×
10.07.2018
218.016.6f3d

Результат интеллектуальной деятельности: ДОПЛЕРОВСКИЙ ИЗМЕРИТЕЛЬ СКОРОСТИ КОСМИЧЕСКОГО АППАРАТА

Вид РИД

Изобретение

№ охранного документа
0002660676
Дата охранного документа
09.07.2018
Аннотация: Изобретение относится к радиотехнике и может быть использовано в системах радиосвязи для повышения точности измерения скорости движения космических аппаратов (КА). Достигаемый технический результат - повышение точности измерения скорости космического аппарата за счет уменьшения случайной составляющей измерения частоты Доплера. Указанный результат достигается за счет использования более чем одной гармонической составляющей для измерения частоты Доплера F по каждой i-й гармонике, 0≤i≤|n|, с последующим усреднением результатов частных измерений. Индекс 0 соответствует первой, основной/центральной, гармонике. 2 ил.

Изобретение относится к методам и средствам траекторных измерений космических аппаратов (КА) с использованием линий радиосвязи.

Одним из важнейших параметров движения КА является скорость его перемещения по орбите, т.е. производная по времени расстояния между КА и наземным комплексом управления (НКУ) относительно НКУ. Задача точного измерения скорости движения КА является актуальной на всем протяжении космической эры. Предложено множество вариантов решения этой задачи, которые, в основном, опираются на оценку Доплеровского смещения несущей частоты.

Известно устройство, реализующее «Способ радиотехнических доплеровских угломерных измерений космического аппарата и система для осуществления данного способа», защищенные патентом РФ №2526401, опубликованным 20.08.2014, в котором используются три территориально разнесенные наземные измерительные станции и приемоответчик КА. Измеренные Доплеровские сдвиги частоты со всех измерительных станций (ИС) передаются в баллистический центр. Там вычисляются разности этих Доплеровских сдвигов, эквивалентные измерениям радиоинтерферометров с базами, соответствующими расстояниям между ИС. В баллистическом центре по результатам измерений указанных скоростей и дальности рассчитывается траектория движения КА. Технический результат заключается в создании высокоточной и быстродействующей системы траекторных измерений с упрощенными конструкцией и эксплуатацией ее средств. Техническая сущность аналога заключена в использовании широко известного метода усреднения результатов измерения, разнесенными по пространству измерителями. В этом случае шумы, присутствующие в составе сигнала, принимаемого каждым измерителем не коррелированы, что и объясняет эффективность пространственного усреднения.

Способ характеризуется сложной и дорогостоящей реализацией по причине необходимости использования нескольких разнесенных измерительных станций. Кроме того, методическая погрешность измерения каждой измерительной станции определяет погрешность итоговой оценки.

Наиболее близким к заявляемому является устройство по патенту США №8,970,426, опубликованному 03.03.2015 «Automatic matched Doppler filter selection». Прототип содержит антенну, интерфейсный модуль в составе генератора сигнала и приемника, подключенных к антенне, аналого-цифровой преобразователь, подключенный к выходу приемника, блок цифровой обработки в составе последовательно соединенных блока сжатия импульсов, банка из n фильтров, входы каждого фильтра параллельно подключены к выходу блока сжатия импульсов, вычислительного блока и дисплея, причем вычислительный блок соединен с банком из n фильтров.

Техническая сущность прототипа состоит в реализации множества Доплеровских частотных фильтров, используемых для разделения всего пространства Доплеровских частот на множество узких областей с соответствием каждого фильтра одной из этих частотных полос. Зная пространственную частоту, обычно связанную с конкретными помехами, например, вида отражений от местных предметов, погодных влияний, наложений сигналов можно использовать Доплеровские фильтры для дискриминации помех, а также определять цели по Доплеровской частоте. Таким образом, каждый Доплеровский фильтр настроен на конкретное значение частоты Доплера FD.

Недостаток прототипа состоит в низкой точности измерения скорости КА в связи с большим значением случайной составляющей. Это объясняется тем, что аддитивный шум в составе принимаемого сигнала является причиной случайной составляющей результата измерения частоты Доплера.

Задачей настоящего технического решения является повышение точности измерения скорости космического аппарата за счет уменьшения случайной составляющей измерения частоты Доплера.

Достигается поставленная цель благодаря тому, что известный Доплеровский измеритель скорости космического аппарата, содержащий антенну и связанные с нею генератор последовательности радиоимпульсных сигналов и приемник, банк из n фильтров, входы каждого фильтра параллельно подключены к выходу приемника, и вычислительный блок, с выхода которого поступает результат измерения скорости космического аппарата, дополнительно снабженный генератором гармоник, входом соединенный с генератором последовательности радиоимпульсных сигналов, банком, из n измерителей Доплеровских частот, первый вход каждого из измерителей Доплеровских частот соединен с выходом соответствующего фильтра, а вторые входы измерителя Доплеровских частот соединены с соответствующими выходами генератора гармоник, блоком усреднения, входами подключенный к выходам измерителей Доплеровских частот, а выходом соединенный с вычислительным блоком, блоком постоянной памяти, выходами соединенный с вычислительным блоком и блоком усреднения.

На иллюстрациях представлено:

- Фиг. 1 - Блок-схема предлагаемого Доплеровского измерителя скорости космического аппарата, где показаны:

1. антенна;

2. генератор сигнала;

3. генератор n частотных гармоник;

4. приемник;

5. банк n фильтров;

6. банк измерителей доплеровских частот (ИДЧ);

7. блок усреднения (БУ);

8. вычислительный блок (ВБ);

9. блок постоянной памяти.

- Фиг. 2 - Спектральный состав последовательностей излученных и принятых радиоимпульсов.

Техническая сущность предлагаемого технического решения заключена в использовании более чем одной гармонической составляющей для измерения частоты Доплера FDi по каждой i-й гармонике, 0≤i≤|n| с последующим усреднением результатов частных измерений. Индекс 0 соответствует первой, основной/центральной, гармонике. Практически во всех опубликованных теоретических и прикладных работах в области Доплеровского измерения скорости, в т.ч. и в прототипе, используется одноосновная гармоническая составляющая, которая является несущей частотой. На это однозначно указывается, например в Winstead et al. «Doppler beam-sharpened radar altimeter» US Patent 7,911,375 March 22, 2011. Однако спектр излучаемого радиоимпульсного сигнала всегда насыщен достаточно большим количеством гармонических составляющих, размещенных по частоте на значение, кратное 1/Т, где Т - длительность периода излучаемых радиоимпульсов. На фиг. 2 представлен спектральный состав условного сигнала с симметричным спектром относительно центральной частоты ƒ0 с боковыми составляющими ƒi. Каждая из гармонических составляющих смещается на индивидуальное значение FDi, обусловленные движением КА.

Скорость КА на основании измерения Доплеровского смещения не только первой, но других гармонических составляющих выражается в общем виде:

где i - номер гармоники, i=1, 2…n; С - скорость света в свободном пространстве; ƒперi - частота i-ой гармоники сигнала, переданного НКУ; ƒпрi - частота i-ой гармоники принятого сигнала, .

Знак зависит от направления движения КА относительно НКУ. Для определенности будем считать, что КА удаляется.

Т.к. ƒперi>>FDi, то (1) можно преобразовать, опираясь на разложение в ряд Тейлора (1-FDiперi)-1≈1+FDiперi. Тогда

Индекс i=0 означает, что при реализации (2) используется основная/центральная гармоническая составляющая - несущая частота.

Пусть измерение производится по первой гармонике, i=1. Тогда

Но ƒпер1пер0+1/Т, где Т - период повторения радиоимпульсов, переносящих тестовый сигнал.

В общем виде

Т.к. Vri=Vr0, то можно выразить Доплеровские частоты на всех гармониках через FD0 центральной несущей:

Поэтому умножение измеренного значения FDi на соответствующий поправочный коэффициент (при условии , обеспечивает приведение результатов измерения на всех гармониках к единому масштабу. Массив коэффициентов Ki формируется заранее и хранится в узле постоянной памяти.

Обычно ƒпер0 задается с точностью, не влияющей на погрешность определения скорости. Тогда единственным источником погрешности является Δi - неточность измерения значений FDi. Отсюда

где ξi - погрешность измерения скорости, вызванная неточностью измерения частоты Доплера на i-й гармонике.

Основной причиной Δi в первую очередь является шум, поэтому можно считать Δi случайной составляющей с нулевым средним и дисперсией σ2. Усреднение результатов пространственных измерений частоты Доплера с учетом корректирующих коэффициентов Ki уменьшает дисперсию шума, что обеспечивает повышение точности измерения скорости движения КА.

Первое слагаемое (5) представляет собой усредненное значение FD0, подстановка которого в первое слагаемое (3) даст истинное значение скорости КА при i=0. Среднее значение случайной составляющей

Вторым слагаемым можно пренебречь, поскольку оно в ƒпер0T>>1 раз меньше первого. Поэтому

Оценим статистические характеристики . Как принято выше, математическое ожидание М[Δi]=0, поэтому математическое ожидание среднего также равно нулю, т.е. . Здесь M[x] - символ математического ожидания x.

Дисперсия среднего вычисляется по стандартной формуле дисперсии суммы независимых случайных величин

Считая, что D[Δ0]=D[Δ1]=⋅⋅⋅ получим

где под D[Δ0] понимается дисперсия измерения по одной центральной гармонике. Поэтому дисперсия случайной составляющей усредненного значения частоты Доплера при использовании n гармонических составляющих в n раз меньше дисперсии измерения по одной гармонике. Поэтому предложенное устройство в n раз точнее прототипа по случайной составляющей результата измерения скорости КА.

Работает устройство следующим образом.

Генератор 2 формирует последовательность радиоимпульсов с несущей частотой ƒ0, излучаемых в пространство с помощью антенны 1. Линейчатый спектральный состав излучаемой последовательности радиоимпульсов представлен на фиг. 2 сплошными линиями. Номер гармонической составляющей указан соответствующим индексом.

Принимаемый сигнал с выхода приемника 4 параллельно поступает на фильтры банка фильтров в составе n фильтров 5. Каждый из фильтров настроен на частоту индивидуальной гармонической составляющей. Ширина полосы пропускания каждого фильтра должна выбираться, исходя из максимального значения измеряемого Доплеровского смещения, не должна превосходить разности частот между соседними гармониками и ограничений, связанных с технической реализацией фильтра.

Радиосигнал с выхода приемника на промежуточной достаточно малой частоте поступает на ряд канальных фильтров Фi, которые выделяют 1, 2 и т.д. гармоники, отличающиеся от гармоник излученного тестового сигнала по частоте на соответствующее Доплеровское смещение. Значение Доплеровской частоты с выхода каждого фильтра измеряется соответствующим ИДЧ - измерителем Доплеровской частоты.

Исследуем статистические характеристики (5). Здесь погрешность измерения скорости

Математическое ожидание (М - символ математического ожидания)

Если M[Δi]=0, то М[ξi]=0, т.е. оценка (3) не смещенная. Считая, что по порядку величин ƒ0i≈ƒI, получим, что для частот порядка 10 ГГц коэффициент перед М[Δi] примерно равен 0,015, т.е. в математическом ожидании погрешность определения скорости составляет порядка 1,5% погрешности измерения частоты Доплера.

Процесс измерения скорости основывается на дискретном преобразовании Фурье. Пусть измерение производится по второй гармонике i=2. Тогда

Но ƒ0201+1/Т, где Т - период повторения радиоимпульсов, переносящих тестовый сигнал. Поэтому

Или в общем виде:

где константы , K2=K10, i - номер гармоники, i=1, 2…n;

Вместе с тем , т.е. для получения ƒD2 достаточно умножить значение ƒD1, полученное при измерении по первой гармонике, на постоянный коэффициент Mi. Этот коэффициент может быть достаточно большим, чтобы им пренебречь, а выравнивание Доплеровских частот необходимо для выполнения операции пространственного усреднения, направленного на уменьшение погрешности измерения Доплеровской частоты Δi.

В Блоке Усреднения БУ вычисляется среднее значение по стандартной формуле

Это усредненное значение используется при выполнении несложных математических вычислений, выполняемых в вычислительном блоке (ВБ) в соответствии с (8). Коэффициенты K1, K2 и Mi хранятся в блоке постоянной памяти ПЗУ. С выхода ВБ поступает измеренное значение скорости КА. Поскольку произведения под знаком суммы одинаковые числа, то

Если предположить, что частные погрешности Δi распределены по нормальному закону с нулевым средним то, при достаточно большом . Этот же результат можно получить при усреднении группы N последовательных измерений на одной первой гармонике, что потребует времени измерения TN=NT, где Т - время однократного измерения. Поэтому описанное пространственное усреднение снижает погрешность измерения частоты Доплера или уменьшает время измерения в N раз относительно традиционного последовательного измерения при сопоставимых значениях погрешности измерения, вызванной шумом в канале передачи и дискретным преобразованием в процессе измерения частоты.

Доплеровский измеритель скорости космического аппарата, содержащий антенну и связанные с нею генератор сигнала и приемник, банк из n фильтров, входы каждого фильтра параллельно подключены к выходу приемника, и вычислительный блок, с выхода которого поступает результат измерения скорости космического аппарата, дополнительно снабженный генератором гармоник, входом соединенный с генератором сигнала, банком из n измерителей доплеровских частот, первый вход каждого из измерителей доплеровских частот соединен с выходом соответствующего фильтра, а вторые входы измерителя доплеровских частот соединены с соответствующими выходами генератора гармоник, блоком усреднения, входами подключенный к выходам измерителей доплеровских частот, а выходом соединенный с вычислительным блоком, блоком постоянной памяти, в котором хранятся корректирующие коэффициенты, при этом выход блока постоянной памяти соединен с вычислительным блоком и блоком усреднения.
ДОПЛЕРОВСКИЙ ИЗМЕРИТЕЛЬ СКОРОСТИ КОСМИЧЕСКОГО АППАРАТА
ДОПЛЕРОВСКИЙ ИЗМЕРИТЕЛЬ СКОРОСТИ КОСМИЧЕСКОГО АППАРАТА
Источник поступления информации: Роспатент

Showing 31-40 of 624 items.
27.06.2014
№216.012.d6e6

Вентиль

Изобретение относится к ручным вентилям, предназначенным для использования в пневмогидравлической системе наземного агрегата гидропитания, применяемого при проверках функционирования рулевых машин перед стартом ракеты. В корпусе вентиля размещен затвор с запрессованным уплотнителем, опирающимся...
Тип: Изобретение
Номер охранного документа: 0002520792
Дата охранного документа: 27.06.2014
27.06.2014
№216.012.d6ec

Узел пары заслонка и седло регулятора расхода горячего газа

Изобретение относится к области машиностроения, а именно к регуляторам расхода горячего газа, работающим на продуктах сгорания ракетных топлив и обеспечивающим управление летательным аппаратом в плоскостях тангажа, рыскания и крена. Узел пары заслонка и седло регулятора расхода горячего газа...
Тип: Изобретение
Номер охранного документа: 0002520798
Дата охранного документа: 27.06.2014
27.06.2014
№216.012.d965

Дренажно-предохранительный клапан бака окислителя

Изобретение относится к области ракетно-космической техники, а именно к дренажно-предохранительным клапанам (ДПК). Дренажно-предохранительный клапан бака окислителя включает в себя основной и вспомогательный клапаны, соединенные герметичными трубопроводами между собой, с предохраняемой...
Тип: Изобретение
Номер охранного документа: 0002521431
Дата охранного документа: 27.06.2014
10.07.2014
№216.012.dce7

Устройство для фиксации отделяемых в процессе эксплуатации частей изделия от корпуса

Изобретение относится к области машиностроения и может быть использовано при разработке изделий с разделяемыми в процессе работы элементами. Устройство содержит цилиндрический корпус, установленную в нем обойму, выполненную в виде полого цилиндра с торцовым фланцем, контактирующим с корпусом...
Тип: Изобретение
Номер охранного документа: 0002522329
Дата охранного документа: 10.07.2014
20.07.2014
№216.012.de20

Вращающийся обтекатель антенн на самолете

Изобретение относится к элементам конструкции антенн самолетов дальнего радиолокационного обнаружения. Вращающийся обтекатель антенн, выполненный в виде кессона и предназначенный для установки на фюзеляже за крылом посредством пилонов, содержит центральный узел - силовой куб, состоящий из...
Тип: Изобретение
Номер охранного документа: 0002522650
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.de91

Бак топливный космического аппарата для хранения и подачи жидких компонентов

Изобретение относится к пневмогидравлической системе подачи компонентов топлива реактивной двигательной установки космического аппарата. Топливный бак содержит герметичный корпус, выполненный из двух полусфер с входным и выходным штуцерами и элементами внешнего крепления. Внутри корпуса...
Тип: Изобретение
Номер охранного документа: 0002522763
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.e1e2

Лазерный целеуказатель

Изобретение относится к аппаратуре для лазерного целеуказания и дальнометрии. Лазерный целеуказатель содержит канал лазерного целеуказания, электронную аппаратуру управления мощностью (энергией) лазера канала лазерного целеуказания и канал лазерного дальнометрирования. Каналы лазерного...
Тип: Изобретение
Номер охранного документа: 0002523612
Дата охранного документа: 20.07.2014
20.10.2014
№216.012.fff2

Трехфазный инвертор напряжения с трансформаторным выходом

Изобретение относится к области силовой преобразовательной техники и может быть использовано при построении трехфазных инверторов в системах как основного, так и резервного электропитания автономных объектов, где уровень напряжения первичного источника требует повышения его трансформаторным...
Тип: Изобретение
Номер охранного документа: 0002531378
Дата охранного документа: 20.10.2014
27.10.2014
№216.013.018c

Способ повышения эффективности наведения на подводную цель корректируемого подводного снаряда противолодочного боеприпаса и устройство для его реализации

Изобретение относится военной технике и может быть использовано в противолодочных боеприпасах. Противолодочный боеприпас (ПБ) содержит корпус, систему запуска и разделения, тормозной отсек с парашютом и поплавком с невозвратным клапаном, отделяемый корректируемый подводный снаряд (КПС) с...
Тип: Изобретение
Номер охранного документа: 0002531794
Дата охранного документа: 27.10.2014
10.11.2014
№216.013.0378

Раскрываемый руль ракеты

Изобретение относится к ракетной технике и касается складываемых аэродинамических поверхностей и механизмов их раскрытия. Раскрываемый руль ракеты состоит из вала, установленного в корпусе ракеты с возможностью поворота, аэродинамической поверхности, жестко фиксируемой в раскрытом положении и...
Тип: Изобретение
Номер охранного документа: 0002532286
Дата охранного документа: 10.11.2014
Showing 31-40 of 56 items.
27.09.2015
№216.013.7e48

Контрольно-проверочная аппаратура космического аппарата

Изобретение относится к наземным электрическим испытаниям космических аппаратов (КА) в процессе производства КА на заводе-изготовителе, а также при их предстартовых испытаниях. Согласно изобретению в контрольно-проверочную аппаратуру КА дополнительно введены измерители мощности и частоты, а...
Тип: Изобретение
Номер охранного документа: 0002563925
Дата охранного документа: 27.09.2015
20.10.2015
№216.013.830a

Способ тепловакуумных испытаний космических аппаратов и устройство для его реализации

Изобретение относится к области космической техники. Устройство для тепловакуумных испытаний содержит стационарный цилиндрический криогенный экран, расположенный в вакуумной камере, пространственно позиционируемый экран (ППКЭ) с размероизменяемым кронштейном и приводом трехмерной дислокации....
Тип: Изобретение
Номер охранного документа: 0002565149
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.859c

Система имитации невесомости

Изобретение относится к испытательной технике, в частности к наземным испытаниям механизмов, предназначенных для работы в невесомости, и может быть использовано для обезвешивания крупногабаритных трансформируемых конструкций. Устройство состоит из блока управления на основе компьютера и...
Тип: Изобретение
Номер охранного документа: 0002565807
Дата охранного документа: 20.10.2015
10.12.2015
№216.013.95e9

Приборный отсек космического аппарата

Изобретение относится к оборудованию космических аппаратов (КА), например, телекоммуникационных спутников. Приборный отсек (ПО) КА содержит электрогерметичный корпус, выполненный из сотопанелей с вентиляционными отверстиями (ВО), внутри которого преимущественно установлены приборы полезной...
Тип: Изобретение
Номер охранного документа: 0002569997
Дата охранного документа: 10.12.2015
27.12.2016
№216.013.9db5

Способ баллистического обеспечения полета космического аппарата

Изобретение относится к области космической техники и физике состояния газа и может быть использовано для количественной оценки остаточной характеристической скорости в случае реактивной выработки рабочего тела из емкостей рабочей системы. На начальном и завершающем этапах функционирования...
Тип: Изобретение
Номер охранного документа: 0002572003
Дата охранного документа: 27.12.2015
10.01.2016
№216.013.9ec0

Космический аппарат с дополнительным полезным грузом

Изобретение относится к космической технике и может быть использовано в космических аппаратах (КА). КА с дополнительным полезным грузом с набором целевой аппаратуры и антеннами содержит модуль служебных систем, модуль полезного груза в виде отдельной конструктивной сборки с дополнительными...
Тип: Изобретение
Номер охранного документа: 0002572277
Дата охранного документа: 10.01.2016
10.02.2016
№216.014.c23d

Способ изготовления жидкостного контура системы терморегулирования космического аппарата

Изобретение относится к бортовому оборудованию, преимущественно телекоммуникационных спутников. Способ включает изготовление коллекторов (К) и соединительных трубопроводов (СТ) из трубы специального профиля (с двумя полками). Жидкостные тракты К и СТ промывают органическим теплоносителем, затем...
Тип: Изобретение
Номер охранного документа: 0002574104
Дата охранного документа: 10.02.2016
10.02.2016
№216.014.c419

Система терморегулирования космического аппарата

Изобретение относится к системам терморегулирования (СТР) космических аппаратов (КА) с тепловой нагрузкой от 13 до 18 кВт. СТР состоит из замкнутых жидкостных контуров и тепловых труб (ТТ), а также раскрываемых панелей радиатора (РПР). Каждый контур содержит сообщенные подконтуры модулей...
Тип: Изобретение
Номер охранного документа: 0002574499
Дата охранного документа: 10.02.2016
20.03.2016
№216.014.ca66

Система терморегулирования космического аппарата

Изобретение относится к системам терморегулирования (СТР) космических аппаратов (КА), преимущественно телекоммуникационных спутников. В жидкостном контуре СТР установлен двухступенчатый электронасосный агрегат (ЭНА) с последовательно расположенными рабочими колесами, вращающимися с частотой...
Тип: Изобретение
Номер охранного документа: 0002577925
Дата охранного документа: 20.03.2016
20.03.2016
№216.014.cafe

Система терморегулирования космического аппарата

Изобретение относится к системам терморегулирования (СТР) космических аппаратов, например телекоммуникационных спутников. СТР содержит жидкостный контур теплоносителя с электронасосным агрегатом (ЭНА) и компенсатором объема (КО). Жидкостная полость КО соединена с контуром вблизи входа в ЭНА, а...
Тип: Изобретение
Номер охранного документа: 0002577926
Дата охранного документа: 20.03.2016
+ добавить свой РИД