×
12.07.2018
218.016.6fe8

Результат интеллектуальной деятельности: Способ обнаружения и высокоточного определения параметров морских ледовых полей и радиолокационная система для его реализации

Вид РИД

Изобретение

№ охранного документа
0002660752
Дата охранного документа
10.07.2018
Аннотация: Изобретение относится к информационно-измерительной системе и может быть использовано в радиолокационной технике для высокоточной оценки ледовой обстановки в районах морской добычи и транспортировки нефтегазовых ресурсов. Достигаемый технический результат - определение местоположения приближающихся опасных объектов путем использования второй и третьей измерительных баз, расположенных в азимутальной и гипотенузной плоскостях, антенны которых размещены в виде прямоугольного треугольника. Радиолокационная система (РЛС), реализующая предлагаемый способ, содержит блок управления РЛС, синтезатор частот, генератор М-кода, два модулятора, два усилителя мощности, СВЧ коммутатор, блок управления антенной системой, блок антенной системы, три антенны, три усилителя высокой частоты, три смесителя, устройство временной автоматической регулировки усиления, четыре усилителя промежуточной частоты, коммутатор промежуточной частоты, блок автоматической и ручной регулировки усиления, четыре блока фазовых детекторов, фазовращатель, два блока аналого-цифровых преобразователей квадратурных сигналов в цифровую форму, блок первичной цифровой обработки, двухпортовое буферное оперативное запоминающее устройство, цифровой измеритель, три перемножителя, три узкополосных фильтра, опорный генератор. 2 н.п. ф-лы, 2 ил.

Предлагаемые способ и система относятся к информационно-измерительной системе и могут быть использованы в радиолокационной технике для высокоточной оценки ледовой обстановки в районах морской добычи и транспортировки нефтегазовых ресурсов.

Известны способы и устройства обнаружения и определения параметров морских ледовых полей (авт. свид. СССР №№1.778.487, 1.818.608; патенты РФ №№2.082.095, 2.158.008, 2.170.442, 2.319.205, 2.349.513, 2.360.848, 2.435.136, 2.467.347, 2.500.031; патенты США №№3.665.466, 4.697.254, 6.188.348; Простаков А.Л. Электронный ключ к океану. Л.: Судостроение, 1986, с. 15, 16, 24 и другие).

Из известных способов и систем наиболее близкими к предлагаемым являются «Способ обнаружения и высокоточного определения параметров морских ледовых полей и радиолокационная система, его реализующая» (патент РФ №2.467.347, G01S 13/00, 2011), которые и выбраны в качестве прототипов.

Известный способ заключается в том, что радиоизлучение производят с одной из двух разнесенных по высоте интерферометрических антенн, отраженные сигналы принимают двумя антеннами и при приеме отраженные сигналы разбиваются на секции и производятся вычисления каждой свертки посекционно. Радиолокационная система включает в себя определенным образом соединенные между собой блок антенной системы из двух антенн, усилители мощности, усилители высокой частоты, усилители промежуточной частоты, смесители, фазовые детекторы, фазовращатель, блок управления РЛС, синтезатор частот и другие элементы, которые обеспечивают определение образования в заданном радиусе кромки льда, приближение ее к объекту, измерение толщины опасных ледяных образований, определение скорости, направления движения дрейфующих полей и могут предоставить высокоточную оценку ледовой обстановки.

Известные технические решения обеспечивают только измерение угла места β приближающих опасных объектов, таких как айсберги, обширные ледовые поля, торосы, крупные льдины, используя для этого измерительную базу d1, расположенную в угломестной (вертикальной) плоскости.

Технической задачей изобретения является определение местоположения приближающихся опасных объектов путем использования второй и третьей измерительных баз, расположенных в азимутальной и гипотенузной плоскостях, антенны которых размещены в виде прямоугольного треугольника.

Поставленная задача решается тем, что способ обнаружения и высоко точного определения параметров морских ледовых полей, включающий, в соответствии с ближайшим аналогом, действия на дистанции по обнаружению изменений параметров отраженных сигналов двумя интерферометрическими антеннами, создание мониторинга изменений, построение карт изменений, анализ изменений, при этом радиоизлучение производят с одной из двух разнесенных по высоте антенн, отраженные сигналы принимают двумя антеннами, временные отчеты отраженных сигналов разбивают на секции и для сжатия фазоманипулированных отраженных сигналов производят линейные свертки между отсчетами секций и отсчетами опорных функций, определяющих доплеровское смещение принимаемых сигналов посекционно для эхо-сигналов интерферометрических антенн, накопления результатов сжатия и по ним обнаружения кромки ледового поля, его фрагментов, оценки скорости дрейфа и разности фаз отраженных сигналов, приходящих на две интерферометрические антенны, отличается от ближайшего аналога тем, что устанавливают в азимутальной плоскости вторую приемную антенну с возможностью ее вращения с угловой скоростью Ω по окружности вокруг приемопередающей антенны, формируют вторую измерительную базу d2 между приемопередающей и второй приемной антеннами в азимутальной плоскости и третью измерительную базу d3 между первой и второй приемными антеннами в гипотенузной плоскости, перемножают отраженные сигналы на промежуточной частоте fпр, принятые приемопередающей и первой приемной антеннами, выделяют низкочастотное напряжение, измеряют разность фаз между отраженными сигналами и определяют угол места β опасного объекта, перемножают отраженные сигналы, принятые передающей антенной и второй приемной антеннами, первой и второй приемными антеннами, выделяют низкочастотные напряжения с частотой Ω сравнивают их по фазе с опорным напряжением с частотой Ω и определяют азимут и угол ориентации опасного объекта, по значению трех углов α, β и γ определяют местоположение опасных объектов.

Поставленная задача решается тем, что радиолокационная система обнаружения и высокоточного определения параметров морских ледовых полей, содержащая, в соответствии с ближайшим аналогом, последовательно включенные блок управления РЛС, синтезатор частот, генератор М-кода, первый модулятор, второй вход которого соединен с вторым выходом синтезатора частот, первый усилитель мощности, СВЧ коммутатор, второй вход которого соединен с вторым выходом блока управления РЛС, блок управления антенной системой, второй вход которого связан с блоком управления РЛС, третий вход - связан с приемопередающей антенной, а третий вход соединен с первой приемной антенной, первый усилитель высокой частоты, первый смеситель, второй вход которого соединен с третьим выходом синтезатора частот, первый усилитель промежуточной частоты, второй вход которого через устройство временной автоматической регулировки усиления соединен с третьим выходом блока управления РЛС, коммутатор промежуточной частоты, второй вход которого через блок автоматической и ручной регулировки усиления соединен с его выходом и с пятым выходом блока управления РЛС, первый блок фазовых детекторов, второй вход которого через фазовращатель соединен с шестым выходом синтезатора частот, первый блок аналого-цифровых преобразователей квадратурных сигналов в цифровую форму, второй вход которого соединен с шестым выходом синтезатора частот, двухпортовое буферное оперативное запоминающее устройство, второй вход которого соединен с седьмым выходом блока управления РЛС, и цифровой измеритель, второй вход которого соединен с шестым выходом синтезатора частот, третий вход соединен с выходом блока управления антенной системы, а выход является выходом блока первичной цифровой обработки, последовательно подключенные к второму выходу генератора М-кода второго модулятора, второй вход которого соединен с третьим выходом синтезатора частот, и второй усилитель мощности, выход которого соединен с третьим входом СВЧ коммутатора, последовательно подключенные к третьему выходу блока управления антенной системы второй усилитель высокой частоты, второй смеситель, второй вход которого соединен с пятым выходом синтезатора частот, и второй усилитель промежуточной частоты, второй вход которого соединен с вторым выходом устройства временной автоматической регулировки усиления, а выход подключен к третьему входу коммутатора промежуточной частоты, последовательно подключенные к выходу усилителя промежуточной частоты второй блок фазовых детекторов, второй вход которого соединен с шестым выходом синтезатора частот, и второй блок аналого-цифровых преобразователей квадратурных сигналов в цифровую форму, второй вход которого соединен с седьмым выходом синтезатора частот, а выход подключен к третьему входу двухпортового буферного оперативного запоминающего устройства, отличается от ближайшего аналога тем, что она снабжена второй приемной антенной, третьим усилителем высокой частоты, третьим смесителем, третьим усилителем промежуточной частоты, тремя перемножителями, тремя узкополосными фильтрами, опорным генераторами, первым и вторым дополнительными фазовыми детекторами, причем приемопередающей, первой и второй приемными антеннами образованы три измерительные базы, расположенные в виде прямоугольного треугольника, в вершине которого расположена приемопередающая антенна с возможностью вращения с частотой Ω, вокруг вертикального катета, к выходу второй приемной антенны последовательно подключен блок управления антенной системы, третий усилитель высокой частоты, третий смеситель, второй вход которого соединен с девятым выходом синтезатора частот, и третий усилитель промежуточной частоты, второй вход которого соединен с третьим выходом устройства временной автоматической регулировки усиления, а выход подключен к четвертому входу коммутатора промежуточной частоты, к выходу первого усилителя промежуточной частоты последовательно подключены первый перемножитель, второй вход которого соединен с выходом второго усилителя промежуточной частоты, и первый узкополосный фильтр, выход которого соединен с пятым входом цифрового измерителя, к выходу первого усилителя промежуточной частоты последовательно подключены второй перемножитель, второй вход которого соединен с выходом третьего усилителя промежуточной частоты, второй узкополосный фильтр и первый дополнительный фазовый детектор, второй вход которого через опорный генератор соединен с пятым выходом блока управления РЛС, а выход подключен к шестому входу цифрового измерителя, к выходу второго усилителя промежуточной частоты последовательно подключены третий перемножитель, второй вход которого соединен с выходом третьего усилителя промежуточной частоты, третий узкополосный фильтр и второй дополнительный фазовый детектор, второй вход которого соединен с выходом опорного генератора, а выход подключен к седьмому входу цифрового измерителя.

Структурная схема радиолокационной станции, реализующей предлагаемый способ, представлена на фиг. 1. Взаимное расположение приемных антенн показано на фиг. 2.

Радиолокационная станция содержит последовательно включенные блок 1 управления РЛС, синтезатор 2 частот, генератор 3 М-кода, первый модулятор 4, второй вход которого соединен с вторым выходом синтезатора 2 частот, первый усилитель 6 мощности, СВЧ коммутатор 8, второй вход которого соединен с вторым выходом блока 1 управления РЛС, блок 9 управления системой, второй вход которого связан с блоком 1 управления РЛС, третий вход связан с приемопередающей антенной 11, четвертый вход соединен с выходом первой приемной антенны 12, пятый вход соединен с выходом второй приемной антенны 31, первый усилитель 13 высокой частоты, первый смеситель 15, второй вход которого соединен с четвертым выходом синтезатора 2 частот, первый усилитель 18 промежуточной частоты, второй вход которого через блок 22 автоматической и ручной регулировки усиления соединен с третьим выходом блока 1 управления РЛС, первый блок 23 фазовых детекторов, второй вход которого через фазовращатель 25 соединен с пятым выходом синтезатором 2 частот, первый блок 26 аналого-цифровых преобразователей квадратурных сигналов в цифровую форму, второй вход которого соединен с четвертым выходом блока 1 управления РЛС, и цифровой измеритель 30, выход которого является выходом блока 28 первичной цифровой обработки. К второму выходу генератора 3 М-кода последовательно подключены второй модулятор 5, второй вход которого соединен с третьим выходом синтезатора 2 частот, и второй усилитель 7 мощности, выход которого соединен с третьим входом СВЧ коммутатора 8. К третьему выходу блока 9 управления антенной системой последовательно подключены второй усилитель 14 высокой частоты, второй смеситель 16, второй вход которого соединен с пятым выходом синтезатора 2 частот, второй усилитель 19 промежуточной частоты, второй вход которого соединен с вторым выходом устройства 17 временной автоматической регулировки усиления, а выход подключен третьему входу коммутатора 20 промежуточной частоты. К четвертому выходу блока 9 управления антенной системой последовательно подключены третий усилитель 32 высокой частоты, третий смеситель 33, второй вход которого соединен с шестым выходом синтезатора 2 частот, третий усилитель 34 промежуточной частоты, второй вход которого соединен с третьим выходом устройства 17 временной автоматической регулировки усиления, а выход подключен к четвертому коммутатору 20 промежуточной частоты. К выходу усилителя 21 промежуточной частоты последовательно подключены второй блок 24 фазовых детекторов, второй вход которого соединен с пятым выходом синтезатором 2 частоты и второй блок 27 аналого-цифровых преобразователей квадратурных сигналов в цифровую форму, второй вход которого соединен с шестым выходом синтезатора 2 частот, а выход подключен к второму входу двухпортовного буферного оперативного запоминающего устройства 29. К выходу первого усилителя 18 промежуточной частоты последовательно подключены первый перемножитель 35, второй вход которого соединен с выходом второго усилителя 19 промежуточной частоты, и первый узкополосный фильтр 38, выход которого соединен с пятым входом цифрового измерителя 30. К выходу первого усилителя 18 последовательно подключены второй перемножитель 36, второй вход которого соединен с выходом третьего усилителя 34 промежуточной частоты, второй узкополосный фильтр 39 и первый дополнительный фазовый детектор 42, второй вход которого соединен с выходом опорного генератора 41, и выход подключен к шестому входу цифрового измерителя 30. К выходу второго усилителя 19 промежуточной частоты последовательно подключены третий перемножитель 37, второй вход которого соединен с выходом третьего усилителя 34 промежуточной частоты, третий узкополосный фильтр 40 и второй дополнительный фазовый детектор 43, второй вход которого соединен с выходом опорного генератора 41, а выход подключен к седьмому входу цифрового измерителя 30.

Предложенный способ заключается в следующем.

В способе обнаружения и высокоточного определения параметров морских ледовых полей производят действия по обнаружению изменений радиоизлучений тремя интерферометрическими антеннами на дистанции. Радиоизлучения производят приемопередающей антенной, а отраженные сигналы принимают тремя антеннами. Отраженные сигналы разбиваются на секции. Производятся действия по обработке сигналов. Причем производятся вычисления каждой свертки посекционно. После чего спектр каждой секции перемножается почленно со спектром опорной функции. По окончании этого процесса над результатом перемножения проводится операция комплексного сопряжения. А над полученным выражением далее проводится операция преобразования функций посредством ОБПФ - обратного быстрого преобразования Фурье и затем повторно берется комплексное сопряжение от результата операции преобразования функций (ОБПФ). Для обнаружения кромки ледового поля, его фрагментов, оценки скорости дрейфа, направления дрейфа, торосистости ледовой поверхности осуществляется наполнение результатов сжатия, после чего производят сжатие эхо-сигналов интерферометрических антенн. При этом обеспечивается создание мониторинга измерений. По завершению процесса при необходимости производят построение карт изменений.

Существует множество способов ускорения вычисления БПФ. В нашем случае выбрана простая и весьма эффективная вычислительная структура «пинг/понг» с постоянными параметрами. Как правило, подобный устройства проектируются на основе ПЛИС - программируемых логических интегральных схем, что позволяет достигать высокой производительности, так как все операции решаются аппаратным путем, а не программным. Кроме того, им свойственна высокая степень адаптивности. Отсчеты сжатых ФМн сигналов квадратурно накапливаются и объединяются для решения задачи обнаружения кромки ледового поля. Одновременно когерентно накопленные отсчеты сжатых ФМн сигналов используются для анализа доплеровского спектра в каждом элементе дальности (после срабатывания обнаружителя), позволяющего оценить скорость дрейфа ледового поля.

Работа РЛС контроля ледовой обстановки может быть описана следующим образом.

Блок 1 управления РЛС формирует все служебные команды, выбор адресов в ОЗУ при записи и считывании, необходимые сигналы управления. Синтезатор 2 частот формирует гармонические сигналы двух диапазонов f1=9,372 ГГц (λ=3,2 см) и f2=34,88 ГГц (λ=8,6 мм), тактовые импульсы FT для регистра сдвига генератора М-кода, гетеродинные частоты fr1 и fr2 для преобразования по частот принимаемых сигналов, сигнал опорной частоты для первого 23 и второго 24 блоков фазовых детекторов. Генератор 3 М-кода предназначен для формирования М-псевдослучайной последовательности из 1023 дискретов СВЧ коммутатор 8 переключает сигналы обоих диапазонов 8,6 мм и 3,2 см по команде от блока 1 управления РЛС. При этом в качестве основного рабочего режима РЛС принят диапазон на длине волны 8,6 мм. Переключение режима работы РЛС на частотный диапазон 3,2 см используется в основном в случае плохих погодных условий, вызывающих сильные потери в мм диапазоне или распространении сигнала на трассе. Блок 9 управления антенной системой предназначен для коммутации режимов излучения и приема сигналов. Блок 10 антенной системы состоит из трех антенн: 11, 12 и 31. Причем антенна 11 используется как передающая и приемная для частот обоих диапазонов (отличие только в конструкции облучателя), а антенна 12 и 31 используется только как приемные антенны при работе РЛС в радиоинтерферометрическом режиме. Антенны 11, 12, и 31 вращаются на опоре основания 32.

Отраженные от опасных приближающихся объектов (айсберги, торосы и т.п.) сложные ФМн сигналы принимаются антеннами 11, 12 и 31 соответственно:

,

,

, 0≤t≤T1

где U1, U2, U3, f1, ϕ1, ϕ2, T1 - амплитуды, несущая частота, начальные фазы и длительность сигналов;

± Δf - нестабильность несущей частоты сигналов, обусловленная различными дестабилизирующими факторами, в том числе и эффектом Доплера:

ϕk(t)={0, π} - манипулируемая составляющая фазы, отображающая закон фазовой манипуляции в соответствии с модулирующим кодом M(t), причем ϕk(t)=coust при kτЭ<t<(k+1) τЭ, и может изменяться скачком при t= kτЭ, т.е. на границах между элементарными посылками (k=1,2,…,N-1);

τЭ, N - длительность и количество элементарных посылок, из которых составлен сигнал длительностью T1 (T1=N⋅τЭ);

d2 - радиус окружности, по которой вращается антенна 31 (измерительная база) (фиг 2.);

Ω - скорость вращения антенны 31 вокруг антенны 11;

α - пеленг (азимут) на опасный приближающий объект.

Указанные сигналы поступают на первые входы смесителей 15, 16, и 33, на вторые входы которых из синтезатора 2 частот подаются напряжения генераторов:

,

.

На выходах смесителей 15, 16 и 33 образуются напряжения комбинационных частот. Усилителями 18, 19 и 35 выделяются напряжения промежуточной частоты соответственно:

,

,

, 0≤t≤T1

где ;

;

;

- промежуточная частота;

; , .

Напряжения uпр1(t) и uпр2(t) поступают на два входа первого перемножителя 35, на выходе которого образуется гармоническое напряжение

,

;

- угол места опасного объекта

λ - длина волны;

d1 - измерительная база, которое выделяется узкополосным фильтром 38 и поступает на пятый вход цифрового измерителя 30.

Напряжение uпр1(t) и uпр3(t) поступают на два входа второго перемножителя 36, на выходе которого образуется гармоническое напряжение

,

где ,

которое выделяется узкополосным фильтром 39 и поступает на первый вход первого дополнительного фазового детектора 42, на второй вход которого подается опорное напряжение опорного генератора 41

.

На выходе фазового детектора 42 образуется низкочастотное напряжение

,

где ,

- азимут опасного объекта;

d2 - измерительная база,

которое поступает на шестой вход цифрового измерителя 30.

Напряжения uпр2(t) и

Поступают на два входа третьего перемножителя 37, на выходе которого образуется гармоническое напряжение

,

где .

Это напряжение выделяется узкополосным фильтром 40 и поступает на первый вход второго дополнительного фазового детектора 43, на второй вход которого подается опорное напряжение u0(t) с выхода опорного генератора 41.

На выходе фазового детектора 43 образуется низкочастотное напряжение

,

где;

- угол стабилизации опасного объекта,

которое поступает на седьмой вход цифрового измерителя 30.

Для осуществления замеров толщины ледовой кромки, шероховатости льда, т.е. его торосов, подключается к работе миллиметровый диапазон антенны 11 и замеры этих показателей осуществляются при помощи двух антенн 11 и 12, т.е. в сантиметровом режиме обнаруживает кромку льда, а в миллиметровом не только обнаруживает, но и замеряет шероховатость льда, толщину ледовой кромки. При поступлении сигнала он усиливается усилителями 13 и 14 высокой частоты, преобразуется по частоте смесителями 15 и 16, усиливается усилителями 18 и 19 промежуточной частоты и поступает на коммутатор 20, который переключает каналы 8,6 мм и 3,2 см. Первый блок 26 и второй блок 27 аналого-цифровых преобразователей преобразовывают квадратурные сигналы в цифровую форму, которые поступают в двухпортовое буферное оперативное запоминающее устройство 29. В радиоинтерферометрическом режиме работы РЛС на частоте f2=34,88 ГГц (λ=8,6 мм) от антенн 11 и 12 по СВЧ и ПЧ трактам, по фазовому детектированию и оцифровке в АЦП используют идентичные параллельные приемные каналы. Запись и считывание отсчетов в двухпортовом буферном оперативном запоминающем устройстве (БОЗУ) 29 происходит одновременно, но с разными темпами и по разным адресам.

Блок 28 первичной цифровой обработки состоит из двухпортового БОЗУ 29 и цифрового измерителя 30. Двухпортовое буферное оперативное запоминающее устройство 29 включает в себя процессор сжатия ФМн сигналов и обнаружитель. Цифровой измеритель 30 состоит из счетчика дальности, процессора БПФ, цифрового коррелятора интерферометра и соответственно цифрового измерителя.

Все используемые блоки являются известными, либо могут быть получены из известных устройств путем их объединения известными методами.

Предлагаемые технические решения позволяют обеспечить бесконтактное измерение толщины опасных ледовых образований с толщиной льда более 50 см с высокой точностью, определить в заданном радиусе кромки льда. Кроме того, может быть определена скорость движения дрейфующих полей и крупногабаритного льда по направлению к морским добывающим платформам.

Таким образом, предлагаемые технические решения по сравнению с прототипами и другими техническими решениями аналогичного назначения обеспечивает определение местоположения приближающихся опасных объектов, таких как айсберг, обширные ледовые поля, торосы, крупные льдины и оценку их опасности для морских добывающих платформ. Это достигается за счет использования второй и третьей измерительных баз, расположенных в азимутальной и гипотенузной плоскостях, антенны которых размещены в виде прямоугольного треугольника, в вершине которого помещена приемопередающая антенна.

Предлагаемые технические решения инвариантны к виду модуляции (манипуляции) и нестабильности несущей частоты принимаемых сложных ФМн, что также обеспечивает повышение точности определения местоположения приближающихся опасных объектов.


Способ обнаружения и высокоточного определения параметров морских ледовых полей и радиолокационная система для его реализации
Способ обнаружения и высокоточного определения параметров морских ледовых полей и радиолокационная система для его реализации
Источник поступления информации: Роспатент

Showing 51-60 of 106 items.
26.08.2017
№217.015.d8e8

Припойная паста

Изобретение может быть использовано для поверхностного монтажа электрорадиоэлементов и интегральных схем на печатные платы. Припойная паста содержит, мас. %: порошок низкотемпературного припоя 80…91 и флюс-связку 9…20. Флюс-связка включает компоненты в следующем соотношении, мас.%: сосновая...
Тип: Изобретение
Номер охранного документа: 0002623554
Дата охранного документа: 27.06.2017
26.08.2017
№217.015.d8ec

Припойная паста

Изобретение может быть использовано для поверхностного монтажа электрорадиоэлементов и интегральных схем на печатные платы. Припойная паста содержит, мас.%: порошок низкотемпературного припоя 80…91 и флюс-связку 9…20. Флюс-связка включает компоненты в следующем соотношении, мас.%: синтетическая...
Тип: Изобретение
Номер охранного документа: 0002623571
Дата охранного документа: 27.06.2017
26.08.2017
№217.015.e0c5

Индуктивный датчик тахометрического счетчика жидкости

Изобретение относится к области приборостроения, а именно к счетчикам измерения расхода количества воды, протекающей в трубах с диаметром прохода больше 40 мм. Индуктивный датчик тахометрического счетчика жидкости содержит чувствительный элемент в виде катушки индуктивности (1), расположенной в...
Тип: Изобретение
Номер охранного документа: 0002625539
Дата охранного документа: 14.07.2017
04.04.2018
№218.016.31d9

Система автоматического управления микроклиматом в помещениях для размещения животных

Предлагаемая система относится к теплонасосным системам и установкам и может быть использована для горячего водоснабжения и отопления помещений. Система автоматического управления микроклиматом в помещениях для размещения животных, содержащая компрессор, два бака-аккумулятора, конденсатор,...
Тип: Изобретение
Номер охранного документа: 0002645203
Дата охранного документа: 16.02.2018
04.04.2018
№218.016.34c3

Система интеллектуального управления и контроля параметров и режимов работы машин и оборудования ферм по производству молока

Изобретение относится к сельскому хозяйству, в частности к оборудованию ферм по производству молока. Датчики (1)-(6) соединены с многоканальными цифровыми измерителями (7)-(12), выходы которых через модуль (13) сбора данных соединены с компьютером (14) фермы. Видеокамеры (15) через регистратор...
Тип: Изобретение
Номер охранного документа: 0002646051
Дата охранного документа: 01.03.2018
18.05.2018
№218.016.50cc

Кодовая шкала

Изобретение относится к измерительной технике. Технический результат направлен на расширение арсенала средств. Кодовая шкала содержит первую информационную кодовую дорожку, выполненную в соответствии с символами двоичной последовательности с длиной периода N=2, вторую и третью информационные...
Тип: Изобретение
Номер охранного документа: 0002653323
Дата охранного документа: 07.05.2018
09.06.2018
№218.016.5a68

Способ безразборной диагностики изменений технического состояния судовых рулевых устройств в результате воздействия ледовых нагрузок и устройство для его реализации

Способ и устройство для его реализации относятся к области судостроения, в частности к способам диагностики технического состояния судовых рулей без разборки при нахождении судов на плаву. Способ и устройство могут быть использованы для диагностики технического состояния рулевых устройств судов...
Тип: Изобретение
Номер охранного документа: 0002655611
Дата охранного документа: 29.05.2018
09.06.2018
№218.016.5a8a

Способ определения расхода жидкости в трубопроводе

Предлагаемый способ относится к измерительной технике и может быть использован для измерения расхода жидкости с применением трибоэлектрического эффекта и электромагнитного явления. Устройство, реализующее предлагаемый способ, содержит трубопровод 1, ферритовое кольцо 2, обмотку 3, помещенную в...
Тип: Изобретение
Номер охранного документа: 0002655621
Дата охранного документа: 29.05.2018
09.06.2018
№218.016.5b2e

Индукционный датчик углового положения

Изобретение относится к измерительной технике и может быть использовано для измерения угловых перемещений с помощью преобразователя перемещения индукционного типа. Сущность изобретения заключается в том, что индукционный датчик углового положения содержит вращающийся трансформатор и...
Тип: Изобретение
Номер охранного документа: 0002655632
Дата охранного документа: 29.05.2018
20.06.2018
№218.016.6454

Система дистанционного контроля состояния атмосферы и ледяного покрова в северных районах

Изобретение относится к системам для дистанционного контроля состояния окружающей среды. Сущность: система содержит блок управления, блок определения координат по системе спутниковой навигации, блок определения состояния атмосферы, блок определения толщины ледяного покрова, блок электропитания,...
Тип: Изобретение
Номер охранного документа: 0002658123
Дата охранного документа: 19.06.2018
Showing 51-60 of 180 items.
10.01.2015
№216.013.1dea

Способ аэродинамического профилирования бортов карьеров и угольных разрезов

Предлагаемый способ относится к горной промышленности, в частности к разработке месторождений открытым способом, и может быть использован в глубоких карьерах и угольных разрезах, где добыча полезных ископаемых становится невозможной без усиления естественного воздухообмена на нижних горизонтах...
Тип: Изобретение
Номер охранного документа: 0002539086
Дата охранного документа: 10.01.2015
27.01.2015
№216.013.2112

Способ синхронизации часов и устройство для его реализации

Изобретение относится к технике связи и радиотехники и может быть использовано для сличения шкал времени, разнесенных на большие расстояния. Устройство синхронизации часов, реализующее предлагаемый способ, содержит стандарт 1 частоты и времени, блок 2 гетеродинов, первый 2.1 и второй 2.2...
Тип: Изобретение
Номер охранного документа: 0002539914
Дата охранного документа: 27.01.2015
10.04.2015
№216.013.39e8

Радиоприемное устройство для обнаружения широкополосных сигналов с фазовой манипуляцией

Изобретение относится к радиотехнике и может быть использовано в аппаратуре, предназначенной для приема и анализа фазоманипулированных (ФМн) сигналов с бинарным значением фазы. Достигаемый технический результат - повышение помехоустойчивости и достоверности обнаружения широкополосных...
Тип: Изобретение
Номер охранного документа: 0002546312
Дата охранного документа: 10.04.2015
20.08.2015
№216.013.6e8b

Способ и система радиочастотной идентификации и позиционирования железнодорожного транспорта

Изобретение относится к области железнодорожного транспорта и предназначено для идентификации радиочастотных меток. Техническое решение содержит радиочастотные метки, платформу, линию остановки, железнодорожное транспортное средство, радиочастотный считыватель, устройство управления,...
Тип: Изобретение
Номер охранного документа: 0002559869
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.6f6c

Способ определения скорости распространения и направления прихода ионосферного возмущения

Изобретение относится к области радиофизики и может быть использовано для контроля за солнечной, геомагнитной и сейсмической активностью, за предвестниками землетрясения, извержения вулканов, цунами, процессами грозовой активности, динамикой мощных штормовых циклонов, а также для обнаружения...
Тип: Изобретение
Номер охранного документа: 0002560094
Дата охранного документа: 20.08.2015
20.10.2015
№216.013.8461

Система противопожарной защиты контейнерной базовой несущей конструкции

Изобретение относится к противопожарной технике, а более конкретно к автоматическим устройствам сигнализации о пожарной обстановке и управления противопожарным оборудованием, и может быть использована для противопожарной защиты различных объектов, в том числе и контейнерных базовых несущих...
Тип: Изобретение
Номер охранного документа: 0002565492
Дата охранного документа: 20.10.2015
20.12.2015
№216.013.9a63

Способ обнаружения, идентификации и определения скорости движения транспортного средства.

Изобретение относится к способу обнаружения, идентификации и определения скорости движения транспортного средства. Зондирующий радиосигнал излучают в направлении транспортного средства, принимают ответный сигнал и определяют скорость путем измерения доплеровского смещения частоты. Для этого на...
Тип: Изобретение
Номер охранного документа: 0002571148
Дата охранного документа: 20.12.2015
27.01.2016
№216.014.bd3e

Устройство для определения частоты, вида модуляции и манипуляции принимаемых сигналов

Предлагаемое устройство относится к области радиоэлектроники и может быть использовано для определения несущей частоты и вида модуляции сигналов, принимаемых в заданном диапазоне частот. Технической задачей изобретения является расширение функциональных возможностей устройства путем...
Тип: Изобретение
Номер охранного документа: 0002573718
Дата охранного документа: 27.01.2016
10.03.2016
№216.014.bfa9

Способ контроля состояния конструкции здания или инженерно-строительного сооружения и устройство для его осуществления

Изобретения относятся к приборостроению, в частности к контрольно-измерительной технике, а именно к автоматическим средствам непрерывного отслеживания состояния конструкций. Способ заключается в опросе датчиков, установленных на сооружениях, и обработке данных на компьютере, со сравнением с...
Тип: Изобретение
Номер охранного документа: 0002576548
Дата охранного документа: 10.03.2016
10.04.2016
№216.015.2ed7

Система контроля соблюдения правил дорожного движения

Изобретение относится к области дорожного движения, а именно к системам соблюдения правил дорожного движения. Система содержит сигнальное устройство и исполнительное устройство. Сигнальное устройство размещено на пункте контроля, исполнительное устройство размещено на транспортном средстве, эти...
Тип: Изобретение
Номер охранного документа: 0002580597
Дата охранного документа: 10.04.2016
+ добавить свой РИД