×
13.07.2018
218.016.70c9

Способ электрохимического получения порошков боридов металлов (варианты)

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к способу получения нано- или микроразмерных порошков боридов металлов путем высокотемпературного электрохимического синтеза в ионном расплаве без электролиза. Получают ионный расплав путем загрузки в тигель герметичного электролизера электролита, содержащего соль металла и галогениды или оксигалогениды щелочных или щелочноземельных металлов, и расходуемых компонентов в виде порошков металла и бора микронных размеров, вакуумной откачки электролизера с одновременным нагревом до рабочих температур синтеза борида металла и заполнения пространства электролизера рабочим газом в виде аргона или воздуха. Осуществляют поддержание анионно-катионного состава ионного расплава с обеспечением более отрицательного, более чем на 0,5 В, электрохимического потенциала металла, чем потенциал бора, для осуществления в упомянутом ионном расплаве электрохимических транспортных реакций, при которых обеспечивается растворение и самопроизвольный перенос металла на бор, синтез борида металла с его кристаллизацией и формирование наноразмерного порошка борида металла. В других вариантах осуществления изобретения в результате электрохимических транспортных реакций обеспечивается растворение бора и его самопроизвольный перенос на металл, синтез борида металла путем диффузии бора в кристаллическую структуру металла и формирование порошка борида металла микронного размера или обеспечивается растворение металла и бора и их самопроизвольный встречный перенос, синтез борида металла путем кристаллизации и диффузии бора в кристаллическую структуру металла и формирование порошка борида металла нано- или микроразмера. Обеспечивается получение нано- и микроразмерных высокочистых порошков боридов металлов. 3 н.п. ф-лы, 5 пр.
Реферат Свернуть Развернуть

Изобретение относится к способу получения порошков боридов металлов путем высокотемпературного электрохимического синтеза без электролиза.

Предшествующий уровень развития промышленных технологий по производству порошков боридов металлов

Порошки боридов металлов обладают высокими температурами плавления, высокой твердостью, высокой механической прочностью, коррозионной стойкостью к различным средам и могут найти применение в производстве твердых износостойких и жаропрочных сплавов, обладающих высокими физико-механическими и эксплуатационными свойствами, в металлургической и инструментальной промышленности, а также в катализе. Потребительские свойства порошков боридов зависят от стехиометрического состава, их размера, дефектности структуры и загрязнения примесями: чем меньше размер, отсутствие дефектов и примесей, тем выше потребительские свойства получаемых порошков.

Большинство металлов при высоких температурах взаимодействуют с бором. На этом явлении основаны методы синтеза боридов в промышленном производстве. Синтез боридов осуществляют спеканием или сплавлением порошков металлов или их оксидов с порошками бора или его оксидов и углерода при высоких температурах >1500°С в среде инертного газа или вакуума (Самсонов Г.В., Серебрякова Т.И., Неронов В.А. «Бориды». М., Атомиздат, 1975, с. 131-132). Таким способом получают относительно чистые порошки боридов Ti, Zr, Nb, Та, Mo, W, Cr, V и других. Размер синтезируемых частиц боридов от единиц до сотен микрон. Практически значимый выход наноразмерных порошков отсутствует.

Наиболее близким аналогом предлагаемых изобретений является способ электрохимического получения порошка борида металла в ионном расплаве (Самсонов Г.В., Серебрякова Т.И., Неронов В.А. «Бориды». М., Атомиздат, 1975, с. 131-132 - прототип).

Другие способы получения боридов оказались неконкурентными и, как правило, используются в лабораторных изысканиях.

Из анализа многочисленных работ вытекает, что электрохимический синтез боридов протекает путем доставки В на поверхность металла и его последующей диффузии в металл с образованием различных фаз. Таким образом, размерность синтезируемых частиц задается размерностью исходных металлических порошков или порошков их оксидов. Практика показала, что промышленный синтез наноразмерных порошков боридов неосуществим при переносе В на металл.

Встает вопрос, возможно ли создать такие условия синтеза, при которых происходил бы перенос металла в атомарном виде на В.

В этом случае следует ожидать, что синтез будет протекать посредством процессов кристаллизации, а не диффузии, что значительно упрощает задачу производства наноразмерных порошков. Для осуществления процесса как транспортировки металла на бор, так и В на металл, было использовано явление направленного самопроизвольного переноса металлов их ионами через ионный расплав без электролиза. Данное явление давно используется в промышленности для нанесения защитных покрытий из коррозионно-стойких металлов, боридов на металлические изделия (Н.Г. Илющенко, А.И. Анфиногенов, Н.И. Шуров. «Взаимодействие металлов в ионных расплавах». М.: Наука, 1991. - 176 с.).

Техническим результатом настоящего изобретения является разработка электрохимического способа получения нано- и микроразмерных высокочистых порошков боридов металлов.

Для достижения указанного технического результата заявлен способ электрохимического получения порошка борида металла в ионном расплаве (варианты), в котором использовано явление направленного самопроизвольного переноса металла или бора их ионами через ионный расплав без электролиза (метод электрохимических транспортных реакций) при температурах выше температуры плавления используемого электролита в атмосфере воздуха или нейтрального газа, при этом

- в способе по п. 1 ионный расплав получают путем загрузки в тигель герметичного электролизера электролита, содержащего соль металла и галогениды или оксигалогениды щелочных или щелочноземельных металлов, и расходуемых компонентов в виде порошков металла и бора микронных размеров, вакуумной откачки электролизера с одновременным нагревом до рабочих температур синтеза борида металла и заполнения пространства электролизера рабочим газом в виде аргона или воздуха, осуществляют поддержание анионно-катионного состава ионного расплава с обеспечением более отрицательного (более чем на 0,5 В) электрохимического потенциала металла, чем потенциал бора, для осуществления в упомянутом ионном расплаве электрохимических транспортных реакций, при которых обеспечивается растворение и самопроизвольный перенос металла на бор, синтез борида металла с его кристаллизацией и формирование наноразмерного порошка борида металла;

- в способе по п. 2 ионный расплав получают путем загрузки в тигель герметичного электролизера электролита, содержащего соль бора и галогениды или оксигалогениды щелочных или щелочноземельных металлов, и расходуемых компонентов в виде порошков металла и бора микронных размеров, вакуумной откачки электролизера с одновременным нагревом до рабочих температур синтеза борида металла и заполнения пространства электролизера рабочим газом в виде аргона или воздуха, осуществляют поддержания анионно-катионного состава ионного расплава с обеспечением более отрицательного (более чем на 0,5 В) электрохимического потенциала бора, чем потенциал металла, для осуществления в упомянутом ионном расплаве электрохимических транспортных реакций, при которых обеспечивается растворение бора и его самопроизвольный перенос на металл, синтез борида металла путем диффузии бора в кристаллическую структуру металла и формирование порошка борида металла микронного размера;

- в способе по п. 3 ионный расплав получают путем загрузки в тигель герметичного электролизера электролита, содержащего соль металла или соль бора и галогениды или оксигалогениды щелочных или щелочноземельных металлов, и расходуемых компонентов в виде порошков металла и бора микронных размеров, вакуумной откачки электролизера с одновременным нагревом до рабочих температур синтеза борида металла и заполнения пространства электролизера рабочим газом в виде аргона или воздуха, осуществляют поддержание анионно-катионного состава ионного расплава с обеспечением различия электрохимических потенциалов металла для получения порошка борида металла и бора на величину менее 0,5 В для осуществления в упомянутом ионном расплаве электрохимических транспортных реакций, при которых обеспечивается растворение металла и бора и их самопроизвольный встречный перенос, синтез борида металла путем кристаллизации и диффузии бора в кристаллическую структуру металла и формирование порошка борида металла нано- или микроразмера.

Суть используемого явления заключается в следующем. Если два разных металла погрузить в ионный расплав, в котором имеются ионы более электроотрицательного металла, то последний, растворяясь, будет переноситься через ионный расплав на более электроположительный металл и посредством реакций диспропорционирования образовывать с ним поверхностный диффузионный сплав. Процесс состоит из следующих стадий:

1. Коррозия электроотрицательного металла в собственной разбавленной соли с образованием ионов разных степеней окисления;

2. Транспорт ионов низшей валентности через ионный расплав от отрицательного металла к положительному путем конвекции и диффузии;

3. Восстановительные реакции диспропорционирования или обмена на поверхности положительного металла с образованием сплава.

Перенос металла на бор возможен лишь в таких ионных расплавах, в которых металл в электрохимическом ряду стоит левее В. Если разность электрохимических потенциалов<0,5 В, возможен взаимный перенос элементов. Если металл в электрохимическом ряду стоит правее В, возможен лишь его перенос на металл или взаимный перенос при условии, если разность электрохимических потенциалов <0,5 В. Например, условный стандартный потенциал железа в чисто хлоридных расплавах при 800°С равен - 1,3 В, а бора - 1,0 В, а во фторидном расплаве потенциал бора становится отрицательнее потенциала железа. Аналогичный результат достигается при использовании галогенидно-оксидных расплавов. Таким образом, изменяя анионно-катионный состав электролита, можно изменять условный стандартный потенциал металла и бора.

Таким образом, электрохимический синтез порошков боридов ведут в ионном расплаве, содержащем соль необходимого металла или бора и галогениды или оксигалогениды щелочных или щелочноземельных металлов, а в качестве расходуемых реагентов в расплав вводят порошки металла и бора микронных размеров, при этом для получения наноразмерных порошков электрохимический потенциал металла (окислительно-восстановительный потенциал ионного расплава) путем подбора анионно-катионного состава электролита задают более отрицательным, чем потенциал бора, и наоборот, для получения порошков микронных размеров потенциал металла формируется более электроположительным. Процесс ведут в герметичном объеме в изотермических условиях при температурах выше точки плавления электролита. Состав газовой атмосферы выбирают с учетом того, что газы могут сдвигать окислительно-восстановительный потенциал электролита в ту или иную сторону. Синтез порошков в галогенидных ионных расплавах, как правило, ведется в атмосфере аргона или иного газа, а в оксидных или оксидно-галогенидных ионных расплавах на воздухе.

Рассмотренный способ получения порошков реализуется следующим образом. Компоненты электролита и серийно выпускаемые порошки металла и бора микронных размеров загружаются в тигель герметичного электролизера и производится его вакуумная откачка с одновременным нагревом до рабочих температур синтеза борида металла. Затем пространство электролизера заполняется рабочим газом в виде аргона или воздуха и включается мешалка. Время синтеза для каждого соединения подбирается опытным путем. По окончании процесса застывший электролит с порошком извлекается из тигля, измельчается в щековой дробилке, проходит гидрометаллургическую обработку с последующей сушкой в сушильном шкафу.

Пример 1. Получение порошков ZrB2

В электролите K2ZrF6 (8%)+NaCl (92%) Zr отрицательнее В >0,5 В. Тигель и мешалка выполнены из нержавеющей стали 12Х18Н10Т. Процесс синтеза выполнялся при Т~870°С в атмосфере Ar в течение 4 часов. Расходуемые реагенты - порошок циркония марки ПЦрК-1 с размером частиц >1 мкм и бор аморфный марки А ТУ 2112-001-49534204-2003 использовались в количествах, которые необходимы для получения стехиометрического ZrB2. Был получен порошок черного цвета. Измерения удельной поверхности и рентгенофазовый анализ показали, что порошок имеет Sуд~30 м2/г и является соединением ZrB2 с размерностью частиц ~30 нм.

Пример 2. Получение порошков TiB2

В электролите K2TiF6 (8%)+NaCl (92%) Ti отрицательнее В >0,5 В. Тигель и мешалка выполнены из нержавеющей стали 12Х18Н10Т. Процесс синтеза выполнялся при Т~870°С в атмосфере Ar в течение 4 часов. Расходуемые реагенты - порошок титана (получен электрорафинированием из прутка титана марки ВТ1,0) с размером частиц 40-63 мкм и бор аморфный марки А ТУ 2112-001-49534204-2003 использовались в количествах, которые необходимы для получения стехиометрического TiB2. Был получен порошок черного цвета. Измерения удельной поверхности и рентгенофазовый анализ показали, что порошок имеет Sуд.~62 м2/г и является соединением TiB2 с размерностью частиц ~20 нм.

Пример 3. Получение порошков FeB.

В электролите FeCl2 (8%)+NaCl (92%) Fe отрицательнее В <0,5 В. Тигель и мешалка выполнены из нержавеющей стали 12Х18Н10Т. Процесс синтеза выполнялся при Т~850°С в атмосфере Ar в течение 4 часов. Расходуемые реагенты - порошок карбонильного железа с Sуд.~0,08 м2/г и бор аморфный марки А ТУ 2112-001-49534204-2003 использовались в количествах, которые необходимы для получения стехиометрического FeB2. Был получен порошок черного цвета. Измерения удельной поверхности и рентгенофазовый анализ показали, что порошок имеет Sуд.~6 м2/г и состоит из фаз FeB - 18%, Fe2B - 82% с размерностью частиц ~60 нм.

Пример 4. Получение порошков FeB

В электролите Na2B4O7 (8%)+NaCl (92%) В отрицательнее Fe <0,5 В. Тигель и мешалка выполнены из нержавеющей стали 12Х18Н10Т. Процесс синтеза выполнялся при Т~850°С в воздушной атмосфере в течение 4 часов. Расходуемые реагенты - порошок карбонильного железа с Sуд.~0,08 м2/г и бор аморфный марки А ТУ 2112-001-49534204-2003 использовались в количествах, которые необходимы для получения стехиометрического FeB2. Был получен порошок темно-серого цвета. Измерения удельной поверхности и рентгенофазовый анализ показали, что порошок имеет Sуд.~3 м2/г и состоит из фаз FeB - 42%, Fe2B - 58% с размерностью частиц ~150 нм.

Пример 5. Получение порошков WB

В электролите KCl (75%)+K[BF4] (25%) В отрицательнее W >0,5 В. Тигель и мешалка изготовлены из молибдена. Процесс синтеза выполнялся при Т~900°С в атмосфере аргона в течение 6 часов. Расходуемые реагенты - порошок вольфрама ТУ 48-19-417-86 с марка W 4,0 с размером частиц по Фишеру 3,70-4,50 мкм и бор аморфный марки А ТУ 2112-001-49534204-2003 использовались в количествах, которые необходимы для получения стехиометрического WB. Был получен порошок серого цвета. Измерения удельной поверхности и рентгенофазовый анализ показали, что порошок имеет Sуд.~0,2 м2/г и состоит из фаз WB - 91%, W2B5 - 4%, W - 5% с размером частиц ~2,0 мкм.

Источник поступления информации: Роспатент

Showing 1-10 of 67 items.
20.06.2013
№216.012.4c9c

Способ получения титаноалюминиевого сплава из оксидного титансодержащего материала

Изобретение относится к области металлургии и может быть использовано при переработке оксидного титансодержащего материала на титано-алюминиевый сплав. Заявлен способ получения титано-алюминиевого сплава из оксидного титансодержащего материала, включающий подготовку шихты, содержащей оксидный...
Тип: Изобретение
Номер охранного документа: 0002485194
Дата охранного документа: 20.06.2013
10.11.2013
№216.012.7d52

Способ получения комплексного хлорида скандия и щелочного металла

Изобретение относится к неорганической химии и касается способа получения комплексного хлорида скандия и щелочного металла. Металлический скандий смешивают с дихлоридом свинца и солью щелочного металла. Полученную шихту помещают в тигель с инертной атмосферой и нагревают до температуры реакции...
Тип: Изобретение
Номер охранного документа: 0002497755
Дата охранного документа: 10.11.2013
20.12.2013
№216.012.8c6b

Способ получения слоистого композита системы сталь-алюминий

Изобретение относится к металлургии, в частности к получению слоистых биметаллических композитов. Проводят подготовку стальной полосы, подачу в очаг деформации между валком и полосой сухого алюминиевого порошка, совместную прокатку полосы и упомянутого алюминиевого порошка с обжатием 30-50% с...
Тип: Изобретение
Номер охранного документа: 0002501630
Дата охранного документа: 20.12.2013
20.12.2013
№216.012.8d58

Способ переработки сульфидных медно-никелевых материалов, содержащих металлы платиновой группы

Изобретение относится к области цветной металлургии и может быть использовано при переработке сульфидных медно-никелевых материалов, содержащих металлы платиновой группы, в частности при пирометаллургической переработке никель-пирротиновых концентратов, содержащих металлы платиновой группы....
Тип: Изобретение
Номер охранного документа: 0002501867
Дата охранного документа: 20.12.2013
27.12.2013
№216.012.916d

Способ утилизации хлорорганических отходов

Изобретение относится к области черной металлургии, в частности к переработке промышленных хлорсодержащих отходов на основе полихлорированных бифенилов, и может быть использовано для утилизации этих отходов в печи шахтного типа. Способ утилизации хлорорганических отходов включает их подачу...
Тип: Изобретение
Номер охранного документа: 0002502922
Дата охранного документа: 27.12.2013
20.02.2014
№216.012.a268

Способ получения лигатуры алюминий-скандий

Изобретение относится к области металлургии цветных металлов, в частности к получению сплавов алюминия с редкоземельными металлами. Способ получения лигатуры алюминий-скандий включает расплавление алюминия, алюминотермическое восстановление скандия из исходной шихты, содержащей фторид скандия,...
Тип: Изобретение
Номер охранного документа: 0002507291
Дата охранного документа: 20.02.2014
10.06.2014
№216.012.cc2e

Способ получения лигатуры алюминий-титан-цирконий

Изобретение относится к цветной металлургии, в частности к способам получения лигатур на основе алюминия, и может быть использовано при получении лигатуры алюминий-титан-цирконий, применяемой для модифицирования алюминиевых сплавов. Способ получения лигатуры алюминий-титан-цирконий включает...
Тип: Изобретение
Номер охранного документа: 0002518041
Дата охранного документа: 10.06.2014
10.06.2014
№216.012.cc2f

Способ переработки титановых шлаков

Изобретение относится к способу переработки титановых шлаков с получением концентрата диоксида титана, который может быть использован в качестве компонента обмазки сварочных электродов. Способ включает смешивание исходного титансодержащего шлака с кальцинированной содой, спекание шихты и...
Тип: Изобретение
Номер охранного документа: 0002518042
Дата охранного документа: 10.06.2014
20.07.2014
№216.012.e1a4

Композитный электродный материал для электрохимических устройств

Изобретение относится к области катализа, а именно каталитическим активным пористым композитным материалам, которые могут быть использованы в качестве несущих электродов электрохимических устройств для получения водорода и/или кислорода либо высоко- и среднетемпературных твердооксидных...
Тип: Изобретение
Номер охранного документа: 0002523550
Дата охранного документа: 20.07.2014
10.08.2014
№216.012.e8d1

Способ переработки оксидных железосодержащих материалов

Способ переработки оксидных железосодержащих материалов относится к горной, металлургической и строительной промышленности и может быть использован при переработке техногенных отвалов, например, шлаков и шламов черной и цветной металлургии с получением железосодержащего концентрата и...
Тип: Изобретение
Номер охранного документа: 0002525394
Дата охранного документа: 10.08.2014
Showing 1-10 of 26 items.
20.02.2013
№216.012.272d

Способ извлечения триоксида молибдена из огарков

Изобретение относится к металлургии редких металлов, в частности, к извлечению триоксида молибдена из огарков, полученных путем окислительного обжига молибденитовых концентратов и промпродуктов. Способ включает возгонку паров триоксида молибдена в вакууме при остаточном давлении 1-15 мм рт.ст....
Тип: Изобретение
Номер охранного документа: 0002475549
Дата охранного документа: 20.02.2013
10.08.2013
№216.012.5d41

Способ металлизации магнийсодержащих карбонатных железорудных материалов

Изобретение относится к черной металлургии, к процессам прямого получения железа во вращающихся печах. В способе металлизации магнийсодержащих карбонатных железорудных материалов, включающем окислительный обжиг в шахтной печи, восстановление совместно с восстановителем и десульфуратором,...
Тип: Изобретение
Номер охранного документа: 0002489494
Дата охранного документа: 10.08.2013
27.12.2013
№216.012.916d

Способ утилизации хлорорганических отходов

Изобретение относится к области черной металлургии, в частности к переработке промышленных хлорсодержащих отходов на основе полихлорированных бифенилов, и может быть использовано для утилизации этих отходов в печи шахтного типа. Способ утилизации хлорорганических отходов включает их подачу...
Тип: Изобретение
Номер охранного документа: 0002502922
Дата охранного документа: 27.12.2013
20.02.2014
№216.012.a25d

Способ переработки цинксодержащих металлургических отходов

Изобретение относится к металлургии цветных металлов и может быть использовано при переработке цинксодержащих металлургических отходов вельцеванием. Способ переработки цинксодержащих металлургических отходов включает смешение отходов с коксовой мелочью, окомкование шихты и последующее...
Тип: Изобретение
Номер охранного документа: 0002507280
Дата охранного документа: 20.02.2014
20.03.2014
№216.012.ac44

Шихта для вельцевания цинксвинецоловосодержащих материалов

Изобретение относится к металлургии цветных металлов и может быть использовано для переработки цинксвинецоловосодержащих материалов, например, промпродуктов медной промышленности - цинксодержащих пылей медного производства. Шихта для вельцевания цинксвинецоловосодержащих материалов содержит...
Тип: Изобретение
Номер охранного документа: 0002509815
Дата охранного документа: 20.03.2014
20.05.2014
№216.012.c500

Способ вельцевания окисленных цинксодержащих материалов

Изобретение относится к металлургии цветных металлов. Окисленные цинксодержащие материалы с коксиком в качестве твердого углеродистого восстановителя подают во вращающуюся трубчатую печь и подвергают вельцеванию с подачей дутья в виде паровоздушной смеси в зону температур 1050-1150°С при...
Тип: Изобретение
Номер охранного документа: 0002516191
Дата охранного документа: 20.05.2014
10.08.2014
№216.012.e8d1

Способ переработки оксидных железосодержащих материалов

Способ переработки оксидных железосодержащих материалов относится к горной, металлургической и строительной промышленности и может быть использован при переработке техногенных отвалов, например, шлаков и шламов черной и цветной металлургии с получением железосодержащего концентрата и...
Тип: Изобретение
Номер охранного документа: 0002525394
Дата охранного документа: 10.08.2014
10.11.2014
№216.013.0474

Смесь для выплавки стали в электродуговой печи с получением сырьевого материала для цинковой промышленности

Изобретение относится к электросталеплавильному производству, в частности к составу смеси для выплавки стали в электродуговой печи. Смесь содержит, мас.%: пыль системы газоочистки электродуговой печи 60-90 и коксовую мелочь 10-40. Изобретение позволяет получить сырьевой материал для цинковой...
Тип: Изобретение
Номер охранного документа: 0002532538
Дата охранного документа: 10.11.2014
20.08.2016
№216.015.4aa1

Способ дефосфорации марганцевых руд и концентратов

Изобретение относится к дефосфорации расплавов марганцевых руд и концентратов. Селективное восстановление фосфора из расплава ведут газообразным монооксидом углерода (СО), который продувают через расплав. Может быть использован газообразный монооксид углерода, полученный в газогенераторе и...
Тип: Изобретение
Номер охранного документа: 0002594997
Дата охранного документа: 20.08.2016
25.08.2017
№217.015.b394

Способ дефосфорации железных руд и концентратов

Изобретение относится к черной металлургии и может быть использовано в процессах получения чугуна из окисленного железосодержащего сырья. В способе осуществляют расплавление в печи железорудного концентрата и дефосфорацию оксидного железосодержащего расплава. При этом доводят температуру...
Тип: Изобретение
Номер охранного документа: 0002613833
Дата охранного документа: 21.03.2017
+ добавить свой РИД