×
12.07.2018
218.016.6f7f

Результат интеллектуальной деятельности: Способ восстановления курсовой ориентации космического аппарата с использованием бесплатформенного орбитального гирокомпаса

Вид РИД

Изобретение

№ охранного документа
0002661050
Дата охранного документа
11.07.2018
Аннотация: Изобретение относится к управлению космическим аппаратом (КА) с использованием бесплатформенного орбитального гирокомпаса, прибора ориентации на Землю и гироскопических измерителей угловой скорости. При этом предварительно оценивают положение КА в орбитальной системе координат, а затем выполняют координированный курсовой программный поворот КА в плоскость орбиты. В процессе поворота компенсируют связи между всеми каналами ориентации. Техническим результатом является повышение качества переходного процесса одновременно в каналах курса, крена и тангажа при существенном уменьшении времени переходного процесса восстановления курсовой ориентации КА. 2 ил.

Изобретение относится к области космической техники и может быть использовано для повышения качества переходного процесса и снижения времени восстановление курсовой ориентации орбитального космического аппарата (КА), в состав системы управления угловым движением (СУД) которого входит орбитальный бесплатформенный гирокомпас (ОГК).

В книге [1] авторов Бесекерского В.А., Иванова В.А., Самотокина Б.Б. «Орбитальное гирокомпасирование». СПб. 251 с. 1993 рассмотрен способ восстановления курсовой ориентации КА с помощью гироорбитанта. Недостатком способа являются большое время восстановления ориентации и низкое качество переходного процесса, выражающееся в большой величине перерегулирования в каналах угловой ориентации КА - порядка 5÷40°.

Аналогичными недостатками обладают все, без исключения, известные типы ОГК, см., например [3-6]. Это связано с тем, что в классическом ОГК восстановление курсовой ориентации осуществляется путем непосредственного включения режима гирокомпасирования, который принципиально не приспособлен к работе в таком режиме. При этом движение КА в сторону устойчивого полюса (плоскость орбиты) происходит слишком долго, некоординированно, с большим перерегулированием. Крайне негативно этот недостаток проявляется в системах управления орбитальных КА с релейным режимом стабилизации.

Наиболее близким аналогом может служить техническое решение, представленное в статье [3] авторов Кэмпбел, Коффи «Цифровые системы отсчета углов». Журнал «Вопросы ракетной техники», 1971 г., №11, стр. 63÷88.

Техническим результатом является повышение качества и существенное уменьшение времени переходного процесса при восстановлении курсовой ориентации КА с применением ОГК бесплатформенного типа.

Для достижения результата в известный способ, включающий приведение КА к местной вертикали по сигналам прибора ориентации по Земле (ПОЗ) и стабилизацию КА относительно ОСК по крену и тангажу по сигналам ПОЗ и гироскопических измерителей угловой скорости (ГИУС) крена и тангажа, а также стабилизацию КА в канале курса по сигналу курсового ГИУС, вводят новые операции - приводят КА к местной вертикали до выполнения условий ⎜γПОЗ⎜≤Δγ, ⎜ϑПОЗ⎜≤Δϑ, где γПОЗ, ϑПОЗ - сигналы ПОЗ по крену и тангажу соответственно, Δγ, Δϑ - заданные погрешности ориентации КА относительно местной вертикали, снимают показания ГИУС об угловых скоростях КА по крену и тангажу и рассчитывают текущее положение КА по курсу относительно ОСК на момент времени, например, по формуле , где ωXi, ωZi - абсолютные угловые скорость КА в каналах крена и тангажа соответственно, которое запоминают, подключают ПОЗ в контур коррекции ОГК и переходят на стабилизацию КА по сигналам ОГК с одновременным поворотом КА в плоскость орбиты со скоростью , где λ(τ), τ - текущие значения программного угла, программной скорости и времени программного поворота соответственно, в процессе которого компенсируют взаимовлияние каналов ориентации перекрестными связями по аргументу разности начального запомненного угла курса и текущего программного значения, а при достижении условия А≤ε, где ε - допустимая погрешность восстановления курсовой ориентации, отключают программное управление и продолжают стабилизировать КА по сигналам ОГК.

На фигурах 1 и 2 приведены результаты моделирования режима восстановления курсовой ориентации КА известным (фиг. 1) и предложенным (фиг. 2) способами.

На фигурах обозначено:

γgrad, ψgrad, θgrad - угловое положение КА относительно ОСК по крену, курсу и тангажу соответственно;

- абсолютные угловые скорости КА в проекциях на собственные оси крена, курса и тангажа.

Из представленных результатов моделирования наглядно видно, что при использовании известного способа перерегулирование в каналах ориентации достигает пяти градусов, качество переходных процессов неудовлетворительное, а время восстановления курсовой ориентации КА из начального положения 180° составляет 9000 с или 2,5 часа (фиг. 1).

При использовании нового способа уравнения, описывающие процесс восстановления ориентации после выполнения условий ⎜γПОЗ⎜≤Δγ, ⎜ϑПОЗ⎜≤Δϑ, принимают вид [2]:

где Δβ, , Δα, , Δθ, - выходные сигналы ОГК в систему стабилизации КА по углам и угловым скоростям в каналах крена, курса и тангажа;

- аргумент разности начального запомненного угла курса и текущего программного значения λ(τ);

ωX, ωY, ωZ - угловые скорости КА относительно инерциальной системы координат (ИСК) в проекциях на связанные оси КА по крену, курсу и тангажу, измеряемые датчиками ГИУС;

γПОЗ, ϑПОЗ - выходные сигналы прибора ориентации по Земле (ПОЗ) по крену и тангажу;

Ω - орбитальная угловая скорость КА;

κ1, κ2, κ3 - коэффициенты коррекции.

Результаты моделирования процесса восстановления курсовой ориентации КА из положения и при нулевых начальных положениях КА по γ и θ показаны на фигуре 2.

В процессе моделирования допустимая угловая погрешность ε - восстановления курсовой ориентации принималась равной 1% от полного значения , а текущее значение программной уставки λ(τ) рассчитывалось по формуле:

,

где ωЗ – скорость обнуляющего программного поворота задается как максимальная допустимая угловая скорость КА в канале курса. При этом время программного поворота рассчитывалось по формуле: .

Для ωЗ=0,2% и время программного поворота составило 900 с, при этом величина перерегулирования ε в канале курса не превысила 1° или 0,6%. Отклонения КА в каналах крена и тангажа относительно ОСК в течение всего времени поворота изменялись незначительно, оставаясь около нулевых значений.

Из представленных графиков видно, что заявленный технический результат достигнут как по качеству переходного процесса - процесс близок к оптимальному, так и по его времени - время переходного процесса на восстановления курсовой ориентации КА уменьшилось в ~ 10 раз или на порядок.

Источники информации

1. Бесекерский В.А., Иванов В.А., Самотокин Б.Б. Орбитальное гирокомпасирование. СПб. 251 с. 1993.

2. Патент 2509690 RU.

3. Кэмпбел, Коффи «Цифровые системы отсчета углов». Журнал «Вопросы ракетной техники», 1971 г., №11.

4. Брайсон А.Е., Кортюм В. Вычисление местного углового положения орбитального космического аппарата. Труды III Международного симпозиума ИФАК. Франция, Тулуза, 1970. Управление в космосе. Том 2. М. Наука. 23 с. 1972.

5. Раушенбах Б.В., Токарь Е.Н. Управление ориентацией космических аппаратов. М. Наука. 598 с. 1974.

6. Bowers J.L., Rodden J.J., Scott E.D., Debra D.B. Orbital Gyrocompassing Heading Reference, AIAA Journal of Spacecrat and Rockets, 1968, v.5, №8.


Способ восстановления курсовой ориентации космического аппарата с использованием бесплатформенного орбитального гирокомпаса
Способ восстановления курсовой ориентации космического аппарата с использованием бесплатформенного орбитального гирокомпаса
Способ восстановления курсовой ориентации космического аппарата с использованием бесплатформенного орбитального гирокомпаса
Способ восстановления курсовой ориентации космического аппарата с использованием бесплатформенного орбитального гирокомпаса
Способ восстановления курсовой ориентации космического аппарата с использованием бесплатформенного орбитального гирокомпаса
Способ восстановления курсовой ориентации космического аппарата с использованием бесплатформенного орбитального гирокомпаса
Способ восстановления курсовой ориентации космического аппарата с использованием бесплатформенного орбитального гирокомпаса
Способ восстановления курсовой ориентации космического аппарата с использованием бесплатформенного орбитального гирокомпаса
Источник поступления информации: Роспатент

Showing 41-50 of 161 items.
26.08.2017
№217.015.ea83

Датчик угла наклона объекта

Изобретение относится к устройствам для измерения углов наклона объекта в трехмерной системе координат относительно гравитационного и магнитного полей Земли и может быть использовано при горизонтально-наклонном бурении скважин. Датчик угла наклона объекта, чувствительный элемент которого...
Тип: Изобретение
Номер охранного документа: 0002627991
Дата охранного документа: 14.08.2017
26.08.2017
№217.015.eb2e

Узел стыковки разделяемых объектов летательных аппаратов

Изобретение относится к ракетной технике и может найти применение в конструкциях систем разделения объектов летательных аппаратов (ЛА), где требуется снижение ударных нагрузок и импульса от действия средства разделения на точность выведения конечных ступеней объекта, в частности в заднем узле...
Тип: Изобретение
Номер охранного документа: 0002628282
Дата охранного документа: 15.08.2017
26.08.2017
№217.015.eb5e

Способ соединения одножильного провода с контактом электросоединителя методом обжимки

Изобретение относится к области электромонтажных работ в области соединителей, например, в самолето- и ракетостроении. Соединитель предназначен для монтажа многожильных проводов методом обжимки, для создания возникновения деформации жилы при обжимке и для достижения необходимой механической...
Тип: Изобретение
Номер охранного документа: 0002628410
Дата охранного документа: 16.08.2017
20.11.2017
№217.015.ef8c

Ракета и ракетный двигатель твёрдого топлива

Изобретения относятся к ракетной технике и могут быть использованы при создании ракеты и ракетного двигателя твердого топлива, имеющих габаритные ограничения в исходном состоянии, причем длина полезного груза ракеты сопоставима с длиной корпуса ракетного двигателя. Ракета содержит тянущий...
Тип: Изобретение
Номер охранного документа: 0002629048
Дата охранного документа: 24.08.2017
20.11.2017
№217.015.efc6

Способ изготовления лопаток компрессора из титанового сплава вт6

Изобретение может быть использовано для изготовления лопатки компрессора из высокопрочного титанового сплава ВТ6 на основе эвтектоидной системы легирования. Проводят горячую газовую формовку слитка со сверхпластической деформацией при температуре от 870 до 1000°С и скорости деформации 10c....
Тип: Изобретение
Номер охранного документа: 0002629138
Дата охранного документа: 24.08.2017
29.12.2017
№217.015.f49f

Устройство для зарядки баллона газом и герметизации под давлением

Изобретение относится к испытательной технике в машиностроении и может быть использовано в авиации и ракетостроении при производстве блоков высокого давления негорючего газа в одноразовых устройствах длительного хранения. В устройстве для зарядки баллона и герметизации под давлением...
Тип: Изобретение
Номер охранного документа: 0002637166
Дата охранного документа: 30.11.2017
19.01.2018
№218.015.ff55

Блок рулевого привода ракеты

Изобретение относится к ракетной технике и может найти применение в устройствах управления аэродинамическими поверхностями летательного аппарата или других высоконагруженных агрегатах в машиностроении. Блок рулевого привода ракеты состоит из аэродинамической поверхности, вала, соединенного с...
Тип: Изобретение
Номер охранного документа: 0002629513
Дата охранного документа: 29.08.2017
19.01.2018
№218.016.00ba

Универсальный набор концевых мер

Изобретение относится к механическим средствам измерения и может быть использовано, в частности, при настройке измерительных приборов. Универсальный набор концевых мер состоит из пяти групп мер. Размеры мер подчинены зависимостям: A=A+δ, A=A+(n-1)δ, где A - размер первой меры группы с...
Тип: Изобретение
Номер охранного документа: 0002629686
Дата охранного документа: 31.08.2017
19.01.2018
№218.016.03a0

Шаровая опора

Изобретение относится к области машиностроения и может быть использовано в качестве опорных узлов трения, способных сохранять свою работоспособность в широком диапазоне нагрузок и температур как в воздушной среде, так и в глубоком вакууме. Шаровая опора содержит корпус, выполненный из двух...
Тип: Изобретение
Номер охранного документа: 0002630346
Дата охранного документа: 07.09.2017
19.01.2018
№218.016.051b

Устройство соединения и расстыковки электрических связей разделяемых ступеней летательного аппарата

Изобретение относится, главным образом, к конструкции высокоскоростных двухступенчатых ракет. Первой ступенью может служить носовой обтекатель, а второй – остальная часть ракеты. Предлагаемое устройство включает в себя устройство отделения и узел электрической стыковки. Данный узел установлен...
Тип: Изобретение
Номер охранного документа: 0002630858
Дата охранного документа: 13.09.2017
Showing 21-22 of 22 items.
21.06.2020
№220.018.28ed

Способ самонаведения крылатой ракеты

Изобретение относится к ракетной технике и может быть применено для разработки программно-аппаратных комплексов управления полетом, обеспечивающих повышение боевой эффективности применения самонаводящихся крылатых ракет различного назначения. Технический результат – повышение боевой...
Тип: Изобретение
Номер охранного документа: 0002723783
Дата охранного документа: 17.06.2020
20.04.2023
№223.018.4e8a

Способ астроориентации орбитального космического аппарата (варианты)

Группа изобретений относится к области ориентации орбитального космического аппарата (КА) с использованием звездного датчика. В предлагаемом способе применен алгоритм, в котором используется вектор конечного поворота (ВКП) Эйлера. По баллистическим данным, показаниям звездного датчика и блока...
Тип: Изобретение
Номер охранного документа: 0002793977
Дата охранного документа: 11.04.2023
+ добавить свой РИД