×
08.07.2018
218.016.6e28

Результат интеллектуальной деятельности: Планарный микродозатор с изменением фиксированного количества анализируемого газа в дозе

Вид РИД

Изобретение

Аннотация: Изобретение относится к устройствам ввода газообразных проб в газовый хроматограф и может быть использовано для количественного анализа многокомпонентных сложных смесей в различных отраслях промышленности: химической, нефтяной, газовой, пищевой, медицине, экологии и др. Планарный микродозатор содержит каналы для фиксированного объема дозы и соединительных газовых потоков, переключение которых осуществляется двумя 3-х ходовыми пневмораспределителями с электрическим управлением. Каналы для газовых потоков выполнены методом микрофрезерования на плоской пластине элемента Пельтье, служащего как для нагревания, так и для охлаждения микродозатора, а регулятор температуры поддерживает фиксированные температуры микродозатора для изменения количества газа в пробе, дозируемой в хроматограф для анализа. 4 ил., 1 табл.

Изобретение относится к аналитическому приборостроению, а именно к устройствам ввода газообразных проб в газовый хроматограф, и может быть использовано для количественного анализа многокомпонентных сложных смесей в различных отраслях промышленности: химической, нефтяной, газовой, пищевой, медицине, экологии и др.

Известны дозирующие краны со сменными дозами различных конструкций для ввода газообразных проб в хроматограф (см.: Приборы для хроматографии. / Сакодынский К.И., Бражников В.В., Буров А.Н., Волков С.А., Зельвенский В.Ю. М.: «Машиностроение», 1973. С. 24-42).

Недостатком известных дозирующих кранов является их использование только для прямого ввода газообразных проб в наполненные сорбентом колонки.

Известны также дозаторы газов и паров для газовой хроматографии, применяемые как с наполненными сорбентом колонками, так и с капиллярными колонками (см.: Газовая хроматография с примерами и иллюстрациями: Учебник / Б. Колб; пер. с нем. С.Ю. Кудряшова; под ред. Л.А. Онучак; 2-е изд., перераб. и доп. - Самара: Изд-во «Самарский университет», 2007. С. 123-129).

Известен также дозирующий кран хроматографа ХТ-4 для анализа дымовых газов, в котором все газовые каналы выполнены на листовом фторопласте, прижатом с двух сторон для герметизации металлическими пластинами. Переключение газовых потоков осуществляется пневмораспределителями с электрическим управлением (см.: Арутюнов Ю.И. Хроматографическое измерение состава нефтяных газов. М.: Недра, 1987. С. 196-198).

Однако известные дозирующие краны в момент переключения с операции «набор» на операцию «анализ» кратковременно отключают поток газа-носителя через хроматографическую колонку, что нарушает динамическое равновесие и вызывает нестабильность измерения выходного сигнала. Кроме того, известные дозирующие краны не приспособлены для прямого ввода газообразных проб в капиллярные и микронасадочные колонки без предварительного деления потока.

Наиболее близким к изобретению по совокупности существенных признаков является дозирующий кран (инжектор) поточного газового хроматографа EnCal 3000 Elster Instromet (см.: EnCal 3000. Инструкция по эксплуатации. Вер. 1.3. Руководство пользователя http://new.bacs.ru/sales/Encal3000manualRus.pdf).

Известный инжектор выполнен по технологии МЭМС (Микро-Электро-Механические Системы) на термостатированной кремниевой пластине, на которой выставлены каналы дозирующего объема и газовых соединений. Инжектор снабжен двумя 2-х ходовыми мембранными клапанами и одним 3-х ходовым клапаном. Все клапаны с пневматическим управлением. В инжекторе используется способ ввода газовой пробы в хроматографическую колонку по перепаду давления на дополнительном пневмосопротивлении (ограничителе) в линии газа-носителя перед хроматографической колонкой без его отключения.

Недостатком известного инжектора является отсутствие возможности изменения фиксированного количества анализируемой пробы газа в дозе постоянного объема.

Задачей изобретения является расширение функциональных возможностей микродозатора за счет изменения количества анализируемого газа в дозе фиксированного объема при изменении температуры.

При решении поставленной задачи создается технический результат, заключающийся в следующем:

1. Упрощение конструкции планарного микродозатора, связанное с использованием двух 3-х ходовых пневмораспределителей с электрическим управлением вместо двух мембранных и одного 3-х ходового с пневматическим управлением в прототипе.

2. Расширение функциональных возможностей микродозатора за счет фиксированного изменения количества анализируемого газа в дозирующем канале при изменении температуры микродозатора.

Технический результат достигается за счет того, что в планарном микродозаторе, содержащем термостатированную плоскую пластину с дозирующим каналом фиксированного объема и каналами, соединяющими газовые потоки, которые установлены с возможностью переключения с помощью пневмораспределителей, а вход канала, ведущего к хроматографической колонке, соединен с каналом линии газа-носителя через пневмосопротивление, также в состав входят два 3-х ходовых пневмораспределителя с электрическим управлением, каналы для газовых потоков и дозирующий канал фиксированного объема выполнены методом микрофрезерования на плоской пластине элемента Пельтье, установленной с возможностью нагрева и охлаждения микродозатора, причем микродозатор также содержит терморегулятор, который установлен с возможностью поддержания фиксированной температуры микродозатора.

Изобретение поясняется следующими чертежами.

На фиг. 1 (планарный микродозатор, вид спереди) схематично изображен планарный микродозатор с изменением фиксированного количества анализируемого газа в дозе. На фиг. 2 изображен планарный микродозатор, вид снизу. На фиг. 3 (разрез термостатированной пластины) показана коммутация каналов во время операции «набор». На фиг. 4 (разрез термостатированной пластины) показана коммутация каналов во время операции «анализ».

Микродозатор содержит плоскую термостатированную пластину элемента Пельтье 1 с каналами для газовых потоков 2, включая пневмосопротивление 3 и дозирующий канал фиксированного объема 4 для анализируемой пробы газа, которые герметизируются стеклянной пластиной 5. На пластине установлены два пневмораспределителя 3/2 6 с электрическим управлением. Кроме этого планарный микродозатор содержит терморегулятор 7 с фиксированным задатчиком температуры 8.

Геометрия каналов для газовых потоков 0,5×0,5 мм, дозы фиксированного объема 1,0×2,0×25 мм, что соответствует объему дозы 50 мкл. Пневмосопротивление 3 имеет размеры: 0,2×0,2×50 мм.

Планарный микродозатор с изменением фиксированного количества анализируемого газа в дозе работает следующим образом.

Операция «набор». Электрическое управление выключено, и пневмораспределители 6 находятся в положении, указанном на фиг. 3. Анализируемый газ заполняет дозирующий канал 4 через открытые газовые каналы пневмораспределителей 6. В это время газ-носитель поступает через канал пневмосопротивления 3 в хроматографическую колонку.

Операция «анализ». Электрическое управление включено, и пневмораспределители 6 переключаются в положение, когда анализируемый газ перестает циркулировать через дозирующий канал 4 (см. фиг. 4). Анализируемая проба газа из дозирующего канала 4 под действием давления газа-носителя и перепада давления на канале пневмосопротивления 3 поступает в хроматографическую колонку для анализа без отключения потока газа-носителя. Когда вся проба анализируемого газа перейдет в колонку (не более 1,5-2 секунды), пневмораспределители 6 обесточивают и снова выполняется операция «набор».

Задатчик температуры 8 регулятора температуры 7 обеспечивает пять фиксированных значений температуры микродозатора: 40, 60, 80, 100 и 120°С. Это количество фиксированных температур взято из условия построения градуировочной характеристики для n≥5 точкам. С увеличением температуры уменьшается количество анализируемого газа в дозирующем канале в соответствии с уравнением газового состояния.

Экспериментальная оценка прецизионности в условиях повторяемости известного и предлагаемого планарного микродозатора с изменением фиксированного количества анализируемого газа в дозирующем канале проводилась на примере анализа поверочной газовой смеси (ПГС) пропана в воздухе с концентрацией 0,2% объем. Эксперимент проводили на газовом хроматографе «Кристалл - 5000.1», ЗАО СКБ «Хроматэк» с использованием микрохроматографической колонки на плоскости с нанодисперсным диоксидом кремния (Аэросил А - 175), длина 2 м, сечение 0,2×0,2 мм при температуре 40°С. Газ-носитель гелий с расходом Fc=2 см3/мин, детектор по теплопроводности (ДТП). По результатам 10 анализов ПГС рассчитывали относительное среднее квадратическое отклонение (ОСКО) среднего арифметического результата измерения площади Sr(A) и высоты Sr(h) хроматографического пика пропана в процентах:

где х - площадь или высота хроматографического пика пропана в выборке; хср - среднее арифметическое значение площади или высоты пика пропана из n=10 измерений.

Результаты экспериментов представлены в таблице 1.

Как видно из приведенных в таблице 1 данных, прецизионность измерения площади и высоты хроматографического пика пропана при 40°С, связанная со случайными составляющими погрешностями величины объема вводимой пробы, изменения параметров расхода, давления и главное температуры для предлагаемого планарного микродозатора примерно в 1,5 раза меньше, чем для известного дозатора. Это связано, по-видимому, с тем, что в предлагаемом микродозаторе для нагрева и охлаждения используется элемент Пельтье, обеспечивающий поддержание температуры микродозатора с минимальными возмущениями.

Прецизионность измерения площади и высоты хроматографического пика пропана при 60, 80, 100 и 120°С изменяется не более чем в 1,2 раза для предлагаемого микродозатора.

Использование предлагаемого планарного микродозатора с изменением фиксированного количества анализируемого газа в дозе будет способствовать созданию метрологически обеспеченных методик выполнения хроматографических измерений для различных конкретных (целевых) аналитических задач, включая экспрессные методы анализа с короткими капиллярными и микронасадочными колонками различных технологических объектов и анализа в полевых условиях с переносной конфигурацией приборов.

Планарный микродозатор, содержащий термостатированную плоскую пластину с дозирующим каналом фиксированного объема и каналами, соединяющими газовые потоки, которые установлены с возможностью переключения с помощью пневмораспределителей, при этом вход канала, ведущего к хроматографической колонке, соединен с каналом линии газа-носителя через пневмосопротивление, отличающийся тем, что в состав входят два 3-х ходовых пневмораспределителя с электрическим управлением, каналы для газовых потоков и дозирующий канал фиксированного объема выполнены методом микрофрезерования на плоской пластине элемента Пельтье, установленной с возможностью нагрева и охлаждения микродозатора, причем микродозатор также содержит терморегулятор, который установлен с возможностью поддержания фиксированной температуры микродозатора.
Планарный микродозатор с изменением фиксированного количества анализируемого газа в дозе
Планарный микродозатор с изменением фиксированного количества анализируемого газа в дозе
Планарный микродозатор с изменением фиксированного количества анализируемого газа в дозе
Источник поступления информации: Роспатент

Showing 41-50 of 77 items.
09.06.2019
№219.017.7663

Автоматическое устройство термомеханического управления радиальным зазором между концами рабочих лопаток ротора и статора компрессора или турбины газотурбинного двигателя

Группа изобретений относится к газотурбинным двигателям и газотурбинным установкам, в том числе к авиационным ТРД и ТРДД, а именно к устройствам регулирования радиального зазора между концами рабочих лопаток ступени ротора компрессора или турбины и статора газотурбинного двигателя. Предложено...
Тип: Изобретение
Номер охранного документа: 0002691000
Дата охранного документа: 07.06.2019
19.06.2019
№219.017.83d4

Устройство контроля герметичности элементов конструкции космического аппарата (ка)

Изобретение относится к области космической техники, предназначенной, в частности, для регистрации микрометеороидов и заряженных частиц ионосферы. Сущность изобретения заключается в том, что устройство контроля герметичности элементов конструкции космического аппарата дополнительно содержит...
Тип: Изобретение
Номер охранного документа: 0002691657
Дата охранного документа: 17.06.2019
20.06.2019
№219.017.8cf0

Способ определения деформаций на основе спекл-фотографии

Способ относится к бесконтактным оптическим методам исследования деформаций. Способ измерения деформаций заключается в том, что объект освещают когерентным светом, регистрируют спекл-фотографию объекта до и после его деформирования, сканируют полученную совмещенную спекл-фотографию и...
Тип: Изобретение
Номер охранного документа: 0002691765
Дата охранного документа: 18.06.2019
20.06.2019
№219.017.8d8a

Устройство для измерения массы жидких компонентов топлива при работе ракетных двигателей малой тяги в режиме одиночных включений и в импульсных режимах

Изобретение относится к испытаниям жидкостных ракетных двигателей малой тяги. Устройство для измерения массы жидких компонентов топлива при работе ракетного двигателя малой тяги в режиме одиночных включений и в импульсных режимах, состоящее из электропневмоклапана, градуированных стеклянных...
Тип: Изобретение
Номер охранного документа: 0002691873
Дата охранного документа: 18.06.2019
26.06.2019
№219.017.92a1

Ускоритель высокоскоростных твердых частиц

Изобретение относится к ускорителю высокоскоростных твердых частиц. Ускоритель содержит инжектор 1, индукционные датчики 2, усилители 3, линейный ускоритель 4, источник фиксированного высокого напряжения 5, цилиндрические электроды 6, селектор скоростей 7, селектор удельных зарядов 8, генератор...
Тип: Изобретение
Номер охранного документа: 0002692236
Дата охранного документа: 24.06.2019
27.06.2019
№219.017.986b

Тягоизмерительное устройство для испытаний жидкостных ракетных двигателей малой тяги в стационарном режиме работы

Изобретение относится к испытаниям жидкостных ракетных двигателей малой тяги. Устройство состоит из упругой балки с двумя силоизмерительными датчиками (весоизмерительным и задающим), на которой крепится испытуемое изделие и измерительный датчик, узла подвеса, силозадающего устройства...
Тип: Изобретение
Номер охранного документа: 0002692591
Дата охранного документа: 25.06.2019
28.06.2019
№219.017.997d

Устройство контроля параметров углового движения космического аппарата по данным бортовых измерений состояния геомагнитного поля

Изобретение относится к магнитным средствам управления параметрами движением вокруг центра масс космического аппарата (КА) научно-технологического назначения, особенностью которого является обеспечение ориентированного режима полета с невысокими требованиями к точности угловой ориентации....
Тип: Изобретение
Номер охранного документа: 0002692741
Дата охранного документа: 26.06.2019
10.07.2019
№219.017.a966

Устройство для гидродинамического эмульгирования и активации жидкого топлива

Изобретение относится к области энергетики и машиностроения. Устройство для гидродинамического эмульгирования и активации жидкого топлива содержит гидродинамический кавитационный аппарат эмульгатора, состоящий из трубопровода обрабатываемого жидкого топлива, трубопровода добавляемой жидкости,...
Тип: Изобретение
Номер охранного документа: 0002693942
Дата охранного документа: 08.07.2019
11.07.2019
№219.017.b254

Способ количественной оценки распределения дисперсных фаз листовых алюминиевых сплавов

Изобретение относится к области металлографических исследований и анализа материалов применительно к определению неоднородности распределения частиц дисперсных фаз в листовых металлах и сплавах. Способ включает получение металлографического шлифа, его травление для выявления фаз, затем с...
Тип: Изобретение
Номер охранного документа: 0002694212
Дата охранного документа: 09.07.2019
19.07.2019
№219.017.b663

Оптоэлектронный цифровой преобразователь угла

Изобретение относится к автоматике и вычислительной технике и может быть использовано в системах контроля и управления подвижными объектами. Техническим результатом является повышение надежности преобразователя за счет использования метода граничного сканирования для выявления дефектов монтажа...
Тип: Изобретение
Номер охранного документа: 0002694759
Дата охранного документа: 16.07.2019
Showing 21-29 of 29 items.
20.04.2019
№219.017.35cd

Способ определения водорастворимых летучих компонентов и устройство для его осуществления

Изобретение относится к газохроматографическим методам анализа водорастворимых летучих компонентов и может быть использовано для качественного и количественного анализа сложных смесей веществ природного и техногенного происхождения в различных отраслях промышленности. Способ определения...
Тип: Изобретение
Номер охранного документа: 0002685431
Дата охранного документа: 18.04.2019
20.05.2019
№219.017.5cc5

Комплексная установка для опреснения морской воды и выработки электроэнергии

Изобретение относится к теплоэнергетике и экологии и может быть использовано для опреснения морской воды и выработки электроэнергии. Комплексная установка для опреснения морской воды и выработки электроэнергии содержит трубопровод 9 холодной морской воды, адиабатный многоступенчатый испаритель,...
Тип: Изобретение
Номер охранного документа: 0002687914
Дата охранного документа: 16.05.2019
24.05.2019
№219.017.5f60

Способ подготовки пробы нефти для газохроматографического анализа малолетучих полярных веществ

Изобретение относится к газохроматографическим методам анализа нефтерастворимых малолетучих полярных соединений и может быть использовано в нефтяной и других отраслях промышленности для их количественного определения. Малолетучие полярные вещества экстрагируют из нефти в две стадии. На первой...
Тип: Изобретение
Номер охранного документа: 0002688513
Дата охранного документа: 21.05.2019
19.06.2019
№219.017.83d0

Микрохроматограф с бинарными колонками на плоскости

Изобретение относится к газовой хроматографии и может быть использовано для эффективного экспресс-анализа сложных смесей веществ природного и техногенного происхождения. Микрохроматограф содержит сменные независимо управляемые аналитические модули для анализа компонентов сложных смесей, каждый...
Тип: Изобретение
Номер охранного документа: 0002691666
Дата охранного документа: 17.06.2019
17.08.2019
№219.017.c106

Устройство подготовки пробы для анализа примесей малолетучих полярных веществ в жидких средах

Изобретение относится к газовой хроматографии и может быть использовано для концентрирования примесей методом твердофазной экстракции с последующей термодесорбцией в хроматографическую колонку для анализа примесей в нефтяной, газовой, нефтехимической отраслях промышленности, медицине, экологии...
Тип: Изобретение
Номер охранного документа: 0002697575
Дата охранного документа: 15.08.2019
02.10.2019
№219.017.cfda

Теплофикационная парогазовая установка с паротурбинным приводом компрессора

Изобретение относится к энергетике. Установка содержит основную противодавленческую паровую турбину, компрессор, дополнительную противодавленческую паровую турбину, камеру сгорания, газовую турбину, эластичную расцепную муфту, электрогенератор, паропровод перегретого пара, первый выхлопной...
Тип: Изобретение
Номер охранного документа: 0002700320
Дата охранного документа: 16.09.2019
25.12.2019
№219.017.f24f

Динамический способ получения постоянных концентраций аналита

Изобретение относится к области хроматографического анализа и может быть использовано для градуировки газовых и жидкостных хроматографов, создания градуировочных смесей. Динамический способ получения постоянных концентраций аналита включает непрерывный контакт потока подвижной фазы в проточной...
Тип: Изобретение
Номер охранного документа: 0002710102
Дата охранного документа: 24.12.2019
14.05.2020
№220.018.1bc7

Способ парофазного анализа комбинаций водорастворимых летучих и малолетучих пластовых индикаторов

Изобретение относится к аналитической химии и может быть использовано в нефтяной и газовой промышленности. Способ парофазного анализа комбинации водорастворимых летучих и малолетучих пластовых индикаторов в котором пробу пластовой воды помещают в герметичную стеклянную емкость с резиновой...
Тип: Изобретение
Номер охранного документа: 0002720658
Дата охранного документа: 12.05.2020
14.05.2020
№220.018.1bde

Способ твердофазного концентрирования комбинации водорастворимых летучих и нелетучих пластовых индикаторов

Изобретение относится к аналитической химии, а именно к газохроматографическим методам анализа, и может быть использовано в нефтяной и газовой промышленности. Способ твердофазного концентрирования комбинации водорастворимых летучих и нелетучих пластовых индикаторов, включает направление...
Тип: Изобретение
Номер охранного документа: 0002720656
Дата охранного документа: 12.05.2020
+ добавить свой РИД