×
12.07.2018
218.016.6f7f

Результат интеллектуальной деятельности: Способ восстановления курсовой ориентации космического аппарата с использованием бесплатформенного орбитального гирокомпаса

Вид РИД

Изобретение

№ охранного документа
0002661050
Дата охранного документа
11.07.2018
Аннотация: Изобретение относится к управлению космическим аппаратом (КА) с использованием бесплатформенного орбитального гирокомпаса, прибора ориентации на Землю и гироскопических измерителей угловой скорости. При этом предварительно оценивают положение КА в орбитальной системе координат, а затем выполняют координированный курсовой программный поворот КА в плоскость орбиты. В процессе поворота компенсируют связи между всеми каналами ориентации. Техническим результатом является повышение качества переходного процесса одновременно в каналах курса, крена и тангажа при существенном уменьшении времени переходного процесса восстановления курсовой ориентации КА. 2 ил.

Изобретение относится к области космической техники и может быть использовано для повышения качества переходного процесса и снижения времени восстановление курсовой ориентации орбитального космического аппарата (КА), в состав системы управления угловым движением (СУД) которого входит орбитальный бесплатформенный гирокомпас (ОГК).

В книге [1] авторов Бесекерского В.А., Иванова В.А., Самотокина Б.Б. «Орбитальное гирокомпасирование». СПб. 251 с. 1993 рассмотрен способ восстановления курсовой ориентации КА с помощью гироорбитанта. Недостатком способа являются большое время восстановления ориентации и низкое качество переходного процесса, выражающееся в большой величине перерегулирования в каналах угловой ориентации КА - порядка 5÷40°.

Аналогичными недостатками обладают все, без исключения, известные типы ОГК, см., например [3-6]. Это связано с тем, что в классическом ОГК восстановление курсовой ориентации осуществляется путем непосредственного включения режима гирокомпасирования, который принципиально не приспособлен к работе в таком режиме. При этом движение КА в сторону устойчивого полюса (плоскость орбиты) происходит слишком долго, некоординированно, с большим перерегулированием. Крайне негативно этот недостаток проявляется в системах управления орбитальных КА с релейным режимом стабилизации.

Наиболее близким аналогом может служить техническое решение, представленное в статье [3] авторов Кэмпбел, Коффи «Цифровые системы отсчета углов». Журнал «Вопросы ракетной техники», 1971 г., №11, стр. 63÷88.

Техническим результатом является повышение качества и существенное уменьшение времени переходного процесса при восстановлении курсовой ориентации КА с применением ОГК бесплатформенного типа.

Для достижения результата в известный способ, включающий приведение КА к местной вертикали по сигналам прибора ориентации по Земле (ПОЗ) и стабилизацию КА относительно ОСК по крену и тангажу по сигналам ПОЗ и гироскопических измерителей угловой скорости (ГИУС) крена и тангажа, а также стабилизацию КА в канале курса по сигналу курсового ГИУС, вводят новые операции - приводят КА к местной вертикали до выполнения условий ⎜γПОЗ⎜≤Δγ, ⎜ϑПОЗ⎜≤Δϑ, где γПОЗ, ϑПОЗ - сигналы ПОЗ по крену и тангажу соответственно, Δγ, Δϑ - заданные погрешности ориентации КА относительно местной вертикали, снимают показания ГИУС об угловых скоростях КА по крену и тангажу и рассчитывают текущее положение КА по курсу относительно ОСК на момент времени, например, по формуле , где ωXi, ωZi - абсолютные угловые скорость КА в каналах крена и тангажа соответственно, которое запоминают, подключают ПОЗ в контур коррекции ОГК и переходят на стабилизацию КА по сигналам ОГК с одновременным поворотом КА в плоскость орбиты со скоростью , где λ(τ), τ - текущие значения программного угла, программной скорости и времени программного поворота соответственно, в процессе которого компенсируют взаимовлияние каналов ориентации перекрестными связями по аргументу разности начального запомненного угла курса и текущего программного значения, а при достижении условия А≤ε, где ε - допустимая погрешность восстановления курсовой ориентации, отключают программное управление и продолжают стабилизировать КА по сигналам ОГК.

На фигурах 1 и 2 приведены результаты моделирования режима восстановления курсовой ориентации КА известным (фиг. 1) и предложенным (фиг. 2) способами.

На фигурах обозначено:

γgrad, ψgrad, θgrad - угловое положение КА относительно ОСК по крену, курсу и тангажу соответственно;

- абсолютные угловые скорости КА в проекциях на собственные оси крена, курса и тангажа.

Из представленных результатов моделирования наглядно видно, что при использовании известного способа перерегулирование в каналах ориентации достигает пяти градусов, качество переходных процессов неудовлетворительное, а время восстановления курсовой ориентации КА из начального положения 180° составляет 9000 с или 2,5 часа (фиг. 1).

При использовании нового способа уравнения, описывающие процесс восстановления ориентации после выполнения условий ⎜γПОЗ⎜≤Δγ, ⎜ϑПОЗ⎜≤Δϑ, принимают вид [2]:

где Δβ, , Δα, , Δθ, - выходные сигналы ОГК в систему стабилизации КА по углам и угловым скоростям в каналах крена, курса и тангажа;

- аргумент разности начального запомненного угла курса и текущего программного значения λ(τ);

ωX, ωY, ωZ - угловые скорости КА относительно инерциальной системы координат (ИСК) в проекциях на связанные оси КА по крену, курсу и тангажу, измеряемые датчиками ГИУС;

γПОЗ, ϑПОЗ - выходные сигналы прибора ориентации по Земле (ПОЗ) по крену и тангажу;

Ω - орбитальная угловая скорость КА;

κ1, κ2, κ3 - коэффициенты коррекции.

Результаты моделирования процесса восстановления курсовой ориентации КА из положения и при нулевых начальных положениях КА по γ и θ показаны на фигуре 2.

В процессе моделирования допустимая угловая погрешность ε - восстановления курсовой ориентации принималась равной 1% от полного значения , а текущее значение программной уставки λ(τ) рассчитывалось по формуле:

,

где ωЗ – скорость обнуляющего программного поворота задается как максимальная допустимая угловая скорость КА в канале курса. При этом время программного поворота рассчитывалось по формуле: .

Для ωЗ=0,2% и время программного поворота составило 900 с, при этом величина перерегулирования ε в канале курса не превысила 1° или 0,6%. Отклонения КА в каналах крена и тангажа относительно ОСК в течение всего времени поворота изменялись незначительно, оставаясь около нулевых значений.

Из представленных графиков видно, что заявленный технический результат достигнут как по качеству переходного процесса - процесс близок к оптимальному, так и по его времени - время переходного процесса на восстановления курсовой ориентации КА уменьшилось в ~ 10 раз или на порядок.

Источники информации

1. Бесекерский В.А., Иванов В.А., Самотокин Б.Б. Орбитальное гирокомпасирование. СПб. 251 с. 1993.

2. Патент 2509690 RU.

3. Кэмпбел, Коффи «Цифровые системы отсчета углов». Журнал «Вопросы ракетной техники», 1971 г., №11.

4. Брайсон А.Е., Кортюм В. Вычисление местного углового положения орбитального космического аппарата. Труды III Международного симпозиума ИФАК. Франция, Тулуза, 1970. Управление в космосе. Том 2. М. Наука. 23 с. 1972.

5. Раушенбах Б.В., Токарь Е.Н. Управление ориентацией космических аппаратов. М. Наука. 598 с. 1974.

6. Bowers J.L., Rodden J.J., Scott E.D., Debra D.B. Orbital Gyrocompassing Heading Reference, AIAA Journal of Spacecrat and Rockets, 1968, v.5, №8.


Способ восстановления курсовой ориентации космического аппарата с использованием бесплатформенного орбитального гирокомпаса
Способ восстановления курсовой ориентации космического аппарата с использованием бесплатформенного орбитального гирокомпаса
Способ восстановления курсовой ориентации космического аппарата с использованием бесплатформенного орбитального гирокомпаса
Способ восстановления курсовой ориентации космического аппарата с использованием бесплатформенного орбитального гирокомпаса
Способ восстановления курсовой ориентации космического аппарата с использованием бесплатформенного орбитального гирокомпаса
Способ восстановления курсовой ориентации космического аппарата с использованием бесплатформенного орбитального гирокомпаса
Способ восстановления курсовой ориентации космического аппарата с использованием бесплатформенного орбитального гирокомпаса
Способ восстановления курсовой ориентации космического аппарата с использованием бесплатформенного орбитального гирокомпаса
Источник поступления информации: Роспатент

Showing 101-110 of 161 items.
16.11.2018
№218.016.9e10

Упругая опора подшипника качения высокооборотного ротора

Изобретение относится к области машиностроения, в частности к подшипникам качения, и касается динамической устойчивости роторов. Может найти применение в устройствах с подшипниками качения роторов турбонасосных агрегатов, к которым предъявляются требования по герметичности при вибрационных...
Тип: Изобретение
Номер охранного документа: 0002672516
Дата охранного документа: 15.11.2018
28.11.2018
№218.016.a16a

Система контроля и регистрации условий транспортирования ракетной и ракетно-космической техники

Изобретение относится к системам контроля и регистрации условий транспортирования. Система контроля и регистрации условия транспортирования изделий ракетно-космической техники включает в себя блок регистрации воздействий (БРВ) со встроенными датчиками температуры, влажности и виброускорения,...
Тип: Изобретение
Номер охранного документа: 0002673414
Дата охранного документа: 26.11.2018
12.12.2018
№218.016.a56b

Система спутниковой навигации передвижного ракетного комплекса

Изобретение относится к помехозащищенным системам спутниковой навигации, предлагаемым к использованию в составе передвижных ракетных комплексов. Система спутниковой навигации передвижного ракетного комплекса содержит аппаратуру спутниковой навигации и антенную систему, выполненную...
Тип: Изобретение
Номер охранного документа: 0002674403
Дата охранного документа: 07.12.2018
13.12.2018
№218.016.a684

Авиационный комплекс обнаружения и тушения очагов возгорания и способ его применения

Изобретение относится к авиационной технике для тушения очагов возгорания. Авиационный комплекс включает беспилотный летательный аппарат (БПЛА) со складываемыми-раскладываемыми несущими поверхностями, оснащенный аппаратурой обнаружения и идентификации очагов возгорания, бортовой емкостью,...
Тип: Изобретение
Номер охранного документа: 0002674640
Дата охранного документа: 11.12.2018
26.12.2018
№218.016.abc8

Установка для испытаний контурной тепловой трубы системы терморегулирования летательного аппарата

Техническое решение относится к теплотехнике, в частности к системам терморегулирования (СТР) приборов авиационной и ракетной техники. В установке для испытаний контурной тепловой трубы СТР ЛА, содержащей каркас, нагреватель, охладитель и средства измерения температуры, каркас выполнен в виде...
Тип: Изобретение
Номер охранного документа: 0002675970
Дата охранного документа: 25.12.2018
13.01.2019
№219.016.af6b

Система восстановления курсовой ориентации космического аппарата с использованием орбитального гирокомпаса

Система восстановления курсовой ориентации (ВО) космического аппарата (КА) с использованием орбитального гирокомпаса (ОГК) содержит прибор ориентации по Земле (ПОЗ), блок гироскопических измерителей угловых скоростей (БИУС), навигационно-баллистический блок (НББ), содержащий центральный...
Тип: Изобретение
Номер охранного документа: 0002676844
Дата охранного документа: 11.01.2019
18.01.2019
№219.016.b118

Способ формирования наборного ленточного провода

Изобретение относится к электротехнике, в частности к кабельной технике, а именно к изготовлению и применению ленточных проводов, и может быть использовано в сложных радиотехнических и электронных системах. Формирование геометрии ленточного провода производят путем параллельной раскладки...
Тип: Изобретение
Номер охранного документа: 0002677246
Дата охранного документа: 16.01.2019
14.03.2019
№219.016.defc

Механизм расфиксации зацепляющего штыря имитатора отрывной платы

Изобретение относится к механизмам для фиксации, удерживания и расфиксации элементов имитатора отрывных плат летательных аппаратов (ЛА). Устройство содержит пластины, между которыми на осях вращения расположен зацеп, вставший на упор и удерживающий зацепляющий штырь во взведенном положении от...
Тип: Изобретение
Номер охранного документа: 0002681803
Дата охранного документа: 12.03.2019
17.03.2019
№219.016.e2d1

Устройство складывания аэродинамической поверхности летательного аппарата

Устройство складывания аэродинамической поверхности летательного аппарата (ЛА) содержит подвижную и неподвижную части аэродинамической поверхности, исполнительные механизмы складывания в виде приводов и Г-образных качалок, короткие плечи которых зафиксированы на осях вращения, установленных в...
Тип: Изобретение
Номер охранного документа: 0002682152
Дата охранного документа: 14.03.2019
29.03.2019
№219.016.ecef

Складываемая аэродинамическая поверхность летательного аппарата

Изобретение относится к авиационной и ракетной технике, стартующей из транспортно-пускового контейнера. Складываемая аэродинамическая поверхность летательного аппарата содержит панель и узел подвески к корпусу летательного аппарата, которые образуют шарнирное соединение с помощью оси...
Тип: Изобретение
Номер охранного документа: 0002682948
Дата охранного документа: 22.03.2019
Showing 21-22 of 22 items.
21.06.2020
№220.018.28ed

Способ самонаведения крылатой ракеты

Изобретение относится к ракетной технике и может быть применено для разработки программно-аппаратных комплексов управления полетом, обеспечивающих повышение боевой эффективности применения самонаводящихся крылатых ракет различного назначения. Технический результат – повышение боевой...
Тип: Изобретение
Номер охранного документа: 0002723783
Дата охранного документа: 17.06.2020
20.04.2023
№223.018.4e8a

Способ астроориентации орбитального космического аппарата (варианты)

Группа изобретений относится к области ориентации орбитального космического аппарата (КА) с использованием звездного датчика. В предлагаемом способе применен алгоритм, в котором используется вектор конечного поворота (ВКП) Эйлера. По баллистическим данным, показаниям звездного датчика и блока...
Тип: Изобретение
Номер охранного документа: 0002793977
Дата охранного документа: 11.04.2023
+ добавить свой РИД