальный габарит, но вместе с тем оставляет достаточное центральное пространство для прохождения другого трубопровода. Эта система является надежной, так как ее конструкция является мало чувствительной к размерным изменениям и к осевых прогибам. Наконец, она обеспечивает надежную работу.


УСТРОЙСТВО ПИТАНИЯ ДОМКРАТА ГИДРАВЛИЧЕСКОЙ ТЕКУЧЕЙ СРЕДОЙ И МЕХАНИЗМ УПРАВЛЕНИЯ ШАГОМ ЛОПАСТЕЙ ВИНТА ГАЗОТУРБИННОГО ДВИГАТЕЛЯ, СОДЕРЖАЩИЙ ДОМКРАТ
УСТРОЙСТВО ПИТАНИЯ ДОМКРАТА ГИДРАВЛИЧЕСКОЙ ТЕКУЧЕЙ СРЕДОЙ И МЕХАНИЗМ УПРАВЛЕНИЯ ШАГОМ ЛОПАСТЕЙ ВИНТА ГАЗОТУРБИННОГО ДВИГАТЕЛЯ, СОДЕРЖАЩИЙ ДОМКРАТ
УСТРОЙСТВО ПИТАНИЯ ДОМКРАТА ГИДРАВЛИЧЕСКОЙ ТЕКУЧЕЙ СРЕДОЙ И МЕХАНИЗМ УПРАВЛЕНИЯ ШАГОМ ЛОПАСТЕЙ ВИНТА ГАЗОТУРБИННОГО ДВИГАТЕЛЯ, СОДЕРЖАЩИЙ ДОМКРАТ
УСТРОЙСТВО ПИТАНИЯ ДОМКРАТА ГИДРАВЛИЧЕСКОЙ ТЕКУЧЕЙ СРЕДОЙ И МЕХАНИЗМ УПРАВЛЕНИЯ ШАГОМ ЛОПАСТЕЙ ВИНТА ГАЗОТУРБИННОГО ДВИГАТЕЛЯ, СОДЕРЖАЩИЙ ДОМКРАТ
УСТРОЙСТВО ПИТАНИЯ ДОМКРАТА ГИДРАВЛИЧЕСКОЙ ТЕКУЧЕЙ СРЕДОЙ И МЕХАНИЗМ УПРАВЛЕНИЯ ШАГОМ ЛОПАСТЕЙ ВИНТА ГАЗОТУРБИННОГО ДВИГАТЕЛЯ, СОДЕРЖАЩИЙ ДОМКРАТ
Источник поступления информации: Роспатент

Showing 391-400 of 928 items.
20.01.2016
№216.013.a177

Волокнистая структура, образующая фланец и контрфланец

Изобретение относится к волокнистой структуре для изготовления композитной части, способу ее изготовления, к композитной части и способу ее изготовления. Волокнистая структура для изготовления композитной части изготовлена трехмерным сплетением и имеет главный участок и край, смежный с главным...
Тип: Изобретение
Номер охранного документа: 0002572977
Дата охранного документа: 20.01.2016
20.01.2016
№216.013.a1e6

Межлопаточная герметизация для колеса турбины или компрессора турбомашины

Колесо ступени турбомашины содержит средства межлопаточной герметизации, включающие вкладыши, введенные в продольные полости боковых кромок платформ лопаток и упирающиеся в рабочем режиме в боковые кромки платформ соседних лопаток. Каждый вкладыш имеет удлиненную цилиндрическую форму и содержит...
Тип: Изобретение
Номер охранного документа: 0002573088
Дата охранного документа: 20.01.2016
10.03.2016
№216.014.bf89

Комбинированный турбопрямоточный реактивный двигатель

Комбинированный турбопрямоточный реактивный двигатель содержит наружный корпус, центральное тело, воздуховод, по меньшей мере, первую ступень воздушного компрессора, турбонасос и дозвуковую турбину. Центральное тело соединено с наружным корпусом конструктивными связями и образует с ним входной...
Тип: Изобретение
Номер охранного документа: 0002576403
Дата охранного документа: 10.03.2016
27.03.2016
№216.014.c634

Многослойная панель акустической обработки, гондола турбореактивного двигателя и турбореактивный двигатель

Многослойная панель акустической обработки содержит первую сердцевину с ячеистой структурой, размещенную между перфорированным покрытием и промежуточным покрытием и вторую сердцевину с ячеистой структурой, размещенную между промежуточным покрытием и непрерывным покрытием. Перфорированное...
Тип: Изобретение
Номер охранного документа: 0002578768
Дата охранного документа: 27.03.2016
27.03.2016
№216.014.c644

Способ изготовления детали

Изобретение относится к способу изготовления детали, в частности армирующего ребра крыльчатки турбомашины. Способ включает получение по меньшей мере одной волокнистой структуры путем трехмерного переплетения нитей и воздействие на волокнистую структуру горячим изостатическим прессованием с...
Тип: Изобретение
Номер охранного документа: 0002578886
Дата охранного документа: 27.03.2016
27.03.2016
№216.014.c7ac

Система впрыска топлива для турбореактивного двигателя и способ сборки такой системы впрыска

Изобретение относится к энергетике. Система впрыска топлива для турбореактивного двигателя, включающая в себя неподвижную часть и скользящую траверсу, дополнительно содержащую центрирующий конус, предназначенный для центрирования инжектора топлива относительно системы впрыска, причем...
Тип: Изобретение
Номер охранного документа: 0002578775
Дата охранного документа: 27.03.2016
27.03.2016
№216.014.c7b4

Способ управления зазором в вершинах лопаток ротора турбины

Способ управления зазором между вершинами лопаток ротора турбины газотурбинного авиационного двигателя, с одной стороны, и кольцеобразным бандажом турбины корпуса, окружающим лопатки, с другой стороны, причем способ содержит этап, на котором управляют скоростью потока и/или температурой...
Тип: Изобретение
Номер охранного документа: 0002578786
Дата охранного документа: 27.03.2016
27.03.2016
№216.014.c85c

Направляющее и уплотняющее устройство, шестеренчатая коробка передач турбомашины и турбомашина

Направляющее и уплотняющее устройство, предназначенное для установки в отверстии корпуса, сквозь которое проходит вал в турбомашине, содержит узел из углеволокна. Узел из углеволокна расположен вокруг вала в отверстии корпуса и содержит кольцо, удерживаемое валом, и кольцевую поверхность трения...
Тип: Изобретение
Номер охранного документа: 0002578264
Дата охранного документа: 27.03.2016
27.03.2016
№216.014.c880

Волокнистая структура для детали, изготовленной из композитного материала, содержащая один или более дугообразных участков

Упрочняющая волокнистая структура (100) для детали из композитного материала является тканой как единое целое посредством многослойного переплетения между множеством слоев уточных нитей (102) и множеством слоев основных нитей (101), расположенных смежно между двумя поверхностями указанной...
Тип: Изобретение
Номер охранного документа: 0002578996
Дата охранного документа: 27.03.2016
20.03.2016
№216.014.c9b6

Способ и устройство обнаружения вращающегося срыва потока в компрессоре газотурбинного двигателя и газотурбинный двигатель

Согласно изобретению, способ обнаружения вращающегося срыва потока в компрессоре газотурбинного двигателя содержит следующие этапы: обнаруживают (Е40) аномальное ускорение газотурбинного двигателя или рабочую кривую компрессора, характерную для нарушения в работе газотурбинного двигателя;...
Тип: Изобретение
Номер охранного документа: 0002577921
Дата охранного документа: 20.03.2016
Showing 1-4 of 4 items.
19.01.2018
№218.016.04d8

Подшипник со средством смазки и система для изменения шага лопастей воздушного винта турбовинтового двигателя летательного аппарата, оборудованного указанным подшипником

Изобретение относится к области авиации, в частности к конструкциям систем изменения шага лопастей турбовинтового двигателя. Подшипник, такой как подшипник качения, смонтирован на подвижной в поступательном перемещении опоре (31) и содержит средство смазки (29). Предпочтительно средство смазки...
Тип: Изобретение
Номер охранного документа: 0002630823
Дата охранного документа: 13.09.2017
29.05.2018
№218.016.53c2

Редуктор с эпициклоидной передачей с трубопроводами для текучей среды и турбовинтовой двигатель с таким редуктором для летательного аппарата

Изобретение относится к смазке элементов эпициклического редуктора. Редуктор (10) с эпициклоидной передачей содержит входной планетарный вал (35), сателлиты (37) водила (38) и две поперечные стороны (41, 43). Редуктор содержит один трубопровод (54) для текучей среды, выполненный с возможностью...
Тип: Изобретение
Номер охранного документа: 0002653671
Дата охранного документа: 11.05.2018
29.05.2018
№218.016.5811

Турбомашина, содержащая средства измерения скорости и крутящего момента вала турбомашины, и способ контроля упомянутого вала

Турбомашина для летательного аппарата, содержащая по меньшей мере один осевой вал (2), установленный вращающимся в корпусе турбомашины; причем турбомашина содержит эталонную кольцевую деталь (10), содержащую короткие (11) и длинные (12) продольные эталонные зубья, первые средства обнаружения...
Тип: Изобретение
Номер охранного документа: 0002654796
Дата охранного документа: 22.05.2018
27.05.2019
№219.017.61ec

Газотурбинная установка и способ ее демонтажа

Газотурбинная установка содержит модульный узел, вал вентилятора и подшипники вала вентилятора. Модульный узел содержит кольцевую опору подшипников, включающую средства соединения, по меньшей мере, с первым подшипником качения, установленным вокруг вала вентилятора. Кольцевая опора содержит...
Тип: Изобретение
Номер охранного документа: 0002689258
Дата охранного документа: 24.05.2019
+ добавить свой РИД