×
12.07.2018
218.016.705d

Результат интеллектуальной деятельности: Поршневая гибридная энергетическая машина со ступенчатым уплотнением

Вид РИД

Изобретение

Аннотация: Изобретение относится к области энергетики, гидравлических и пневматических устройств, в частности для сжатия и перемещения газов и жидкостей. Машина содержит цилиндр 1 и размещенный в нем с радиальным зазором δ в верхней части дифференциальный поршень 2 со штоком 3 с образованием верхней компрессорной 4 и нижней насосной 5 полостей. Полость 4 имеет мертвый объем V и соединена с источником и потребителем сжатого газа соответственно через всасывающие 6 и нагнетательные 7 газовые клапаны. Полость 5 - с источником и потребителем жидкости через всасывающие 8 и нагнетательные 9 жидкостные клапаны. В зоне полости 5 имеется ступенчатое расширение цилиндра 1 в виде выточки 10 с образованием радиального зазора δ большей величины, чем радиальный зазор δ. При работе машины выполняется соотношение V=V-V, где V - мертвый объем полости 4, V - объем жидкости, перетекшей из полости 5 в полость 4 в процессе сжатия и нагнетания жидкости; V - объем жидкости, перетекшей из полости 5 в полость 4 в процессе сжатия и нагнетания газа. Над поршнем 2 всегда присутствует слой жидкости, причем толщина этого слоя в конце процесса сжатия газа равна линейному мертвому объему L, что дает возможность получать высокое давление в одной ступени при полном отсутствии утечек. Постоянная циркуляция жидкости в зазоре между поршнем 2 и цилиндром 1 снижает их температуру. Позволяет использовать большие зазоры между поршнем 2 и цилиндром 1, т.е. исключить возможность заклинивания поршня 2 при пуске машины, организовать хорошее охлаждение газа и повысить экономичность машины. 5 ил.

Изобретение относится к области энергетики, гидравлических и пневматических устройств и систем и может быть использовано при создании поршневых высокоэффективных машин для сжатия и перемещения газов и жидкостей, особенно в тех случаях, когда давление нагнетания жидкости относительно невелико (4-6 бар), а давление газа его значительно превосходит (например, 10-12 бар и более).

Известна поршневая гибридная энергетическая машина, содержащая цилиндр и размещенный в нем поршень с образованием компрессорной и насосной полости (см., например, патент РФ на ПМ №125635. Поршневой насос-компрессор, МПК F04B 19/06, заявка №2012140810/06 от 24.09.2012, опубл. 10.03.2013, Бюл. №7).

Известна поршневая гибридная энергетическая машина, содержащая цилиндр и размещенный в нем с радиальным зазором дифференциальный поршень с образованием компрессорной и насосной полости, причем компрессорная полость соединена с источником и потребителем сжатого газа через всасывающие и нагнетательные газовые клапаны, а жидкостная полость - с источником и потребителем жидкости через всасывающие и нагнетательные жидкостные клапаны (см. патент РФ на ПМ№118371 МПК F04B 19/06, заявка №2012107932/06 от 01.03.2012, опубл. 20.07. 2012, Бюл. №20).

Недостатком известных конструкций является их низкая экономичность при сжатии газов до высокого давления газа в одной ступени в связи с большими утечками, и невозможность обеспечения приемлемой экономичности при работе на сравнительно больших радиальных зазорах в цилиндропоршневой группе (порядка 30-50 мкм), что затрудняет ее изготовление.

При использовании же малых (порядка 10-15 мкм) радиальных зазоров из-за неравномерности прогрева по длине поршня и цилиндра в процессе пуска, работа машины находится под постоянной угрозой заклинивания поршня в цилиндре. Все это вместе взятое снижает экономичность работы и надежность машины в период пуска.

Задачей изобретения является повышение экономичности поршневой гибридной энергетической машины и обеспечение ее надежного бесконтактного пуска.

Указанная цель достигается тем, что в поршневой гибридной энергетической машине, содержащей цилиндр и размещенный в нем с радиальным зазором дифференциальный поршень с образованием верхней компрессорной и нижней насосной полости, причем компрессорная полость соединена с источником и потребителем сжатого газа через всасывающие и нагнетательные газовые клапаны, а жидкостная полость - с источником и потребителем жидкости через всасывающие и нагнетательные жидкостные клапаны, согласно изобретению, цилиндр в зоне насосной полости в нижней части цилиндра имеет ступенчатое расширение в виде выточки с образованием между нижней цилиндрической поверхностью поршня и поверхностью цилиндра радиального зазора большей величины, чем радиальный зазор между поршнем и цилиндром в зоне верхней компрессорной полости, и при этом соблюдаются следующие соотношения:

VM=V1-V2,

где VM - мертвый объем компрессорной полости, , где LM - линейный мертвый объем компрессорной полости, dP - диаметр поршня;

- V1 - объем жидкости, перетекшей из жидкостной полости в компрессорную в процессе сжатия и нагнетания жидкости;

- V2 - объем жидкости, перетекшей из компрессорной полости в жидкостную в процессе сжатия и нагнетания газа,

и при этом

где - средняя протяженность круговой щели с радиальным зазором δ1, pWG - среднее давление жидкости в зоне ступенчатого расширения цилиндра на ходе сжатия жидкости, pGB - давление всасывания газа, pG - среднее индикаторное давление газа в процессе его сжатия и нагнетания, pGW - среднее давление жидкости в зоне ступенчатого расширения цилиндра на ходе сжатия и нагнетания газа, μ - динамическая вязкость жидкости, ν - средняя скорость поршня, Т - время хода поршня из нижней мертвой точки (ВМТ) в верхнюю мертвую точку (НМТ) и наоборот.

Сущность изобретения поясняется чертежами.

На фиг. 1 схематично показано продольное сечение машины в некоторый промежуточный момент времени.

На фиг. 2 показано сечение машины в процессе хода всасывания газа и сжатия-нагнетания жидкости.

На фиг. 3 показано сечение машины в момент окончания процессов всасывания газа и нагнетания жидкости.

На фиг. 4 показано сечение машины в момент нагнетания сжатого газа и всасывания жидкости.

На фиг. 5 показано сечение машины в момент окончания процессов нагнетания газа и нагнетания жидкости.

Поршневая гибридная энергетическая машина (фиг. 1) содержит цилиндр 1 и размещенный в нем с радиальным зазором δ1 в верхней части дифференциальный поршень 2 со штоком 3 с образованием верхней компрессорной 4 и нижней насосной 5 полости.

Компрессорная полость 4 имеет мертвый объем VM и соединена с источником и потребителем сжатого газа соответственно через всасывающие 6 и нагнетательные 7 газовые клапаны, а жидкостная полость 5 - с источником и потребителем жидкости соответственно через всасывающие 8 и нагнетательные 9 жидкостные клапаны.

В зоне насосной полости 5 в нижней части цилиндра 1 имеется ступенчатое расширение в виде выточки 10 с образованием между нижней цилиндрической поверхностью поршня 2 и поверхностью цилиндра 1 радиального зазора δ2 большей величины, чем радиальный зазор δ1 между поршнем 2 и цилиндром 1 в зоне верхней компрессорной полости 4.

Машина содержит картер 11 (на чертеже показана только его верхняя часть) и контактное уплотнение 12, препятствующее утечкам жидкости из полости 5 в картер.

Остальные обозначения.

dP - диаметр поршня 2.

ВМТ и НМТ - положение днища поршня 2 соответственно в верхней и нижней мертвой точке.

LM - величина линейного мертвого объема.

L - расстояние от начала выточки 10 до ВМТ.

- длина уплотняющей части поршня 2 в зоне радиального зазора δ1.

- длина уплотняющей части поршня 2 в зоне радиального зазора δ2.

pGW - давление в месте перехода уплотняющей части длиной l1 в уплотняющую часть длиной l2 (начало выточки 10) при течении жидкости из полости 4 в полость 5.

pWG - давление в месте перехода уплотняющей части длиной l1 в уплотняющую часть длиной l2 (начало выточки 10) при течении жидкости из полости 5 в полость 4.

LP - длина поршня 2.

S - полный ход поршня 2.

V1 - объем жидкости, поступивший в полость 4 при ходе поршня 2 вниз.

V2 - объем жидкости, поступивший в полость 5 при ходе поршня 2 вверх.

pG - давление газа в полости 4, pW - давление жидкости в полости 5.

pWB и pWH - соответственно давление всасывания и нагнетания жидкости.

pGB и pGH - соответственно давление всасывания и нагнетания газа.

Δ - слой жидкости над поршнем 2 в конце хода поршня 2 вниз (фиг. 3).

- минимальная длина уплотняющей части поршня 2 в зоне радиального зазора δ1. при ходе поршня 2 вниз (фиг. 3).

- максимальная длина уплотняющей части поршня 2 в зоне радиального зазора δ1. при ходе поршня 2 вверх (фиг. 5).

- максимальная длина уплотняющей части поршня 2 в зоне радиального зазора δ2. при ходе поршня 2 вниз (фиг. 3).

- минимальная длина уплотняющей части поршня 2 в зоне радиального зазора δ2. при ходе поршня 2 вверх (фиг. 5).

Машина работает следующим образом.

При ходе поршня 2 вниз от ВМТ к НМТ (ход всасывания газа, сжатия и нагнетания жидкости, фиг. 2) в полости 4 образуется разрежение, под действием перепада давления клапан 7 закрывается, и открывается клапан 6, газ под давлением всасывания pGB поступает в полость 4. Движение газа показано стрелками.

В это же время в полости 5 происходит сжатие жидкости и ее нагнетание потребителю под давлением нагнетания pWH через открытый перепадом давления клапан 9.

В связи с тем, что давление нагнетания жидкости больше, чем давление всасывания газа, жидкость из полости 5 через радиальный зазор δ2 и далее через радиальный зазор δ1 протекает в полость 4 (это движение жидкости показано стрелками) и образует над днищем поршня 2 слой жидкости.

При достижении НМТ (фиг. 3) все клапаны закрыты, и скорость поршня 2 становится равной нулю, в результате чего исчезает разрежение в полости 4 и прекращается нагнетание жидкости из полости 5.

При движении поршня 2 от ВМТ к НМТ и сопровождающих это движение перетечек жидкости через ступенчатый зазор между поршнем 2 и цилиндром 1, над днищем поршня 2 образуется слой жидкости, толщиной Δ.

При ходе поршня 2 вверх от НМТ к ВМТ (ход сжатия и нагнетания газа, всасывания жидкости, фиг. 4), при достижении газом давления нагнетания pGH, открывается клапан 7, и газ из полости 4 истекает потребителю (движение газа показано стрелками).

В это же время происходит увеличение объема полости 5, в связи с чем в ней образуется разрежение, и жидкость от источника под давлением всасывания pWB поступает через открытый клапан 8 в полость 5 (движение жидкости показано стрелками).

В связи с тем, что давление сжатия-нагнетания газа в полости 4 выше, чем давление всасывания жидкости в полости 5, жидкость сначала через радиальный зазор δ1, а затем через радиальный зазор δ2 протекает из полости 4 в полость 5, при этом толщина слоя жидкости над днищем поршня 2 уменьшается.

При подходе к положению ВМТ скорость поршня 2 становится равной нулю, изменения давлений в полостях 4 и 5 не происходит, газовые и жидкостные клапаны закрываются (фиг. 5).

Разность между расходами жидкости из полости 4 в полость 5 и наоборот является таковой, что выполняется условие: , где Δ - уровень жидкости над поршнем в конце его хода вниз (см. фиг 3), V2 - объем жидкости, перетекшей из компрессорной полости в жидкостную в процессе сжатия и нагнетания газа, LM - линейный мертвый объем компрессорной полости.

После полного перехода к объемам и после преобразования эта формула принимает вид

Уравнение для определения объемного расхода жидкости V через узкую круглую кольцевую щель диаметром d высотой δ с перепадом давления Δр=р12 и с одной подвижно стенкой длиной , движущейся со скоростью ν против движения жидкости, в течение промежутка времени Т, имеет общий вид

где μ - динамическая вязкость жидкости

В этом случае, при известной из конструктивных соображений и технологических возможностей изготовления машины величине мертвого объема VM, для определения величин V1 и V2, необходимых для выполнения условия (1), следует записать следующую систему уравнений:

где - средняя длина зазора δ1 в процессе движения поршня 2 между мертвыми точками.

Величины pGW и pWG могут быть определены из решения уравнений баланса объемных расходов жидкости через зазоры δ1 и δ2, аналогичных уравнениям системы (3), составленных для хода поршня 2 вверх и вниз. При этом определение расхода через зазор δ2 необходимо вести с использованием в качестве его средней длины .

Таким образом, в предложенной конструкции возможно использование сравнительно больших зазоров между поршнем 2 и цилиндром 1 (радиальный зазор δ1 - порядка 30-50 мкм и более, радиальный зазор δ2 - 100 мкм и более).

При этом обеспечивается не только гарантированный пуска машины без угрозы заклинивания поршня 2, но и стабильное омывание всех его наружных поверхностей, что стабилизирует и снижает температуру его тела и тела цилиндра. Последнее, в свою очередь, позволяет увеличить отводимую от газа теплоту в процессах его сжатия и нагнетания и снизить подводимую от стенок компрессорной полости подводимую теплоту в процессе всасывания. Это дает возможность приблизить процессы, происходящие в компрессорной полости 4, к изотермическим, что повышает КПД ее работы.

Кроме того, выполнение выше указанных соотношений позволяет создать над поршнем постоянно присутствующий слой жидкости, который выполняет функцию гидравлического затвора, препятствующего утечкам сжимаемого до высокого (по сравнению с давлением нагнетания жидкости) давления газа.

Выполнение условия (1) также дает возможность снизить практически до нуля фактический мертвый объем компрессорной полости 4, занятый газом, что также, как известно, повышает КПД компрессорной полости и позволяет сжимать газ до высоких давлений в одной ступени.

Таким образом, поставленная перед новой конструкцией машины задача полностью выполнена.


Поршневая гибридная энергетическая машина со ступенчатым уплотнением
Поршневая гибридная энергетическая машина со ступенчатым уплотнением
Поршневая гибридная энергетическая машина со ступенчатым уплотнением
Поршневая гибридная энергетическая машина со ступенчатым уплотнением
Поршневая гибридная энергетическая машина со ступенчатым уплотнением
Поршневая гибридная энергетическая машина со ступенчатым уплотнением
Поршневая гибридная энергетическая машина со ступенчатым уплотнением
Поршневая гибридная энергетическая машина со ступенчатым уплотнением
Поршневая гибридная энергетическая машина со ступенчатым уплотнением
Поршневая гибридная энергетическая машина со ступенчатым уплотнением
Источник поступления информации: Роспатент

Showing 51-60 of 109 items.
04.04.2018
№218.016.2f7f

Способ диагностики повреждения короткозамкнутой обмотки ротора асинхронного двигателя

Использование: в области электротехники. Технический результат – повышение чувствительности защиты. Способ диагностики повреждения короткозамкнутой обмотки ротора асинхронного двигателя основан на контроле электродвижущей силы на выводах обмотки статора в режиме выбега и формировании сигнала о...
Тип: Изобретение
Номер охранного документа: 0002644576
Дата охранного документа: 13.02.2018
04.04.2018
№218.016.2f91

Способ настройки компенсации емкостных токов замыкания на землю в электрических сетях

Использование: в области электротехники. Технический результат – повышение точности настройки на любой заданный режим компенсации при любых высокочастотных помехах и искажениях. Согласно способу для определения параметров контура нулевой последовательности сети используется свободная...
Тип: Изобретение
Номер охранного документа: 0002644582
Дата охранного документа: 13.02.2018
10.05.2018
№218.016.3942

Поршневая гибридная энергетическая машина объемного действия с уравновешенным приводом

Изобретение относится к поршневым энергетическим машинам объемного действия и может быть использовано при создании безвибрационных компрессоров, насосов, двигателей внутреннего сгорания, а также гибридных машин - насос-компрессоров и мотор - насос-компрессоров. Машина состоит из корпуса 1, в...
Тип: Изобретение
Номер охранного документа: 0002647011
Дата охранного документа: 13.03.2018
10.05.2018
№218.016.3a98

Ультразвуковой волновод-шуруп для аппарата илизарова

Изобретение относится к медицинской технике, а именно к средствам для хирургического лечения открытых переломов длинных трубчатых костей. Ультразвуковой волновод-шуруп для аппарата Илизарова выполнен в виде стержня, включающего рабочую часть, цилиндрический резьбовой участок и резьбовой участок...
Тип: Изобретение
Номер охранного документа: 0002647614
Дата охранного документа: 16.03.2018
10.05.2018
№218.016.3bbc

Способ определения места повреждения воздушных линий в распределительных сетях

Изобретение относится к электроизмерительной технике и может быть использовано для оперативного определения места однофазного замыкания на землю в распределительных сетях с изолированной или компенсированной нейтралью. Технический результат – расширение функциональных возможностей на основе...
Тип: Изобретение
Номер охранного документа: 0002647536
Дата охранного документа: 16.03.2018
10.05.2018
№218.016.3c10

Частотно-фазовый компаратор

Изобретение относится к области измерительной техники и может быть использовано в качестве логического элемента сравнения частот следования и формирования фазового рассогласования импульсов задающего генератора и датчика обратной связи в системах автоматического управления, построенных на...
Тип: Изобретение
Номер охранного документа: 0002647678
Дата охранного документа: 16.03.2018
10.05.2018
№218.016.3d25

Ротационная гибридная машина объемного действия

Изобретение относится к гибридным машинам объемного действия. Машина содержит цилиндр (1), ротор (5) с двумя пластинами (7), делящими цилиндр (1) на две полости - компрессорную (9) с всасывающим окном (11) и нагнетательным клапаном (12) и насосную (10) с всасывающим клапаном (13) и...
Тип: Изобретение
Номер охранного документа: 0002648139
Дата охранного документа: 22.03.2018
10.05.2018
№218.016.4208

Способ фазирования вращающегося вала электродвигателя и устройство для его осуществления

Изобретение относится к области электротехники и может быть использовано в высокоточных электроприводах сканирующих систем. Технический результат заключается в повышении надежности работы электропривода в режиме фазирования. В способ фазирования вращающегося вала электродвигателя в устройство...
Тип: Изобретение
Номер охранного документа: 0002649307
Дата охранного документа: 02.04.2018
10.05.2018
№218.016.4309

Датчик угарного газа

Изобретение относится к области газового анализа и может быть использовано для экологического мониторинга. Техническим результатом изобретения является повышение чувствительности и технологичности изготовления датчика. Датчик содержит полупроводниковое основание и подложку. Полупроводниковое...
Тип: Изобретение
Номер охранного документа: 0002649654
Дата охранного документа: 04.04.2018
10.05.2018
№218.016.4b5b

Способ моделирования процесса газификации остатков жидкого компонента ракетного топлива в баках отработавшей ступени ракеты-носителя и устройство для его реализации

Изобретение относится к ракетно-космической технике. Способ и устройство моделирования процесса газификации остатков жидкого компонента ракетного топлива в баках отработавшей ступени (ОС) ракеты-носителя, основанный на введении в экспериментальную модельную установку (ЭМУ) теплоносителя (ТН),...
Тип: Изобретение
Номер охранного документа: 0002651645
Дата охранного документа: 23.04.2018
Showing 51-60 of 90 items.
13.01.2017
№217.015.86db

Поршневой компрессор с рубашечным охлаждением

Изобретение относится к области компрессоростроения и может быть использовано в поршневых компрессорах с автономным охлаждением цилиндропоршневой группы. Компрессор содержит цилиндр 1 с дифференциальным поршнем 2 и двумя рабочими объемами 4 и 5. Полости всасывания 6 и 7 соединены с источником...
Тип: Изобретение
Номер охранного документа: 0002603498
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.8ef8

Поршневая гибридная машина

Изобретение относится к области энергетики и может быть использовано при создании поршневых высокоэффективных машин для сжатия и перемещения газов и жидкостей. Машина содержит цилиндр 1 и размещенный в нем с радиальным зазором 2 поршень 3 с компрессорной 5 и насосной 6 полостями. На...
Тип: Изобретение
Номер охранного документа: 0002605492
Дата охранного документа: 20.12.2016
25.08.2017
№217.015.9ae2

Способ тренировки старта спортсменов и устройство для его осуществления

Заявленное изобретение относится к устройству для старта спортсменом. Устройство состоит из колодки под толчковую ногу и устройства подачи звукового или светового сигнала, имеющего рабочий орган и систему его управления, подключенные к источнику электрического тока, при этом параллельно к...
Тип: Изобретение
Номер охранного документа: 0002610110
Дата охранного документа: 07.02.2017
25.08.2017
№217.015.9e58

Комбинированная пуля

Изобретение относится к области боеприпасов к гладкоствольному оружию и может быть использовано при бескровной охоте на крупных птиц и мелких зверей, при выполнении полицейских операций, а также в травматическом оружии ближнего, среднего и дальнего, до 100 метров и более действия. Пуля состоит...
Тип: Изобретение
Номер охранного документа: 0002606007
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.b563

Способ работы поршневой вертикальной гибридной машины объемного действия и устройство для его осуществления

Изобретение относится к области энергетических машин объемного действия и может быть использовано при создании гибридов типа «поршневой насос-компрессор». Поршневая машина содержит цилиндр 1, разделенный поршнем 2 на газовую 3 и жидкостную 4 камеры. Они соединены с источником и потребителем...
Тип: Изобретение
Номер охранного документа: 0002614317
Дата охранного документа: 24.03.2017
25.08.2017
№217.015.b626

Поршневой компрессор с активным охлаждением

Изобретение относится к области компрессоростроения и может быть использовано при создании поршневых компрессоров, к которым предъявляются высокие требования по ресурсу работы, надежности и экономичности. Компрессор содержит газовый цилиндр 1 с основным поршнем 4, размещенным в цилиндре 1 с...
Тип: Изобретение
Номер охранного документа: 0002614473
Дата охранного документа: 28.03.2017
25.08.2017
№217.015.be41

Спортивно-охотничий лук

Изобретение относится к метательному оружию и может быть использовано при создании недорогих и достаточно мощных луков и арбалетов для спортивных тренировок, состязаний и спортивной охоты. Лук содержит рукоять (1) с полочкой (2) для укладки стрелы (3) и натяженое устройство тетивы (4) в виде...
Тип: Изобретение
Номер охранного документа: 0002616772
Дата охранного документа: 18.04.2017
29.12.2017
№217.015.f65d

Устройство для сборки резинокордных оболочек

Изобретение относится к оборудованию шинной промышленности, в частности, для сборки резинокордных оболочек, в частности, для сборки резинокордных оболочек баллонного типа малого диаметра с клинчерными бортами. Техническим результатом заявляемого технического решения является создание устройства...
Тип: Изобретение
Номер охранного документа: 0002637339
Дата охранного документа: 04.12.2017
29.12.2017
№217.015.f94b

Устройство крепления арматуры гибкого рукава

Изобретение относится к химическому машиностроению, в частности к конструкции многослойных напорных и напорно-всасывающих рукавов, работающих как под избыточным давлением, так и при вакууме. Техническим результатом изобретения является повышение надежности и эксплуатационного ресурса гибкого...
Тип: Изобретение
Номер охранного документа: 0002639468
Дата охранного документа: 21.12.2017
19.01.2018
№218.016.0649

Метательное устройство

Изобретение относится к области метательных устройств. Метательное устройство содержит рукоять 1 с полочкой 2 для стрелы 3 и тетиву 4. На концах рукояти 1 установлены жесткие рычаги 5 с роликами или блоками 6, через которые проходит тетива 4, а другие их концы соединены с рукоятью 1 через...
Тип: Изобретение
Номер охранного документа: 0002631091
Дата охранного документа: 18.09.2017
+ добавить свой РИД