×
12.07.2018
218.016.6fa1

Результат интеллектуальной деятельности: Способ изготовления смесей для калибровки газоаналитического оборудования с использованием твердотельного электролизера

Вид РИД

Изобретение

Аннотация: Изобретение относится к исследованию и анализу газов. Способ изготовления смесей для калибровки газоаналитического оборудования, включает: электролиз поступающих в электролизер газовых компонентов с контролируемым выходом продуктов, их смешивание с известным потоком инертного газа и получение смеси с известной концентрацией анализируемого компонента. Процесс изготовления проходит при высоких температурах, предотвращающих отравление электролизера продуктами электролиза, с использованием твердотельного электролита, не подверженного испарению, разбрызгиванию и проникновению в газовые коммуникации. Технический результат заключается в улучшении механической стабильности и простоте подключения к газовой системе.1 ил., 1 табл.

Изобретение относится к исследованию и анализу газов, в частности, к изготовлению смесей для калибровки газоаналитического оборудования с использованием твердотельного электролизера.

Наиболее известный способ калибровки заключается в использовании поверочных газовых смесей (как правило, промышленного изготовления), содержащих фиксированную концентрацию определяемых компонентов [1]. Поскольку при работе в различных концентрационных диапазонах необходимо иметь широкий выбор калибровочных смесей, использование указанного способа связано с существенными неудобствами, такими как ограниченное количество точек на калибровочной зависимости, влияющее на точность анализа, повышенные требования к безопасности хранения и использования баллонов, что, в частности, затрудняет автоматизацию анализа. Кроме того, концентрация компонентов в поверочных смесях может меняться со временем из-за утечек или химического взаимодействия.

Другой способ заключается в калибровке по внутренним лабораторным стандартам, получаемым путем смешивания отдельных газов в необходимом соотношении. Преимущество данной процедуры заключается в более оперативном получении смесей с необходимыми концентрациями газовых компонентов, однако для ее реализации требуется монтаж газовой линии, позволяющей контролировать и смешивать газовые потоки [2]. При этом получаемый концентрационный диапазон ограничен предельной пропускной способностью регуляторов потока и их точностью; как правило, получить газовую смесь с точными концентрациями отдельных компонентов ниже 0,5-1,0% затруднительно. Кроме того, при изготовлении многокомпонентной смеси конструкция газовой линии усложняется и увеличивается риск утечек, в то время как для каждого газа необходимо использование отдельного дорогостоящего регулятора потока.

Наиболее близкий аналог (прототип) предлагаемого способа описан в [4]. В данном способе изготовление поверочной смеси осуществляется путем контролируемого электрохимического образования газообразного продукта, по которому проводится калибровка, из раствора электролита. В описанном патенте электролит находится в жидком состоянии, что может создавать ряд проблем, особенно при больших газовых потоках, связанных с возможным разбрызгиванием и попаданием капель жидкости в газовые коммуникации, загрязнением получаемой газовой смеси парами электролита. Электролит, как правило, используется при температурах ниже 200 0 С, при которых возможно отравление материала электрода образующимися газами, такими как СО [3]. Кроме того, для реализации указанного способа необходимо обеспечить газовую линию, одновременно предусматривающую герметичность системы и возможность периодического пополнения электролита.

Заявляемое изобретение направлено на разработку способа изготовления поверочных смесей для калибровки газоаналитического оборудования в широком концентрационном диапазоне без использования жидких компонентов. Техническим результатом, на который направлено настоящее изобретение, является улучшение механической стабильности по сравнению с жидкостным электролизером, более простое и надежное подключение к газовой системе, а также отсутствие необходимости периодического пополнения электролита.

Технический результат достигается в заявляемом способе, включающем электролиз поступающих в электролизер газовых компонентов с контролируемым выходом продуктов, их смешивание с известным потоком инертного газа и получение смеси с известной концентрацией анализируемого компонента при этом процесс проходит при высоких температурах, предотвращающих отравление электролизера продуктами электролиза, с использованием твердотельного электролита, не подверженного испарению, разбрызгиванию, проникновению в газовые коммуникации.

Для решения выше поставленной задачи предлагается способ изготовления поверочных смесей с использованием твердотельного электролизера. Как и в способе-прототипе [4], данный способ основан на осуществлении контролируемого электрохимического процесса в газовой смеси, пропускаемой через электролизер. Регулирование скорости газового потока и силы тока через электролизер позволяют достигать необходимое содержание требуемого компонента в достаточно широком концентрационном диапазоне (от 0,01 до 100 мол. %). При этом, в отличие от систем с жидкими компонентами, твердотельный электролизер обладает механической стабильностью даже при больших газовых потоках, в то время как его конструкция (трубка или система концентрических трубок) предполагает более простое подключение к газовой линии [5]. Электролизер функционирует при повышенных температурах (800-1000°С), что исключает риск его отравления выделяющимся монооксидом углерода, в отличие от низкотемпературных устройств [3].

Схема, по которой реализуется способ, показана на Фиг. 1. Газ, участвующий в процессе электрохимического окисления/восстановления в условиях функционирования электролизера, поступает через регулятор (1) и смешивается с инертным газом, поступающим через регулятор (2). Полученная смесь пропускается через осушитель (3) и поступает в твердотельный электролизер (или систему последовательно соединенных электролизеров) (4). Подключение токоподводов к источнику тока (5), работающему в гальваностатическом режиме, осуществляется таким образом, чтобы положительный потенциал соответствовал электроду, на котором происходит окислительный процесс. Электролизер помещается в электропечь сопротивления (6) и нагревается до температуры 800-1000°С. После прохождения через электролизер преобразованная газовая смесь поступает на газоаналитический прибор (7).

В таблице 1 кратко представлены процедуры калибровки по таким газам, как кислород (О2), водород (Н2), монооксид (СО) и диоксид углерода (СО2).

В последней колонке используются следующие обозначения: wx - концентрация анализируемого компонента, об. %; I - сила тока через электролизер, A; F - постоянная Фарадея (96485 Кл/моль); Vm - молярный объем при стандартных условиях (22,4 л/моль); Ui.g. и Ux - скорости потоков соответственно инертного газа и х-го газа (в пересчете на чистый компонент), л/с.

Указанные в таблице калибровочные диапазоны достаточно условны и могут варьироваться в зависимости от чистоты используемых газов, степени герметичности системы, точности и пропускной способности регуляторов газового потока, точности источника тока и предельной мощности электролизера, токсичности и взрывоопасности газов. Кроме того, определение низких концентраций водорода, СО и СO2 затруднительно из-за отклонения зависимости их концентраций от силы тока через насос от линейности, связанного с наличием равновесий в системах Н2О-Н22 и СО2-СО-О2.

Литература

1. Ж. Гиошон, К. Гиймен, «Количественная газовая хроматография», - М.: Мир, 1991, стр. 211.

2. Ж. Гиошон, К. Гиймен, «Количественная газовая хроматография», - М.: Мир, 1991, стр. 210.

3. S. Gottesfeld, J. Pafford, A New Approach to the Problem of Carbon Monoxide Poisoning in Fuel Cells Operating at Low Temperatures // J. Electrochem. Soc. 135 (1988) 2651.

4. Патент РФ 2143681, кл. G01N 30/04, 1999.

5. Авторское свидетельство СССР SU 1840818, кл. С25В 1/02, 1980.

Способ изготовления смесей для калибровки газоаналитического оборудования, включающий электролиз поступающих в электролизер газовых компонентов с контролируемым выходом продуктов, их смешивание с известным потоком инертного газа и получение смеси с известной концентрацией анализируемого компонента, отличающийся тем, что процесс проходит при высоких температурах, предотвращающих отравление электролизера продуктами электролиза, с использованием твердотельного электролита, не подверженного испарению, разбрызгиванию, проникновению в газовые коммуникации.
Способ изготовления смесей для калибровки газоаналитического оборудования с использованием твердотельного электролизера
Способ изготовления смесей для калибровки газоаналитического оборудования с использованием твердотельного электролизера
Источник поступления информации: Роспатент

Showing 31-40 of 91 items.
25.08.2017
№217.015.bfac

Способ изготовления изделия с фильтром для агрессивных жидкостей и газов

Изобретение относится к области химической технологии и может быть использовано для изготовления фильтров, способных применяться для очистки агрессивных жидкостей и газов от инородных включений при высоких температурах эксплуатации, в том числе диметилгидразина, используемого в качестве...
Тип: Изобретение
Номер охранного документа: 0002617105
Дата охранного документа: 20.04.2017
25.08.2017
№217.015.cee8

Способ получения полых нагревателей сопротивления на основе углеродкарбидокремниевого материала

Предложен способ получения полых трубчатых нагревателей из композиционного материала на основе углерода, кремния и карбида кремния путем пропитки расплавленным кремнием предварительно сформированной трубы из углеграфитовых тканей. Заготовку перемещают в вакуумной среде относительно капиллярного...
Тип: Изобретение
Номер охранного документа: 0002620688
Дата охранного документа: 29.05.2017
26.08.2017
№217.015.d64a

Устройство квантовой криптографии (варианты)

Устройство квантовой криптографии включает источник излучения, первый волоконный светоделитель, волоконный интерферометр, второй волоконный светоделитель, первый фазовый модулятор, третий волоконный светоделитель, детектор, аттенюатор, линию задержки, поляризационный фильтр, второй фазовый...
Тип: Изобретение
Номер охранного документа: 0002622985
Дата охранного документа: 21.06.2017
26.08.2017
№217.015.d8c0

Способ получения сульфида галлия (ii)

Изобретение относится к неорганической химии, а именно к получению сульфида галлия (II), являющегося перспективным материалом для полупроводниковой оптоэлектронной техники и инфракрасной оптики. Cинтез GaS проводили в замкнутом объеме из элементарных галлия и серы, взятых в стехиометрическом...
Тип: Изобретение
Номер охранного документа: 0002623414
Дата охранного документа: 26.06.2017
26.08.2017
№217.015.e440

Модулятор электромагнитного излучения субтерагерцового и терагерцового диапазона для систем высокоскоростной беспроводной связи

Изобретение относится к оптоэлектронике, а именно к модуляторам электромагнитного излучения, в частности, работающим в субтерагерцовом и терагерцовом диапазонах частот (100-10000 ГГц). Изобретение может использоваться в областях науки и техники, использующих данные диапазоны частот, в...
Тип: Изобретение
Номер охранного документа: 0002626220
Дата охранного документа: 24.07.2017
19.01.2018
№218.016.0759

Способ получения кремниевых мишеней для магнетронного распыления

Изобретение относится к литейному производству, в частности к получению кремниевых профильных отливок для мишеней магнетронного распыления. Шихту полупроводникового поликристаллического кремния расплавляют в графитовом тигле, который перемещают вертикально в полости нагревателя. В донном...
Тип: Изобретение
Номер охранного документа: 0002631372
Дата охранного документа: 21.09.2017
10.05.2018
№218.016.4d2f

Способ выращивания кристаллов фуллерена с60

Изобретение может быть использовано в полупроводниковой оптоэлектронике. Навеску порошка исходного фуллерена С60 загружают в кварцевую ампулу, внутренняя поверхность которой покрыта пироуглеродом для защиты исходного порошка от воздействия УФ излучения. Затем проводят низкотемпературную...
Тип: Изобретение
Номер охранного документа: 0002652204
Дата охранного документа: 25.04.2018
09.08.2018
№218.016.78ff

Материал шпонки для высокотемпературных применений

Изобретение относится к области машиностроения и может быть использовано в устройствах, при работе которых возможно выделение большого количества тепла, приводящего к тепловому расширению шпонки и заклиниванию устройства. Композиционный материал шпонки представляет собой матрицу из...
Тип: Изобретение
Номер охранного документа: 0002663146
Дата охранного документа: 01.08.2018
14.03.2019
№219.016.dfbb

Способ прочного соединения изделий из графита

Изобретение относится к области химической технологии и может быть использовано для изготовления блоков из графитовых деталей, способных использоваться при высоких температурах. Сначала на торцевые поверхности подлежащих соединению графитовых деталей наносят слои поливинилацетата, в полученный...
Тип: Изобретение
Номер охранного документа: 0002681628
Дата охранного документа: 11.03.2019
21.03.2019
№219.016.eb97

Электрод для дуговой плавки металлов

Изобретение относится к электроду для дуговой плавки металлов и может быть использовано для плавления металлических порошков, прецизионной сварки тонколистовых металлов и изготовления деталей сложной геометрической формы в среде защитных газов. Электрод для дуговой плавки металлов содержит...
Тип: Изобретение
Номер охранного документа: 0002682553
Дата охранного документа: 19.03.2019
Showing 1-3 of 3 items.
20.05.2015
№216.013.4b66

Катодный материал для тотэ на основе медь-содержащих слоистых перовскитоподобных оксидов

Изобретение относится к области электротехники, в частности к катодному материалу для твердооксидных топливных элементов (ТОТЭ) на основе сложных оксидов 3d-металлов. Катодный материал выполнен на основе перовскитоподобных слоистых оксидов с общей формулой PrSrCuO, где 0.0
Тип: Изобретение
Номер охранного документа: 0002550816
Дата охранного документа: 20.05.2015
20.11.2015
№216.013.914f

Способ изготовления контактного электродного материала с контролируемой пористостью для батарей твердооксидных топливных элементов

Изобретение относится к области твердооксидных топливных элементов (ТОТЭ) планарной конструкции, а именно к сборке отдельных мембранно-электродных блоков и деталей токовых коллекторов (интерконнекторов) в батареи для увеличения снимаемой мощности. Задачей настоящего изобретения является...
Тип: Изобретение
Номер охранного документа: 0002568815
Дата охранного документа: 20.11.2015
19.01.2018
№218.016.0323

Катодный материал для тотэ на основе купрата празеодима

Изобретение относится к области электротехники, а именно к катодному материалу для твердооксидного топливного элемента на основе купрата празеодима. В качестве катодного материала взято соединение, допированное оксидом церия, с общей формулой PrCeCuO, где 0<х≤0.15, полученное криохимическим...
Тип: Изобретение
Номер охранного документа: 0002630216
Дата охранного документа: 06.09.2017
+ добавить свой РИД