×
10.07.2018
218.016.6ebf

Способ инициирования импульсной детонации

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к способам детонационного сжигания топлива и может быть использовано для инициирования импульсной детонации в топливно-воздушной смеси в энергетических установках, импульсных детонационных двигателях. Способ инициирования импульсной детонации топливно-воздушной смеси заключается в том, что генерируют первичную ударную волну и затем оказывают малое энергетическое воздействие на топливно-воздушную смесь перед фронтом лидирующей ударной волны. В качестве малого энергетического воздействия используют воздействие селективным лазерным излучением, при поглощении которого молекулы кислорода смеси переходят в состояние синглет-дельта O(aΔg) и ускоряют химические реакции горения топлива, причем воздействуют лазерным излучением на топливно-воздушную смесь в локальных областях перед фронтом лидирующей ударной волны с опережением по времени меньшим, чем время релаксации кислорода в состоянии синглет-дельта O(aΔg), в момент, когда скорость лидирующей ударной волны меньше скорости детонации в режиме Чепмена-Жуге в топливно-воздушной смеси, а энергию лазерного излучения устанавливают из условия достаточности для увеличения скорости лидирующей ударной волны с переходом к нестационарному колебательному режиму детонации. Технический результат - снижение докритической энергии инициирования импульсной детонации в топливно-воздушной смеси ниже, чем при последовательном зажигании горючей смеси электрическими разрядами. 1 ил.
Реферат Свернуть Развернуть

Изобретение относится к способам детонационного сжигания топлива и может быть использовано для инициирования импульсной детонации в топливно-воздушной смеси в различных устройствах, в том числе в энергетических установках, импульсных детонационных двигателях.

В настоящее время одним из перспективных направлений развития воздушно-реактивных двигателей является внедрение термодинамического цикла с детонационным горением, который эффективнее циклов с горением при постоянном давлении (цикла Брайтона, реализуемого как в газотурбинных, так и в прямоточных воздушно-реактивных двигателях) или при постоянном объеме. В импульсных детонационных двигателях горение происходит в периодически генерируемых детонационных волнах, и задача инициирования детонационного горения и поддержания стабильного режима распространения детонационной волны является актуальной.

Известны три способа инициирования детонации. Прямое инициирование детонации предполагает быстрое локальное выделение энергии с генерацией сильной ударной волны, которая приводит к возникновению пересжатой детонационной волны вблизи источника инициирования с ее последующей трансформацией в самоподдерживающуюся детонацию. Переход от горения к детонации (ПГД) может быть осуществлен с помощью слабых источников (RU 2333423), воздействие которых не обеспечивает непосредственно формирование лидирующей ударной волны, ведущей самоподдерживающуюся детонацию. Следует отметить недостатки указанных методов: прямой метод инициирования требует больших энергий, а ПГД реализуется при относительно большом предетонационном расстоянии.

Третий способ инициирования детонации включает генерацию первичной ударной волны при энергетическом воздействии ниже критического, обеспечивающего формирование самоподдерживающейся детонации, с дальнейшим дополнительным энергетическим воздействием на фронт бегущей ударной волны. При этом возможно, с одной стороны, уменьшение энергии инициирования детонации по отношению к прямому инициированию, а с другой - уменьшение предетонационного расстояния по сравнению с традиционным методом ПГД. Этот способ инициирования детонации реализуется при инициировании очагов самовоспламенения в результате турбулизации фронта пламени (WO 2014123440) или отражения ударной волны от регулярных препятствий (RU 2427756, RU 2429409, US 8683780), однако системы для реализации таких способов не обладают гибкостью по отношению к условиям инициирования ударной волны.

Известны варианты способа с использованием внешних источников энергии для воздействия на фронт бегущей ударной волны. Так, в статье (Левин В.А., Марков В.В., Журавская Т.А., Осинкин С.Ф. /Инициирование газовой детонации бегущим импульсом принудительного зажигания // Доклады Академии наук. - 2004. - Т. 394 - №2, - С. 222-234, прототип) описан способ тепловой инициации формирования и поддержания детонационной волны с помощью последовательного воздействия электрических разрядов - инициирующего и последующих разрядов небольшой мощности, синхронизированных с распространением лидирующей ударной волны. Таким способом в пропан-воздушной смеси из первичной слабой ударной волны с числом Маха 2,0-2,5 на приемлемых длинах 0,6-0,7 м (12-14 диаметров трубы) была сформирована детонационная волна при суммарной энергии электрических разрядов почти в 1,8 раза меньше, чем критическая энергия прямого инициирования детонации. Достигается это при согласовании «бегущего» принудительного зажигания с временем прихода ударной волны в соответствующие сечения трубы: для получения детонационной волны разряд должен опережать фронт ударной волны на 80-100 мкс, что соответствует продолжительности разрядного тока.

Недостатком описанного способа инициирования детонации является относительно высокий расход энергии из-за теплового механизма инициирования реакций горения: при электрическом разряде происходит неселективный процесс - диссоциация молекул кислорода при электронном ударе с затратой энергии 5,1 эВ на одну молекулу.

Техническая проблема, на решение которой направлено изобретение, - относительно высокая энергия инициирования импульсной детонации топливно-воздушной смеси.

В предлагаемом способе инициирования импульсной детонации используется известный метод инициирования цепных реакций горения атомами кислорода в синглетном электронном состоянии, полученными селективно с использованием лазерного излучения (П.С. Кулешов, A.M. Старик, Н.С. Титова / Комплексный анализ воспламенения и горения водородо-воздушных и метано-воздушных смесей при воздействии резонансного лазерного излучения // Неравновесные физико-химические процессы в газовых потоках и новые принципы организации горения. Под ред. A.M. Старика - М.: ТОРУС ПРЕСС, 2011 г. - С. 604-634). Известно, что при воздействии лазерного излучения возможно селективное возбуждение молекул кислорода в синглетные состояния при затрате энергии 0,98 эВ на одну молекулу. Численные исследования показали, что расход энергии на инициирование импульсной детонации в топливно-воздушной смеси при инициировании реакций горения во фронте лидирующей ударной волны молекулами кислорода в состоянии синглет-дельта, полученными селективно с помощью лазера, может быть значительно меньше критической энергии прямого инициирования детонации.

Способ инициирования импульсной детонации топливно-воздушной смеси заключается в том, что генерируют первичную ударную волну и затем оказывают малое энергетическое воздействие на топливно-воздушную смесь перед фронтом лидирующей ударной волны, и отличается тем, что в качестве малого энергетического воздействия используют воздействие селективным лазерным излучением, при поглощении которого молекулы кислорода смеси переходят в состояние синглет-дельта O2(a1Δg) и ускоряют химические реакции горения топлива, причем воздействуют лазерным излучением на топливно-воздушную смесь в локальных областях перед фронтом лидирующей ударной волны с опережением по времени меньшим, чем время релаксации кислорода в состоянии синглет-дельта O2(a1Δg), в момент, когда скорость лидирующей ударной волны меньше скорости детонации в режиме Чепмена-Жуге в топливно-воздушной смеси, а энергию лазерного излучения устанавливают из условия достаточности для увеличения скорости лидирующей ударной волны с переходом к нестационарному колебательному режиму детонации.

Технический результат при реализации изобретения - снижение докритической энергии инициирования импульсной детонации в топливно-воздушной смеси ниже, чем при последовательном зажигании горючей смеси электрическими разрядами.

В качестве графического материала, представляющего сущность изобретения, приведена зависимость скорости волны затухающей детонации от выбора момента однократного воздействия лазерного излучения фиксированной интенсивности.

Минимальное значение энергии лазерного излучения, необходимое для поддержания детонации в топливно-воздушной смеси, зависит от природы топлива, ее состава, температуры, давления и равно энергии, необходимой для возбуждения синглетных состояний кислорода, участвующего в инициировании реакций горения во фронте лидирующей ударной волны, приводящих к увеличению ее скорости до величины, при которой реализуется режим нестационарной колебательной детонации.

Для генерации синглетного кислорода может быть использован твердотельный диодный лазер с длиной волны излучения 762 нм или волоконный лазер с длиной волны излучения 1,268 мкм. Предпочтителен волоконный лазер, в котором генерация излучения высокого оптического качества происходит непосредственно в волокне. С использованием волоконного лазера можно получить компактное устройство с удобным подводом энергии к оптическому окну, с малыми потерями в оптическом тракте через гибкое волокно. Для волоконного лазера уже сейчас достижимы импульсы мощностью 5-10 кВт длительностью от 10 до 100 нс при частоте следования от 20 до 200 кГц, однако существуют трудности в генерации длин волн 700-1000 нм. Для более мощных твердотельных лазеров на длине волны 762 нм требуются специальные оптические системы коллимации, что делает устройства чувствительными к вибрациям, что особенно важно для двигателей (Дианов Е.М. Волоконные лазеры // Успехи физических наук. - 2004. - Т. 174, вып. 10. - С. 1139-1142). Применяя лазер, можно плавно варьировать мощность излучения, подстраивая ее под требуемый рабочий режим. Оптическое окно и применение твердотельного лазера с длиной волны 762 нм для генерации синглетного состояния кислорода описаны в патенте RU 2610874. Имеется опыт по созданию оптических окон в камерах сгорания в промышленности. Стекло должно быть оптически прозрачным в выбранном диапазоне волн, выдерживать ударные нагрузки от скачков давления, быть термостойким с малым коэффициентом теплового расширения.

Молекулы кислорода в синглетных состояниях генерируют лазерным излучением в локальных областях перед фронтом лидирующей ударной волны с опережением его по времени, которое меньше, чем время релаксации кислорода в состоянии синглет-дельта O2(a1Δg).

Существует минимальный предел примеси синглетного кислорода, ниже которого эффект восстановления детонации не достигается. Этот предел зависит как от состава смеси, так и от ее давления и температуры. Необходимое количество возбуждаемого синглетного кислорода может изменяться при варьировании продольного размера области воздействия лазерного излучения. Ширина этой области ограничена в силу протекающих физических процессов. Оценить ширину области эффективного воздействия лазерного излучения можно, исходя из представления об иерархии характерных для используемой горючей смеси времени релаксации возбужденного состояния кислорода, времени прохода детонационной волны через эту область, времени диффузии и т.д. Ширина этой зоны также ограничена расходимостью лазерного луча, особенно при реализации многопроходной системы в резонаторе Фабри-Перо, как, например, в патенте RU 2610874.

Как показали численные исследования, условия для возобновления детонационной волны при некотором характерном энергетическом воздействии возникают, когда скорость лидирующей волны немного меньше скорости детонации в режиме Чепмена-Жуге.

Анализ влияния воздействия селективного лазерного излучения, сопровождающегося образованием синглетного кислорода, на разные стадии затухания пересжатой детонационной волны показал наличие оптимальной зоны воздействия. На графике, представляющем зависимость скорости волны затухающей детонации от времени, три вертикальные линии показывают три момента однократного воздействия лазерного излучения фиксированной интенсивности: сплошная линия соответствует воздействию намного ранее достижения минимальной (критической) скорости ударной волной, штрихпунктирная линия соответствует воздействию излучения сразу после достижения волной критической скорости, пунктирная линия - намного позже достижения волной критической скорости. Резкое возрастание скорости волны до значения, характерного для колебательной нестационарной детонации, достигается только при воздействии на волну в момент достижения ею критической скорости, которая немного меньше, чем скорость детонации в режиме Чепмена-Жуге. Для полного сгорания топливно-воздушной смеси в детонационном режиме могут потребоваться дополнительные импульсные энергетические воздействия лазерным излучением по длине камеры сгорания.

В качестве примера реализации предложенного способа инициирования импульсной детонации приведем результаты численных исследований влияния молекул кислорода в состоянии синглет-дельта на формирование и распространение детонационной волны в водородно-воздушной среде с использованием детальной модели химической кинетики (Bezgin L.V., Kopchenov V.I., Kuleshov P.S., Titova N.S. and Starik A.M. Numerical study of combustion initiation in a supersonic flow of Н2-air mixture by resonance laser radiation // J. Phys. D: Appl. Phys. - 2012. - V. 45 - 085401 - P. 18). При моделировании была использована программа, предназначенная для расчета одномерных, двумерных и трехмерных нестационарных течений невязкого, нетеплопроводного многокомпонентного газа с неравновесными физико-химическими процессами, отличающихся сложной ударно-волновой структурой течения, в частности, для моделирования детонационных режимов горения (Babushenko, D.I., Kopchenov / Numerical study of pulse detonation tube with shock-induced combustion // Pulsed and continuous detonations. Eds.: G. Roy, S. Frolov, J. Sinibaldi. Moscow: Torus Press. - 2006 - V. I. - P. 239-245; Babushenko, D.I., Kopchenov / Numerical investigation of unsteady processes in tube at the periodical initiation of shock induced combustion // Pulsed detonation engines. Eds.: S. Frolov - Moscow: Torus Press - 2006 - V. I. - P. 293-310).

В качестве расчетной модели использовалась ударная труба длиной 250 мм, закрытая с обоих концов. В секции низкого давления ударной трубы находилась водородно-воздушная стехиометрическая смесь с начальными давлением около 1 бар и температурой 300 К. В секции высокого давления, заполненной азотом, задавалось распределение параметров, полученное из решения задачи "о сильном взрыве" в момент достижения ударной волной границы между секциями. Энергия инициирования варьировалась в диапазоне от 14 до 100 кДж/м2. Установлено, что при энергии инициирования выше 62,5 кДж/м2 возникает детонационная волна, которая сохраняется до противоположного конца трубы, а при энергии инициирования 50 кДж/м2 и ниже происходит срыв детонации.

Для случая инициирования детонации с энергией 25 кДж/м2 была проведена серия расчетов распространения волны при возбуждении части молекул кислорода в состояние синглет-дельта O2(a1Δg) перед системой "лидирующая ударная волна - фронт тепловыделения" в локальных областях. Исследован диапазон размеров локальных областей воздействия от 0,5 до 5 мм при количестве кислорода в синглетном состоянии 0,04-4% по массе.

Установлено, что максимальное снижение энергии инициирования детонации в рассматриваемой смеси достигается при воздействии селективного лазерного излучения в момент, когда скорость волны составляет около 1700 м/с.

С учетом полученной информации по оптимальному моменту воздействия лазерного излучения для восстановления детонации расчетными методами было найдено необходимое количество и положение областей, позволяющее детонационной волне достигнуть противоположного конца трубы. В рассмотренном примере для этого оказалось достаточно добавления трех зон, каждая длиной 0,2% от длины трубы, начальные координаты которых - 83,5 мм, 139 мм и 185 мм. При этом суммарное изменение энтальпии смеси при возбуждении необходимого количества кислорода составляет всего 0,04 Дж/м2 или 0,16% от начальной энергии инициирования детонации. Таким образом, энергию инициирования детонации при использовании селективного лазерного излучения удается снизить не менее чем в 2,5 раза, тогда как в способе по прототипу при воздействии электрических разрядов критическая энергия инициирования детонации была снижена чуть менее чем в 1,8 раз.

Практически синхронизировать возбуждение молекул кислорода лазером со срывом детонации можно, используя распределение малоинерционных датчиков давления вдоль камеры сгорания для определения времени и места воздействия лазерного импульса, причем лазерное излучение можно направлять вдоль камеры сгорания оптической системой зеркал/линз. При изменении характеристик горючей смеси или параметров первичной ударной волны такая система может легко перестраиваться в пространстве, фокусируя лазерное излучение на разных участках тракта через одно и то же оптическое окно, без изменения геометрии тракта. Таким образом, предлагаемый способ инициирования импульсной детонации может быть использован в импульсном детонационном двигателе, характеризующемся многорежимностью по давлению, частоте следования импульсов детонации, для летательных аппаратов в различных слоях атмосферы с забортным источником кислорода.

Для однорежимного двигателя (применим на крейсерском режиме полета в связке с другим двигателем для взлета/посадки) вместо множества датчиков давления и малоинерционной управляющей оптической системы в программе управления может быть создан банк рассчитанных или экспериментально определенных данных по локализации срыва детонации во времени и в пространстве.

Способ инициирования импульсной детонации топливно-воздушной смеси, заключающийся в том, что генерируют первичную ударную волну и затем оказывают малое энергетическое воздействие на топливно-воздушную смесь перед фронтом лидирующей ударной волны, отличающийся тем, что в качестве малого энергетического воздействия используют воздействие селективным лазерным излучением, при поглощении которого молекулы кислорода смеси переходят в состояние синглет-дельта O(aΔg) и ускоряют химические реакции горения топлива, причем воздействуют лазерным излучением на топливно-воздушную смесь в локальных областях перед фронтом лидирующей ударной волны с опережением по времени меньшим, чем время релаксации кислорода в состоянии синглет-дельта O(aΔg), в момент, когда скорость лидирующей ударной волны меньше скорости детонации в режиме Чепмена-Жуге в топливно-воздушной смеси, а энергию лазерного излучения устанавливают из условия достаточности для увеличения скорости лидирующей ударной волны с переходом к нестационарному колебательному режиму детонации.
Способ инициирования импульсной детонации
Способ инициирования импульсной детонации
Источник поступления информации: Роспатент

Showing 1-10 of 46 items.
10.09.2013
№216.012.6765

Авиационная силовая установка на базе топливных элементов

Изобретение относится к авиационной технике, в частности к авиационной силовой установке на базе топливных элементов. Авиационная силовая установка содержит воздушный винт, электродвигатель, батарею твердооксидных топливных элементов и устройство поддержания ее рабочей температуры. Воздушный...
Тип: Изобретение
Номер охранного документа: 0002492116
Дата охранного документа: 10.09.2013
10.10.2013
№216.012.7423

Способ измерения термогазодинамических параметров потока

Изобретение относится к области радиационной пирометрии, в частности к измерению параметров радиационного излучения, особенно к измерению параметров высокотемпературных потоков. Способ измерения термогазодинамических параметров потока включает формирование измерительного канала, измерение...
Тип: Изобретение
Номер охранного документа: 0002495388
Дата охранного документа: 10.10.2013
27.10.2013
№216.012.7a65

Поршневой двигатель с компрессионным зажиганием и способ его работы

Изобретение относится к области двигателестроения и позволяет расширить диапазон рабочих режимов двигателя с компрессионным зажиганием за счет повышения устойчивости воспламенения топливовоздушной смеси в цилиндре ДВС. Техническим результатом является упрощение конструкции двигателя и снижение...
Тип: Изобретение
Номер охранного документа: 0002496995
Дата охранного документа: 27.10.2013
27.10.2013
№216.012.7a67

Двигатель внутреннего сгорания и способ его работы

Изобретение относится к области двигателестроения и обеспечивает низкоэмиссионное сгорание топливовоздушной смеси, снижает риск взрыва топливовоздушной смеси. Техническим результатом является упрощение конструкции двигателя, повышение надежности и снижение токсичности продуктов сгорания....
Тип: Изобретение
Номер охранного документа: 0002496997
Дата охранного документа: 27.10.2013
27.01.2014
№216.012.9c6b

Камера сгорания газотурбинного двигателя и способ ее работы

Камера сгорания газотурбинного двигателя содержит корпус, жаровую трубу с зонами горения и разбавления, систему подачи топлива, систему подачи первичного и вторичного потоков воздуха, снабженную устройством воздействия на поток вторичного воздуха в полости кольцевого канала между стенками...
Тип: Изобретение
Номер охранного документа: 0002505749
Дата охранного документа: 27.01.2014
20.03.2014
№216.012.ad72

Бесконтактный магнитный электростатический подшипник

Изобретение относится к области машиностроения и может быть использовано в подшипниковых узлах. Изобретение позволяет создать подшипник, имеющий высокий срок службы и обеспечивающий высокую устойчивость к осевым и радиальным нагрузкам при минимизации габаритов и веса. Кроме этого,...
Тип: Изобретение
Номер охранного документа: 0002510117
Дата охранного документа: 20.03.2014
20.04.2014
№216.012.bab7

Камера сгорания газотурбинного двигателя и способ ее работы

Камера сгорания газотурбинного двигателя содержит корпус, расположенную в корпусе перфорированную жаровую трубу с зонами горения и разбавления, систему подачи топлива, систему подачи первичного и вторичного потоков воздуха и устройство зажигания топливовоздушной смеси. Система подачи потоков...
Тип: Изобретение
Номер охранного документа: 0002513527
Дата охранного документа: 20.04.2014
20.05.2014
№216.012.c3e6

Кольцевая малоэмиссионная камера сгорания газотурбинного двигателя

Кольцевая малоэмиссионная камера сгорания газотурбинного двигателя содержит корпус с расположенной в нем кольцевой жаровой трубой, включающей две отстоящие друг от друга кольцевые оболочки, соединенные между собой в передней по потоку части жаровой трубы фронтовым устройством, систему подачи...
Тип: Изобретение
Номер охранного документа: 0002515909
Дата охранного документа: 20.05.2014
20.05.2014
№216.012.c713

Ротор с компенсатором дисбаланса

Ротор с компенсатором дисбаланса содержит рабочее колесо ступени турбомашины и компенсатор дисбаланса колеса в виде балансировочного груза, выполненного в форме сегмента с круговыми внешней и внутренней поверхностями и стопорным элементом. Ротор имеет, по меньшей мере, с одной стороны в теле...
Тип: Изобретение
Номер охранного документа: 0002516722
Дата охранного документа: 20.05.2014
10.06.2014
№216.012.cbfa

Способ определения характеристик композиционного материала

Изобретение относится к области измерения, в частности определения механических свойств материалов. Способ заключается в возбуждении колебаний образца композиционного материала в виде прямоугольной пластины со свободными краями и определении частот и картин форм собственных колебаний пластины....
Тип: Изобретение
Номер охранного документа: 0002517989
Дата охранного документа: 10.06.2014
Showing 1-10 of 20 items.
10.05.2013
№216.012.3e2d

Гиперзвуковой прямоточный воздушно-реактивный двигатель

Гиперзвуковой прямоточный воздушно-реактивный двигатель содержит топливную форсунку, размещенную в носовой части двигателя перед воздухозаборником, и расположенные за ним камеру сгорания и сопло, а также устройство возбуждения молекул кислорода резонансным лазерным излучением в камере сгорания....
Тип: Изобретение
Номер охранного документа: 0002481484
Дата охранного документа: 10.05.2013
10.04.2014
№216.012.b45e

Способ сжигания углеводородного топлива в газотурбинных двигателе или установке

Способ сжигания углеводородного топлива в газотурбинных двигателе или установке, содержащих камеру сгорания, заключается в поступлении на ее вход потока углеводородного топлива и потока воздуха, сжатого в компрессоре до высокого давления. Топливовоздушную смесь воспламеняют, а полученные при...
Тип: Изобретение
Номер охранного документа: 0002511893
Дата охранного документа: 10.04.2014
27.07.2014
№216.012.e4e9

Способ получения водорода

Изобретение относится к области химии, а более точно к способу получения водорода. Способ получения водорода путем взаимодействия алюминия и воды представляет собой псевдоожижижение алюминия в виде нанопорошока потоком сжатого инертного газа и приведение в контакт полученного реагента с водяным...
Тип: Изобретение
Номер охранного документа: 0002524391
Дата охранного документа: 27.07.2014
27.09.2014
№216.012.f6de

Нанокомпонентная энергетическая добавка и жидкое углеводородное топливо

Изобретение относится к нанокомпонентной энергетической добавке в жидкое углеводородное топливо в виде наночастиц металла, при этом в качестве наночастиц металла используются неоксидированные наночастицы алюминия размером не более 25 нм, покрытые антиоксидантным протектором. Также описывается...
Тип: Изобретение
Номер охранного документа: 0002529035
Дата охранного документа: 27.09.2014
10.12.2014
№216.013.0d11

Плазменный двигатель на наночастицах металлов или металлоидов

Изобретение относится к области ракетно-космической техники. Плазменный двигатель на наночастицах металлов или металлоидов содержит последовательно расположенные камеру сгорания, один вход в которую служит для ввода твердых наночастиц металла или металлоида в качестве топлива, а другой - для...
Тип: Изобретение
Номер охранного документа: 0002534762
Дата охранного документа: 10.12.2014
10.02.2015
№216.013.22e5

Способ и газотурбинная установка для утилизации попутных нефтяных газов

Изобретение относится к нефтяной и газовой промышленности, а более конкретно к способу и установке для утилизации попутных нефтяных газов. Способ утилизации попутных нефтяных газов, содержащих сероводород, заключается в сжигании газов в камере сгорания и преобразовании выделяющейся тепловой...
Тип: Изобретение
Номер охранного документа: 0002540386
Дата охранного документа: 10.02.2015
20.02.2015
№216.013.2bbb

Гиперзвуковой прямоточный воздушно-реактивный двигатель

Гиперзвуковой прямоточный воздушно-реактивный двигатель содержит сверхзвуковой воздухозаборник, сверхзвуковую камеру сгорания, выходное сверхзвуковое сопло, обечайку, регулятор давления подачи топлива, устройство подачи топлива в двигатель, источник лазерного излучения и оптическую систему....
Тип: Изобретение
Номер охранного документа: 0002542652
Дата охранного документа: 20.02.2015
10.05.2015
№216.013.490e

Способ организации воспламенения и горения топлива в гиперзвуковом прямоточном воздушно-реактивном двигателе (гпврд)

Способ организации воспламенения и горения топлива в гиперзвуковом прямоточном воздушно-реактивном двигателе высокоскоростного летательного аппарата, содержащего камеру сгорания, заключается в подаче горючего со сверхзвуковой скоростью через систему пилонов, обтекаемых кислородом, например, в...
Тип: Изобретение
Номер охранного документа: 0002550209
Дата охранного документа: 10.05.2015
20.09.2015
№216.013.7d2c

Гибридный ракетно-прямоточный воздушно-реактивный аэрокосмический двигатель

Гибридный ракетно-прямоточный воздушно-реактивный аэрокосмический двигатель включает ракетный двигатель на топливе в виде нанопорошка алюминия размером не более 25 нм в жидкой водной фазе и совмещенный с ним прямоточный воздушно-реактивный двигатель на молекулярном водороде, образующимся при...
Тип: Изобретение
Номер охранного документа: 0002563641
Дата охранного документа: 20.09.2015
20.01.2016
№216.013.a337

Способ организации горения в гиперзвуковом воздушно-реактивном двигателе

Изобретение относится к энергетике. Способ организации горения в гиперзвуковом воздушно-реактивном двигателе, заключающийся в том, что подают воздух и первичное горючее в камеру сгорания и обеспечивают образование первичной горючей смеси, подают окислитель и вторичное горючее в камеру сгорания...
Тип: Изобретение
Номер охранного документа: 0002573425
Дата охранного документа: 20.01.2016
+ добавить свой РИД