×
12.07.2018
218.016.7059

Результат интеллектуальной деятельности: СПОСОБ ИЗГОТОВЛЕНИЯ ИЗДЕЛИЙ ИЗ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ С ОТРАЖАЮЩИМ ПОКРЫТИЕМ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области производства радиотехнических устройств космической и авиационной техники и касается способа изготовления изделий из композиционных материалов с отражающим покрытием. Способ включает сборку пакета путем укладки слоев, содержащих термореактивное связующее, формование заготовки изделия с отверждением связующего, подготовку рабочей отражающей поверхности изделия и нанесение на нее отражающего покрытия, содержащего слой металла, методом напыления в вакууме, при этом подготовку поверхности изделия под нанесение покрытия производят в одном технологическом вакуумном цикле непосредственно перед напылением покрытия - сочетанием прогрева изделия в вакууме до устранения газовыделения с последующей обработкой заряженными частицами плазмы тлеющего разряда или ионного источника, а отражающее покрытие наносят методом конденсации из парогазовой фазы в вакууме или ионно-плазменным магнетронным распылением. Покрытие может содержать более одного слоя. Изобретение обеспечивает необходимый уровень адгезионной прочности при значительном уменьшении массы, повышение коэффициента отражения электромагнитного излучения в широком диапазоне частот, стабильность геометрических характеристик изделия и устойчивость покрытия к атмосферным условиям и механическим воздействиям. 2 з.п. ф-лы, 1 табл., 1 пр.

Изобретение относится к космическим и авиационным технологиям, в частности, к производству изделий из композиционных материалов, предназначенных для отражения электромагнитного излучения в заданном диапазоне частот, например, рефлекторов антенн спутников связи, и может быть использовано в других отраслях, связанных с приемом и передачей электромагнитного излучения в радиочастотных диапазонах.

Известен способ изготовления изделий из композиционных материалов, например, рефлекторов антенных устройств, включающий сборку пакета путем укладки слоев армирующего материала, пропитанного термореактивным связующим, формование и металлизацию, которую производят путем напыления металлического покрытия электродуговым методом в воздушной среде на металлизированную ткань, заформованную в рабочую поверхность изделия. Согласно указанному способу подготовка поверхности изделия под нанесение покрытия производится путем введения металлизированной ткани в рабочую поверхность изделия и снятия технологического слоя фильтровальной ткани, предварительно уложенного на рабочую поверхность изделия, перед напылением покрытия (RU №2185965) так, чтобы покрытие, напыляемое электродуговым методом на воздухе, сцеплялось с развитой поверхностью ткани и шероховатой поверхностью связующего, образовавшейся после снятия фильтровальной ткани. Техническая суть предложенной подготовки заключается в создании на рабочей поверхности изделия слоя с высокой шероховатостью, с которым сцепляются частицы напыляемого покрытия. Шероховатость поверхности, созданной указанным способом, соответствует толщине слоев металлизированной и фильтровальной тканей (~100 мкм), и это обеспечивает адгезионно-когезионную связь покрытия с поверхностью изделия.

Данный способ имеет существенные недостатки:

1) большая толщина и масса покрытия, необходимые для создания сплошного электропроводящего покрытия в связи с большой шероховатостью рабочей поверхности изделия (~100 мкм), получаемой при подготовке согласно патенту.

Для создания сплошного металлизационного покрытия его толщина не должна быть менее размеров выступов и впадин, следовательно, быть на уровне 100 мкм или более. Соответственно, даже при заявленных толщине слоя цинка 90 мкм и плотности напыленного пористого цинкового покрытия 2,87 г/см3, масса напыленного покрытия составит не менее 258 г/м2, а вместе с подслоем из металлизированной ткани (210 г/м2) общая масса покрытия составит в сумме не менее 468 г/м2, что сравнимо с массой внутренней (металлизируемой) оболочки современных рефлекторов КА (~500 г/м2);

2) загрязнение металлического покрытия оксидами, нитридами и др. соединениями с компонентами атмосферы при использовании электродугового напыления на воздухе.

Это приведет к уменьшению электропроводности и, соответственно, уменьшению коэффициента отражения электромагнитного излучения покрытием;

3) большие напряжения на границе покрытия с подложкой, вызванные большой толщиной и внутренними напряжениями металлического покрытия. Это приведет к деформации оболочек и потере заданных геометрических характеристик изделия;

4) возникновение больших термических напряжений на границе покрытие-изделие при температурных перепадах в условиях эксплуатации КА (до ±150°С) в связи с большой разницей температурного коэффициента линейного расширения (ТКЛР) материалов покрытия и изделия (ТКЛР цинка - 39,7⋅10-6, углепластика - 0,5⋅10-6, К-1). Это вызовет значительные деформации в оболочках изделия и риск отслоения покрытия;

5) большие потери на рассеяние электромагнитного излучения в связи с большой пористостью, шероховатостью и неоднородностью поверхности покрытия, вызванных капельной структурой покрытия. Причем при переходе к перспективным высокочастотным радиодиапазонам (Kа, Q) эти потери будут увеличиваться в связи с уменьшением толщины скин-слоя. В диапазонах субмиллиметровом и ИК такое покрытие теряет зеркальность и не может использоваться для рефлекторов;

6) риск деформации, искажения геометрических характеристик или повреждения тонкостенной оболочки рефлектора при создании механических нагрузок в процессе удаления (отслоения) фильтровальной ткани. Это особенно значимо для современных предельно облегченных высокоточных конструкций КА с толщинами оболочек ~300 мкм;

7) высокая способность пористого металлического слоя к объемному и поверхностному загрязнению в процессе работ с изделием;

8) риск возникновения коррозионных явлений на границе отражающего металлического слоя с углеродным волокном углепластика и невозможность нанесения сплошного барьерного подслоя или внешнего защитного слоя для исключения воздействия атмосферы на покрытие. В связи с большой шероховатостью (~100 мкм) поверхности и высокой пористостью отражающего слоя невозможно введение дополнительных функциональных слоев (например, адгезионного - на органопластике, барьерного - на углепластике, внешнего защитного - на отражающем слое), так как они так же будут пористыми и не сплошными;

9) низкая экологичность и вредные условия производства, так как электродуговое напыление металлов на воздухе сопровождается неблагоприятными и опасными факторами: шум, выбросы аэрозолей в атмосферу, электромагнитное излучение;

10) высокая трудоемкость изготовления изделия, связанная с необходимостью чистовой механической обработки отражающей поверхности (шлифовки, полировки);

11) низкий коэффициент отражения пористого металлического отражающего слоя в диапазоне от видимого до инфракрасного и субмиллиметрового диапазонов электромагнитного излучения.

Один из наиболее критичных недостатков - высокие внутренние напряжения, возникающие на границе покрытия и оболочки изделия при относительно большой толщине покрытия. При толщине оболочек современных сверхлегких рефлекторов космических антенн ~300 мкм, нанесение покрытия толщиной 90 мкм вызовет большие напряжения в оболочке, что приведет к недопустимым деформациям и искажениям расчетной формы изделия, вплоть до повреждения оболочек, как в процессе изготовления, так и в условиях эксплуатации при действии знакопеременных температур.

Анализ термомеханического состояния сверхлегких оболочек рефлекторов антенн, проведенный специалистами EADS [Qualification of Large Deployable Ka-band Reflectors. S. Baril, A. Lacombe, C. Desagulier. EADS Space Transportation. BP 3002 - 78133 Les Mureaux - France], показал, что при современных толщинах оболочек изделия порядка сотен микрон, толщина покрытия должна быть близкой 1 мкм или менее для исключения недопустимых деформаций.

К существенным недостаткам следует так же отнести отсутствие защиты радиоотражающего металлического слоя. В процессе работ и испытаний рефлектора с покрытием будет происходить загрязнение и коррозия радиоотражающей поверхности, что приведет к дальнейшему уменьшению коэффициента отражения. Материал отражающего покрытия - цинк имеет низкие твердость и прочность и может быть поврежден при механических нагрузках на покрытие (трение, царапание, очистка от загрязнений).

Более близким к предлагаемому изобретению по технической сущности является способ изготовления изделий из композиционных материалов (RU 2201871). Способ изготовления изделий из композиционных материалов включает сборку пакета путем укладки слоев армирующего материала, пропитанного термореактивным связующим, формование изделия отверждением связующего и нанесение на рабочую поверхность изделия металлического покрытия путем электродугового плазменного напыления в воздушной среде. Подготовка поверхности изделия под нанесение покрытия производится путем введения в пакет из слоев армирующего материала технологического слоя из фильтровальной ткани, уложенного на рабочую поверхность изделия, и снятия его после формования изделия непосредственно перед напылением покрытия.

В патенте RU 2201871, принятом за прототип, устранен подслой из металлизированной ткани, что уменьшает массу отражающего покрытия на 210 г/м2. Однако, и в этом патенте предлагается аналогичный метод подготовки путем создания поверхности с высокой шероховатостью и нанесение покрытия методом электродугового плазменного напыления в воздушной среде с присущими этим методам вышеперечисленными принципиальными недостатками:

- большой толщиной покрытия (от 0,12 до 0,15 мм) и массой (покрытие из алюминия будет иметь массу от 130 до 370 г/м2, в зависимости от пористости);

- загрязнением покрытия и, соответственно, уменьшенными электропроводностью и коэффициентом отражения электромагнитного излучения;

- риском деформации металлизированной тонкой оболочки рефлектора под действием внутренних напряжений в покрытии;

- деформацией и искажением геометрии рабочей поверхности рефлектора при действии температурных перепадов и изменении температуры рефлектора в условиях эксплуатации КА в связи с возникновением больших напряжений между углепластиковой оболочкой и относительно толстым покрытием, имеющих большую разницу ТКЛР (ТКЛР алюминия - 24⋅10-6, углепластика - 0,5⋅10-6, К-1);

- большими потерями электромагнитного сигнала на рассеяние шероховатой поверхностью покрытия в высокочастотных диапазонах излучения;

- возможностью объемного загрязнения пористого покрытия в процессе испытаний и работ с изделием;

- отсутствием возможности нанесения легкого барьерного подслоя для исключения коррозионных явлений в зоне контакта покрытия с углепластиком или адгезионного подслоя для повышения адгезии покрытия;

- отсутствием возможности нанесения внешнего защитного слоя;

- низкой экологичностью и вредными условиями плазменного нанесения покрытия на воздухе;

- высокой трудоемкостью механической обработки напыленного покрытия;

- невозможностью использования покрытия в субмиллиметровом и ИК диапазонах электромагнитного излучения.

Указанные недостатки способа по патенту RU 2201871 исключают возможность его применения для сверхлегких, прецизионных конструкций со стабильной геометрией и высоким коэффициентом отражения электромагнитного излучения в широком диапазоне частот.

Цель предлагаемого изобретения - создание адгезионно-активной поверхности изделия минимальной толщины, на уровне одного атомного слоя.

Это позволит исключить требование к созданию высокой шероховатости металлизируемой поверхности и использовать технологию вакуумного напыления (магнетронного, ионно-плазменного или парофазного) с присущими этой технологии преимуществами перед электродуговым напылением в воздушной среде.

Отсутствие необходимости нанесения покрытия большой толщины - для перекрытия шероховатости поверхности и обеспечения сплошности покрытия позволит существенно уменьшить толщину и массу отражающего покрытия.

Применение методов вакуумного напыления повысит чистоту и электропроводность покрытия и, соответственно, его отражающие свойства в высокочастотных диапазонах электромагнитного излучения. Отсутствие созданной шероховатости (~100 мкм), низкая собственная шероховатость (~0,03 мкм) и практически отсутствие пористости покрытий, полученных вакуумным напылением, уменьшит рассеяние и потери излучения на дефектах пористого покрытия. В конечном итоге это повысит отражательную способность покрытия в широком диапазоне частот, точность и стабильность геометрических характеристик отражающих поверхностей, обеспечит прочность и надежность связи покрытия с изделием, устранит необходимость в трудоемкой механической доводке поверхности покрытия, а так же позволит ввести в отражающее покрытие дополнительные функциональные слои: адгезионный для изделий из органопластика, барьерный для изделий из углепластика и внешний защитный для любых изделий.

Указанная цель достигается тем, что при изготовлении изделий из композиционного материала, включающем сборку пакета путем укладки слоев материалов, пропитанных термореактивным связующим, формование заготовки изделия с отверждением связующего, подготовку поверхности и нанесение на рабочую поверхность изделия отражающего металлического покрытия, подготовку поверхности изделия производят путем обработки заряженными частицами плазмы тлеющего разряда или ионного источника в одном технологическом вакуумном цикле непосредственно перед нанесением покрытия с, как минимум, одним слоем, например, отражающего металлического покрытия, которое наносят методом конденсации из парогазовой фазы в вакууме или ионно-плазменного магнетронного напыления.

При изготовлении многослойного покрытия предлагается следующая технология: непосредственно после обработки поверхности изделия в плазме или потоке ионов на поверхность изделия наносят методом конденсации из парогазовой фазы или ионно-плазменного магнетронного напыления последовательно подслой из твердого материала с высокой адгезионной способностью к металлам и полимерам, предпочтительно из группы: титан, нихром, хром, цирконий, затем - отражающее металлическое покрытие из высокоэлектропроводного металла, предпочтительно алюминия высокой чистоты, и защитный слой из прозрачного твердого диэлектрика, например, оксидов кремния или алюминия. Подготовку поверхности изделия предлагается производить с подачей в вакуумную камеру инертного газа - аргона или смеси аргона с кислородом, или воздуха при энергии, вкладываемой в разряд или поток ионов, зависящей от свойств материала, геометрических характеристик и обрабатываемой площади изделия.

При обработке покрываемой поверхности заряженными частицами плазмы тлеющего разряда или ионного источника происходит финишная очистка поверхности изделия из композиционного материала: удаление органических загрязнений, остатков антиадгезивных составов, непрореагировавших компонентов связующих, а также физическая активация обрабатываемой поверхности, связанная с созданием активных открытых химических связей и получения_активной адгезионно-способной поверхности толщиной порядка атомного слоя (~1 нм). Для исключения повторного загрязнения поверхности изделия перед ионно-плазменной активацией может быть проведен прогрев изделия в вакууме по режиму, обеспечивающему снижение газовыделения изделием до уровня давления остаточного газа. Такая обработка позволяет конденсирующемуся покрытию образовывать прочную адгезионную связь с поверхностью изделия любой шероховатости, включая зеркальные поверхности.

Благодаря тому, что подготовка изделия к нанесению покрытия производится в одном технологическом вакуумном цикле непосредственно перед напылением покрытия, достигается сокращение времени изготовления и трудоемкости процесса, а также, обеспечивается максимально возможная адгезионная прочность покрытия за счет сохранения высокой активности химических связей обработанной поверхности. В противном случае, при разгерметизации вакуумной камеры моментально происходит адсорбция атмосферных газов на поверхности изделия и резкое снижение активности химических связей поверхности.

Использование энергии заряженных частиц для очистки и активации поверхности подложек с целью обеспечения адгезионной прочности напыляемых покрытий известно и эффективно применяется во многих областях современной техники.

Новизна предложения заключается в том, что создание активной адгезионно-способной поверхности толщиной порядка атомного слоя с возможностью устранения ухудшения свойств покрытия вследствие газовыделения материала изделия принципиально изменяет способ создания прочной адгезионной связи покрытия на изделии из композиционного материала, что позволяет использовать более совершенную вакуумную технологию нанесения покрытия и, в итоге, существенно улучшает характеристики покрытия и изделия в целом. При этом нанесение покрытия производится в едином технологическом цикле с подготовкой поверхности.

Применение метода обработки поверхности композиционного материала потоком ионов или плазмой тлеющего разряда с возможностью предварительного прогрева и последующим нанесением покрытия в вакууме в одном вакуумном цикле позволяет отказаться от потребности создания шероховатой поверхности изделия, уменьшив толщину адгезионно-активного слоя с ~0,1 мм до ~1 нм, и, благодаря этому, обеспечить следующие преимущества предлагаемого способа перед прототипом:

1) уменьшение толщины и массы отражающего покрытия с ~100 до ~1 мкм и с ~300 до ~3 г/м2, соответственно;

2) исключение загрязнения покрытия оксидами, нитридами и другими соединениями с компонентами атмосферы и, как следствие, увеличение электропроводности покрытия и коэффициента отражения электромагнитного излучения;

3) устранение риска деформации тонкой оболочки изделия благодаря уменьшению внутренних напряжений в покрытии пропорционально уменьшению его толщины;

4) существенное уменьшение или устранение деформации рабочей поверхности изделия при действии изменений температуры в условиях эксплуатации за счет значительного уменьшения напряжений на границе оболочки изделия с тонким покрытием;

5) устранение потерь электромагнитного излучения на рассеяние в высокочастотных диапазонах и обеспечение возможности создания зеркального отражения вплоть до видимого оптического диапазона;

6) исключение возможности объемного загрязнения отражающего покрытия в связи с исключительно низкой пористостью вакуумных покрытий;

7) возможность нанесения адгезионного или барьерного подслоя для повышения прочности и стабильности свойств отражающего покрытия;

8) возможность нанесения внешнего защитного слоя из твердого материала, прозрачного в рабочем диапазоне частот;

9) повышение экологичности производства и устранение вредных условий труда за счет применения вакуумных технологий;

10) уменьшение трудоемкости изготовления изделия за счет исключения механической обработки покрытия;

11) повышение отражающей способности покрытия и возможность использования покрытия в субмиллиметровом, инфракрасном и оптическом диапазонах излучения.

Благодаря тому, что отражающее покрытие наносится из парогазовой фазы или ионно-плазменным методом в вакууме, без контакта с атмосферой, обеспечивается максимальное сохранение чистоты используемых исходных материалов покрытия, что позволяет получать слои высокочистых металлов или сплавов, обладающих максимальной электропроводностью и наибольшим коэффициентом отражения электромагнитного излучения в широком диапазоне частот; получать сплошные покрытия при толщинах от 0,05 до 1 мкм, получать покрытия с минимальной удельной массой; обеспечить минимальную пористость покрытий, что так же способствует повышению коэффициента зеркального отражения и сохранению его на высоком уровне при нахождении изделия с покрытием в различных средах.

Благодаря тому, что способ предусматривает нанесение не менее одного слоя, расширяется область применения покрытия: обеспечивается возможность создания покрытия для различных условий применения и различных диапазонов рабочих частот. Например, для работы в защитной среде или в вакууме в ограниченном диапазоне температур достаточно использования одного отражающего слоя. Для использования покрытия в широком диапазоне температур может быть введен дополнительный адгезионный или демпфирующий слой между подложкой и отражающим слоем, обладающий промежуточным ТКЛР и обеспечивающий снижение температурных напряжений в покрытии. Для использования покрытия в агрессивных средах и/или при воздействии на поверхность механических нагрузок, может быть введен защитный слой поверх отражающего слоя для обеспечения стабильности свойств покрытия. Для обеспечения заданных терморадиационных характеристик - коэффициента поглощения солнечного излучения, коэффициента излучения (степени черноты), покрытие может быть выполнено многослойным, с дополнительными отражающими и излучающими слоями.

Благодаря совокупности указанных признаков заявляемый способ обеспечивает изготовление изделий с покрытием, характеризующимся следующими показателями:

- малой толщиной покрытия (~1 мкм), не вызывающей опасных напряжений в тонкостенных оболочках изделий космической техники и малой массой покрытия (~3 г/м2);

- отсутствием механических нагрузок на изделие и покрытие в процессе производства;

- высоким коэффициентом отражения Ко электромагнитного излучения в широком диапазоне длин волн - от радиодиапазона (Ко≥0,98) до диапазона оптического солнечного излучения (Ко≥0,80 на углепластике);

- экологичностью, так как процесс обработки заряженными частицами и напыления покрытия происходит в вакуумной камере без выделения в атмосферу каких-либо вредных выбросов или отходов;

- высокой производительностью, так как отсутствуют трудоемкие операции по механической шлифовке и полировке покрытия.

Пример: Изготовление отработочных изделий сложной формы в виде макетов рефлекторов антенн диаметром 2500 мм из углепластика и органопластика с отражающим покрытием заявляемым способом.

Сборка пакета из углеродного или арамидного препрега с полиэфирцианатным связующим, вакуумное формование и полимеризация связующего согласно штатной технологии, действующей на производстве Заявителя. Непосредственно перед нанесением отражающего покрытия проведены прогрев изделия в вакууме при температуре 100°С и обработка напыляемой поверхности рефлектора потоком ионов аргона при напряжении на электродах ионных источников от 1300 до 2200 В, токе от 0,3 до 0,75 А и средней энергии потока ионов на единицу обрабатываемой площади 390 дж/см2 в течение 2 часов и затем, без разгерметизации камеры, проведено нанесение слоев отражающего покрытия методом вакуумного магнетронного ионно-плазменного напыления:

- адгезионно-барьерного подслоя из коррозионностойкого адгезивного материала -нихрома толщиной 0,1 мкм,

- отражающего слоя из алюминия чистотой 99,99% толщиной 0,54 - 0,85 мкм;

- защитного слоя из оксида кремния толщиной 0,05 мкм.

Для контроля характеристик покрытия вместе с изделиями одновременно напыляли по три образца-свидетеля, изготовленных из тех же материалов и по той же технологии, что и макеты рефлекторов.

Характеристики образцов-свидетелей изделий из композиционных материалов (углепластика и органопластика) с отражающим покрытием приведены в таблице.

Образцы-свидетели указанных макетов прошли ускоренные климатические испытания с имитацией 8 лет хранения и, затем, термоциклирование в вакууме в диапазоне температур от минус 160 до плюс 160°С. Измерение эксплуатационных характеристик показало, что коэффициенты отражения электромагнитного излучения в 3-х диапазонах и адгезионная прочность покрытия сохранились на заданном уровне.

После извлечения из камеры вакуумного напыления изделие с отражающим покрытием не требует проведения каких-либо операций по механической обработке покрытия.

Способ по настоящему изобретению, как следует из приведенных данных, позволяет получить многофункциональное покрытие, имеющее высокие коэффициенты отражения в трех диапазонах электромагнитного излучения: радиодиапазоне, ИК-диапазоне и диапазоне оптического солнечного излучения. Способ нанесения покрытия предусматривает возможность защиты от воздействия компонент атмосферы, технологических загрязнений и, при необходимости, возможность очистки поверхности покрытия от загрязнений известными методами с применением растворителей.

Реализация предложенного технического решения позволит устранить потребность в создании шероховатости рабочей поверхности изделия, уменьшить толщину и массу отражающего покрытия; устранить возможность появления недопустимых деформаций изделия, устранить операции, приводящие к риску повреждения изделия; повысить отражающую способность покрытия в широком диапазоне длин волн; повысить стабильность характеристик отражающего покрытия при хранении, испытаниях и в условиях эксплуатации; уменьшить риск загрязнения покрытия; повысить экологичность и устранить вредные условия труда.

Способ изготовления изделий из композиционных материалов с отражающим покрытием.

Источник поступления информации: Роспатент

Showing 81-90 of 193 items.
29.12.2017
№217.015.fa14

Устройство возбуждения волны е в круглом волноводе

Изобретение относится к радиотехнике, в частности к технике СВЧ и антенной технике. Устройство возбуждения волны Ε в круглом волноводе содержит делитель мощности с N выходами, N элементов связи с круглым волноводом, равномерно расположенных в поперечном сечении на цилиндрической поверхности...
Тип: Изобретение
Номер охранного документа: 0002639736
Дата охранного документа: 22.12.2017
19.01.2018
№218.016.067c

Металлопластиковый баллон высокого давления космического аппарата

Изобретение относится к общему машиностроению и может быть использовано на космических аппаратах для хранения и расходования газов под высоким давлением в сжатом, сжиженном или твердом их первоначальном состоянии. Металлопластиковый баллон высокого давления космического аппарата содержит...
Тип: Изобретение
Номер охранного документа: 0002631202
Дата охранного документа: 19.09.2017
19.01.2018
№218.016.06bf

Узел позиционирования

Узел позиционирования состоит из основания (1), позиционера (2) и узлов крепления (3). Узел позиционирования выполнен с возможностью изменять положение закрепленного на нем изделия в горизонтальной плоскости по двум взаимно перпендикулярным осям, в вертикальной плоскости, по азимуту и по углу...
Тип: Изобретение
Номер охранного документа: 0002631128
Дата охранного документа: 19.09.2017
19.01.2018
№218.016.0999

Способ изготовления металлопластикового баллона высокого давления для космического аппарата

Способ предназначен для производства облегченных сосудов высокого давления с применением композиционных материалов. Способ включает изготовление металлического лейнера, имеющего верхнее и нижнее выпуклые днища одинаковой толщины, которые герметично соединяются своими краями по периметру;...
Тип: Изобретение
Номер охранного документа: 0002631957
Дата охранного документа: 29.09.2017
20.01.2018
№218.016.101f

Способ изготовления системы терморегулирования космического аппарата

Изобретение относится к системам терморегулирования (СТР) космических аппаратов (КА). Способ изготовления СТР КА включает проверки суммарных негерметичностей жидкостного тракта и двухфазного контура (ДФК) перед заправкой их соответствующими теплоносителями. В процессе изготовления ДФК...
Тип: Изобретение
Номер охранного документа: 0002633666
Дата охранного документа: 16.10.2017
20.01.2018
№218.016.1338

Бортовая система управления космическим аппаратом

Изобретение относится к космической технике и может быть использовано при создании бортовых систем управления космических аппаратов (КА). Бортовая система управления космическим аппаратом (КА) содержит бортовую аппаратуру командно-измерительной системы (БА КИС) со средством защиты информации от...
Тип: Изобретение
Номер охранного документа: 0002634498
Дата охранного документа: 31.10.2017
20.01.2018
№218.016.191c

Способ изготовления космического аппарата

Изобретение относится к космической технике. Способ изготовления космического аппарата (КА) включает изготовление комплектующих, сборку КА, содержащего систему электропитания, проведение испытаний КА. Дополнительно используют имитатор системы электропитания КА, состоящий из наземного источника...
Тип: Изобретение
Номер охранного документа: 0002636244
Дата охранного документа: 21.11.2017
20.01.2018
№218.016.1a47

Межпланетный космический корабль

Изобретение относится к пилотируемым космическим кораблям, предназначенным для межпланетных полетов. Межпланетный космический корабль состоит из основного и вспомогательного модулей. Вспомогательный модуль закреплен на корпусе основного модуля с возможностью вращения вокруг центра масс...
Тип: Изобретение
Номер охранного документа: 0002636453
Дата охранного документа: 23.11.2017
20.01.2018
№218.016.1d2a

Способ отделения полезной нагрузки с учетом энергии пружинного толкателя

Изобретение относится к космической технике и может быть использовано для освобождения отделяемых в процессе эксплуатации и многоразовой отработки силовых крупногабаритных агрегатов, например головных обтекателей, отсеков и ступеней ракет-носителей, подвесных баков летательных аппаратов,...
Тип: Изобретение
Номер охранного документа: 0002640498
Дата охранного документа: 09.01.2018
04.04.2018
№218.016.3498

Регулируемый узел крепления

Изобретение относится к регулируемым узлам крепления конструкций с интерфейсом на стропах. Регулируемый узел крепления состоит из площадки со стропами, накладки и кронштейна, жестко фиксированных между собой с помощью крепежных элементов, а также внутреннего и внешнего кронштейнов, форма...
Тип: Изобретение
Номер охранного документа: 0002646041
Дата охранного документа: 28.02.2018
Showing 61-65 of 65 items.
09.06.2019
№219.017.7efa

Подложка панели солнечной батареи и способ ее изготовления

Изобретение относится к солнечным батареям, служащим для преобразования солнечной энергии в электрическую. Подложка панели солнечной батареи состоит из сетчатого материала, изготовленного из струн, пропитанных связующим составом, согласно изобретению струны выполнены из арамидного шнура. Способ...
Тип: Изобретение
Номер охранного документа: 0002449226
Дата охранного документа: 27.04.2012
19.06.2019
№219.017.85ef

Способ изготовления жидкостного тракта системы терморегулирования космического аппарата

Изобретение относится к системам терморегулирования космических аппаратов, в жидкостном тракте которых применяется гидроаккумулятор с герметизированной газовой полостью, заправленной двухфазным рабочим телом. Способ включает сборку жидкостного тракта и контроль степени его герметичности. После...
Тип: Изобретение
Номер охранного документа: 0002398718
Дата охранного документа: 10.09.2010
10.07.2019
№219.017.aeaf

Траверса для переносов и проведения монтажно-стыковочных работ крупногабаритных изделий

Изобретение относится к подъемно-перегрузочным устройствам для проведения операций по переносу и монтажно-стыковочным работам. Траверса содержит несущую балку с установленной на ней серьгой и стропы, снабженные такелажными узлами и регулируемыми винтовыми вставками. Стропы имеют общие точки...
Тип: Изобретение
Номер охранного документа: 0002323870
Дата охранного документа: 10.05.2008
10.12.2019
№219.017.ebb5

Устройство поворота объекта

Изобретение относится к области устройств для высокоточного поворота объектов и может быть использовано для остронаправленных антенн или зубчатых венцов при сборке ротора электрической машины космического аппарата (КА). Устройство поворота объекта содержит привод, связанное с последним и...
Тип: Изобретение
Номер охранного документа: 0002708408
Дата охранного документа: 06.12.2019
23.05.2020
№220.018.209b

Способ изготовления отражательной сетчатой поверхности антенны и сетчатое полотно для его осуществления

Изобретение относится к области технологии изготовления отражательных поверхностей параболических антенн. При изготовлении отражательной сетчатой поверхности антенны сетчатую поверхность выполняют основовязаным переплетением из металлической нити толщиной не более 30 мкм, наносят на поверхность...
Тип: Изобретение
Номер охранного документа: 0002721766
Дата охранного документа: 22.05.2020
+ добавить свой РИД