×
05.07.2018
218.016.6c1d

Результат интеллектуальной деятельности: ИЗМЕРИТЕЛЬ ПУТЕВОЙ СКОРОСТИ И УГЛА СНОСА ЛЕТАТЕЛЬНОГО АППАРАТА

Вид РИД

Изобретение

№ охранного документа
0002659821
Дата охранного документа
04.07.2018
Аннотация: Изобретение относится к измерительной технике, в частности к устройствам измерения путевой скорости и угла сноса летательного аппарата в автономных навигационных системах с использованием электромагнитных волн. Достигаемый технический результат - увеличение точности измерения. Указанный результат достигается тем, что измеритель путевой скорости и угла сноса летательного аппарата содержит два генератора СВЧ, первый и второй направленные ответвители, два циркулятора, две антенны, ориентированные под углом β к поверхности и углом θ с правой и левой сторон от его оси, первый и второй смесители и вычислительный блок. При этом генераторы соединены через направленные ответвители с первыми выводами циркуляторов, антенны соединены с их вторыми выводами. Смесители первыми входами соединены с дополнительными выводами направленных ответвителей, вторыми входами соединены с третьими выводами циркуляторов, а выходами с вычислительным блоком. Дополнительно устройство содержит четыре направленных ответвителя, фильтр и три смесителя, при этом третий и четвертый направленные ответвители встроены между генераторами и входами первого и второго направленных ответвителей, а дополнительные выводы соединены с входами третьего смесителя, пятый и шестой направленные ответвители включены между третьими выводами циркуляторов и входами первого и второго смесителей, а их дополнительные выводы соединены с входами четвертого смесителя, выход третьего смесителя соединен с первым входом пятого смесителя напрямую, а выход четвертого смесителя соединен с вторым входом пятого смесителя через фильтр, а его выход соединен с вычислительным блоком. 3 ил.

Изобретение относится к измерительной технике, в частности к устройствам измерения путевой скорости и угла сноса летательного аппарата в автономных навигационных системах с использованием электромагнитных волн.

Для решения ряда навигационных задач, в особенности основной задачи навигации - определения места самолета - необходимо знать его полную скорость WH (скорость относительно земной поверхности), где проекцией ее на горизонтальную плоскость является путевая скорость W.

В настоящее время известны и применяются устройства для измерения скорости и угла сноса летательного аппарата ЛА, использующие барометрический принцип действия. Он отличается высокой надежностью и простотой реализации, однако имеет существенные недостатки. Барометрическое устройство измерения скорости определяет воздушную скорость V и не учитывает скорость и направление воздушного потока U. Путевая скорость W является суммой этих двух векторов с учетом вертикальной скорости, поэтому необходима постоянная коррекция из-за изменений в скорости ветра, температуры, плотности воздуха. Угол между скоростями V и W называется углом сноса ϕ. Его коррекция осуществляется передачей данных по ориентирам на местности или по сигналам спутниковой навигации. Это приводит к невысокой точности, особенно при отсутствии связи, видимости или при пропадании сигналов со спутников. Поэтому для определения путевой скорости W и угла сноса ϕ применяются радиоволновые устройства на основе эффекта Доплера. Эти устройства позволяют автономно измерять путевую скорость с учетом угла сноса. В частности, известно устройство, описанное в доплеровском измерителе путевой скорости и угла сноса самолета (ДИСС) (Бакулев П.А., Сосновский А.А. Радиолокационные и радионавигационные системы. М., Радио и связь, 1994).

Устройство содержит генератор СВЧ, направленный ответвитель, циркулятор, приемо-передающую антенну, смеситель, поворотное устройство антенны и вычислительный блок. Генератор соединен через направленный ответвитель с первым выводом циркулятора, антенна соединена со вторым выводом. Смеситель первым входом соединен с дополнительным выводом направленного ответвителя, вторым входом с третьим выводом циркулятора, а выходом с вычислительным блоком. После смешивания части мощности падающих СВЧ волн и отраженных от поверхности, на выходе смесителя формируется доплеровский сигнал, частота которого определяется в вычислительном блоке.

На Фиг. 1 поясняется принцип действия доплеровского однолучевого измерителя путевой скорости и угла сноса.

Как показано на Фиг. 1, в простейшем однолучевом ДИСС радиоволновое излучение с частотой ƒu направляется антенной с ЛА на подстилающую поверхность под углом β0 по направлению полета. Для определения спектра частот отраженного сигнала необходимо вырезать из облучаемой площади А элементарную полоску Ai, все точки которой расположены на направлениях, составляющих угол βi с вектором скорости W. Имея в виду, что каждой из N элементарных полосок соответствует доплеровский сдвиг частоты ƒDi, для всей облучаемой площади спектр отраженного сигнала можно представить последовательностью частот

где λu=c/ƒu - длина волны излучаемого колебания, с - скорость света в воздухе.

Если отражающие свойства поверхности в пределах облучаемой площади одинаковы, то форма огибающей спектра определяется формой диаграммы направленности (ДНА) измерителя в вертикальной плоскости. Максимальную мощность в этом случае имеет сигнал на средней частоте доплеровского спектра, соответствующей направлению W (оси ДНА).

Если вектор W горизонтален (высота полета Н постоянна и угол α=0) и составляет с осью ДНА угол γ в горизонтальной и β0 в вертикальной плоскости, то доплеровская частота:

.

В процессе вращения антенны, при совмещении направления облучения в горизонтальной плоскости с вектором W угол γ=0 и доплеровское приращение частоты достигает максимума:

В этот момент средняя доплеровская частота равна ƒDm и путевая скорость W вычисляется по формуле (2). Угол сноса ϕ равен углу, составленному осью самолета и осью ДНА в момент ее совмещения с направлением вектора путевой скорости.

Данное устройство не обладает достаточной точностью из-за его низкой чувствительности к изменению угла γ при небольших рассогласованиях направлений W и оси ДНА в горизонтальной плоскости. Снижают точность также наличие вибрации, нестабильность частоты и амплитуды генератора, неравномерные отражающие свойства облучаемой поверхности, - поскольку весь шум, вызванный этими факторами, накладывается на спектр доплеровского сигнала. Особо следует отметить влияние крена и возможного наличия вертикальной составляющей скорости, которые влияют на величину W, но никак не учитываются. Это приводит к необходимости дополнительного измерения высоты или поддержания антенной системы строго в горизонтальном положении, что сильно усложняет и удорожает общую систему навигации.

Более высокую точность показывают многолучевой измеритель путевой скорости и угла сноса. Наиболее близким по технической сущности является устройство измерения путевой скорости и угла сноса (Ю.П. Гришин, В.П. Ипатов, Ю.М. Казаринов и др.; Под ред. Ю.М. Казаринова. - Радиотехнические системы: Учеб. для вузов по спец. «Радиотехника» / М.: Высш. шк., 1990. с. 362), принятый за прототип.

На Фиг. 2 показана схема, поясняющая принцип действия доплеровского двухлучевого измерителя путевой скорости и угла сноса, выбранного в качестве прототипа.

Устройство содержит два одинаковых доплеровских измерителя скорости, подобных описанным выше, и содержит два генератора СВЧ, два направленных ответвителя, два циркулятора, две антенны и два смесителя. При этом генераторы соединены через направленные ответвители с первыми выводами циркуляторов, антенны соединены с их вторыми выводами. Смесители первыми входами соединены с дополнительными выводами направленных ответвителей, вторыми входами соединены с третьими выводами циркуляторов, а выходами с вычислительным блоком. При этом антенны расположенны по сторонам ЛА и ориентированы под углом θ к его оси в горизонтальной плоскости и под углом β0 в вертикальной (см. Фиг. 2). В результате приема отраженных СВЧ волн и смешивания их с частью мощности излучаемых волн выделяются два доплеровских сигнала с частотами ƒD1 и ƒD2. Они поступают в вычислительный блок, где определяется путевая скорость W и угол сноса ϕ, после решения системы уравнений:

При этом не используется поворотное устройство для системы антенн.

Данный способ позволяет определить путевую скорость с углом сноса и поперечную составляющую скорости с высокой точностью, благодаря высокой чувствительности к изменению доплеровских частот при отклонении оси самолета в горизонтальной плоскости. Положительное влияние на точность также оказывает отказ от использования поворотного устройства. Однако способ не устраняет ошибки от наличия вертикальной составляющей скорости (при α≠0).

Если же ЛА летит с набором высоты или снижается, то появляется вертикальная составляющая полной скорости WY (см. Фиг. 1 и Фиг. 2), которая не дает приращения горизонтального пути ЛА, но входит в результат измерений доплеровских частот для обеих антенных систем, соответственно уменьшая или увеличивая ее значение. Это может привести к значительной ошибке в измерении путевой скорости. С учетом вертикальной составляющей скорости система уравнений (3) примет вид:

знак « - » у второго члена в уравнениях идет при наборе высоты (кабрировании), а «+» -при снижении (пикировании).

Таким образом, для точного измерения путевой скорости необходимо также знать текущее значение вертикальной скорости WY.

Техническим результатом настоящего изобретения является повышение точности измерения путевой скорости и угла сноса летательного аппарата.

Технический результат достигается тем, что измеритель путевой скорости и угла сноса летательного аппарата содержит два генератора СВЧ, первый и второй направленные ответвители, два циркулятора, две антенны, ориентированные под углом β0 к поверхности и углом θ с правой и левой сторон от его оси, первый и второй смесители и вычислительный блок. При этом генераторы соединены через направленные ответвители с первыми выводами циркуляторов, антенны соединены с их вторыми выводами. Смесители первыми входами соединены с дополнительными выводами направленных ответвителей, вторыми входами соединены с третьими выводами циркуляторов, а выходами с вычислительным блоком. Дополнительно устройство содержит четыре направленных ответвителя, фильтр и три смесителя, при этом третий и четвертый направленные ответвители встроены между генераторами и входами первого и второго направленных ответвителей, а дополнительные выводы соединены с входами третьего смесителя, пятый и шестой направленные ответвители включены между третьими выводами циркуляторов и входами первого и второго смесителей, а их дополнительные выводы соединены с входами четвертого смесителя, выход третьего смесителя соединен с первым входом пятого смесителя напрямую, а выход четвертого смесителя соединен с вторым входом пятого смесителя через фильтр, а его выход соединен с вычислительным блоком.

Пусть частоты первого и второго генераторов СВЧ равны соответственно ƒ1 и ƒ2, тогда система уравнений (4) преобразуется к следующему виду:

где λ1=c/ƒ1 и λ2=c/ƒ2 - длины волн излучаемых колебаний. В этой системе уравнений имеются три неизвестных W, ϕ и WY.

Вертикальную составляющую скорости WY, можно определить следующим образом.

Каждая из волн, излучаемых первой и второй антеннами с частотами ƒ1 и ƒ2 - S21 и S22, после отражения приходит обратно на смесители с задержкой по времени

или ,

где L - расстояние по оси диаграммы направленности до поверхности земли в м, а Н - высота в м:

S21=S210sin(2πƒ1t+2πλ1/c) и S22=S220sin(2πƒ2t+2πλ2τ/c),

где S210 и S220 - амплитуды принятых волн с частотами ƒ1 и ƒ2.

Если теперь с помощью смесителя выделить сигнал разностной частоты этих двух принятых волн Sψ, то его фаза ψ тоже будет сдвинута на время τ:

где F=ƒ12 - частота сигнала разностной частоты Sψ с амплитудой Sψ0 между принятыми отраженными сигналами S21 и S22. Из формулы (6) видно, что фаза этого сигнала ψ зависит от времени τ и, следовательно, высоты ЛА - Н. При этом из-за периодичности синусоидального сигнала, диапазон однозначности будет повторяться через каждую полуволну сигнала Sψ, что соответствует высоте

.

Таким образом, измеряя изменения фазы ψ относительно опорного сигнала за небольшой интервал времени Δt - Δψ/Δt, из формулы (6) можно определить вертикальную составляющую скорости WY=ΔH/Δt, при изменениях высоты полета Н:

В качестве опорного сигнала S0 можно использовать сигнал разностной частоты от излучаемых волн S11 и S12 с частотами ƒ1 и ƒ2, выделяемый на отдельном смесителе. Для устранения влияния доплеровских частот, можно использовать пропускающий фильтр на частоту F для сигнала разностной частоты Sψ от принимаемых волн S21 и S22.

Таким образом, по полученному значению WY из уравнения (7) и измеренным значениям ƒD1 и ƒD2 можно найти значения W и ϕ, решая систему двух уравнений с двумя неизвестными любым численным методом (5).

На Фиг. 3 показана структурная схема заявляемого устройства.

Устройство содержит генераторы СВЧ 1, 8, направленные ответвители 2, 3, 6 и 9, 10, 13, циркуляторы 4, 11, антенны 5, 12, смесители 7, 14, 15, 17, 18, фильтр 16 и вычислительный блок 19.

Устройство работает следующим образом. СВЧ волны с частотами ƒ1 и ƒ2 через направленные ответвители 2, 3 и 9, 10, циркуляторы 4, 11 поступают на антенны 5, 12, ориентированные под углом β0 к поверхности и углом θ к оси ЛА. Отраженные волны S21 и S22 принимаются антеннами и через циркуляторы поступают на первые входы смесителей 7 и 14 через направленные ответвители 6 и 13. На вторые входы этих смесителей поступает часть мощности излучаемых волн от дополнительных выводов направленных ответвителей 3 и 10. Доплеровские сигналы с выходов этих смесителей ƒD1 и ƒD2 поступают на входы вычислительного блока 19. Части мощности отраженных сигналов поступают с дополнительных выводов направленных ответвителей 6 и 13 на входы смесителя 15. Сигнал с его выхода Sψ поступает через фильтр на частоту F 16 на первый вход смесителя 17. На второй его вход поступает сигнал с выхода смесителя 18 S0, на входы которого поступает часть мощности излучаемых волн через дополнительные выводы направленных ответвителей 2 и 9. На выходе смесителя 17 образуется сигнал, пропорциональный фазе сигнала разностной частоты ψ, который поступает на вычислительный блок 19. В этом блоке происходит вычисление по изменению фазы Δψ относительно опорного сигнала S0 за интервал времени Δt, вертикальной составляющей скорости WY, а затем путевой скорости W и угла сноса ϕ из решения системы уравнений (5) с учетом измеренных ƒD1 и ƒD2 и вычисленной скорости WY.

Измеритель путевой скорости и угла сноса летательного аппарата, содержащий два генератора СВЧ, первый и второй направленные ответвители, два циркулятора, две антенны, ориентированные под углом β к поверхности и углом θ с правой и левой сторон от его оси, первый и второй смесители и вычислительный блок, при этом генераторы соединены через направленные ответвители с первыми выводами циркуляторов, антенны соединены с их вторыми выводами, смесители первыми входами соединены с дополнительными выводами направленных ответвителей, вторыми входами соединены с третьими выводами циркуляторов, а выходами с вычислительным блоком, отличающийся тем, что дополнительно содержит четыре направленных ответвителя, фильтр и три смесителя, при этом третий и четвертый направленные ответвители встроены между генераторами и входами первого и второго направленных ответвителей, а дополнительные выводы соединены с входами третьего смесителя, пятый и шестой направленные ответвители включены между третьими выводами циркуляторов и входами первого и второго смесителей, а их дополнительные выводы соединены с входами четвертого смесителя, выход третьего смесителя соединен с первым входом пятого смесителя напрямую, а выход четвертого смесителя соединен с вторым входом пятого смесителя через фильтр, а его выход соединен с вычислительным блоком.
ИЗМЕРИТЕЛЬ ПУТЕВОЙ СКОРОСТИ И УГЛА СНОСА ЛЕТАТЕЛЬНОГО АППАРАТА
ИЗМЕРИТЕЛЬ ПУТЕВОЙ СКОРОСТИ И УГЛА СНОСА ЛЕТАТЕЛЬНОГО АППАРАТА
ИЗМЕРИТЕЛЬ ПУТЕВОЙ СКОРОСТИ И УГЛА СНОСА ЛЕТАТЕЛЬНОГО АППАРАТА
Источник поступления информации: Роспатент

Showing 21-30 of 276 items.
20.05.2014
№216.012.c72e

Способ преобразования электрического сигнала в пневматический

Изобретение относится к области автоматики и может быть использовано для преобразования электрического сигнала в пневматический в электроструйных системах автоматического управления с повышенными требованиями к быстродействию. Способ осуществляют следующим образом: электрическим сигналом...
Тип: Изобретение
Номер охранного документа: 0002516749
Дата охранного документа: 20.05.2014
10.06.2014
№216.012.d01e

Устройство для оценки предпочтительного уровня унификации технических систем

Изобретение относится к вычислительной технике и может быть использовано для оценки предпочтительного уровня унификации технических систем (ТС) с целью минимизации затрат на проектирование и изготовление ТС при достаточном уровне их эффективности. Технический результат заключается в повышении...
Тип: Изобретение
Номер охранного документа: 0002519049
Дата охранного документа: 10.06.2014
27.06.2014
№216.012.d8c9

Устройство для измерения давления

Изобретение относится к измерительной технике и может быть использовано в системах управления технологическими процессами. Техническим результатом изобретения является упрощение процесса измерения информативного параметра. Устройство для измерения давления содержит генератор электромагнитных...
Тип: Изобретение
Номер охранного документа: 0002521275
Дата охранного документа: 27.06.2014
27.06.2014
№216.012.d8d0

Способ измерения расхода газожидкостной смеси

Изобретение относится к измерительной технике и может использоваться для контроля расхода газожидкостной смеси (ГЖС), извлекаемой, например, из буровой скважины. Способ измерения расхода газожидкостной смеси включает измерение объемного расхода по частоте вращения ротора при нулевом перепаде...
Тип: Изобретение
Номер охранного документа: 0002521282
Дата охранного документа: 27.06.2014
27.06.2014
№216.012.d8d3

Способ измерения массового расхода среды

Изобретение относится к измерительной технике и может использоваться для измерения расхода различных сред, в частности при коммерческих расчетах. Способ измерения массового расхода среды включает измерение объемного расхода по частоте вращения измерителя при нулевом перепаде давления и передачу...
Тип: Изобретение
Номер охранного документа: 0002521285
Дата охранного документа: 27.06.2014
10.07.2014
№216.012.da87

Способ измерения покомпонентного расхода газожидкостной смеси

Изобретение относится к измерительной технике и может использоваться для контроля расхода газожидкостной смеси (ГЖС), извлекаемой, например, из буровой скважины. Способ измерения покомпонентного расхода газожидкостной смеси включает измерение объемного расхода и передачу данных вычислителю. При...
Тип: Изобретение
Номер охранного документа: 0002521721
Дата охранного документа: 10.07.2014
10.07.2014
№216.012.da88

Устройство для измерения физических параметров объекта

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения различных физических параметров объектов, таких как геометрические размеры изделий, расстояние до какого-либо объекта, уровень веществ в емкостях, физические свойства жидкостей и газов,...
Тип: Изобретение
Номер охранного документа: 0002521722
Дата охранного документа: 10.07.2014
10.07.2014
№216.012.da8e

Магниторезистивная головка-градиометр

Изобретение может быть использовано в датчиках магнитного поля и тока, головках считывания с магнитных дисков и лент, устройствах диагностики печатных плат и микросхем, биообъектов (бактерий и вирусов), идентификации информации, записанной на магнитные ленты, считывания информации, записанной...
Тип: Изобретение
Номер охранного документа: 0002521728
Дата охранного документа: 10.07.2014
10.07.2014
№216.012.da8f

Бесконтактный радиоволновой способ измерения уровня жидкости в емкости

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения уровня жидкости, находящейся в какой-либо емкости. Способ заключается в том, что в сторону поверхности жидкости по нормали к ней излучают частотно-модулированные по линейному закону...
Тип: Изобретение
Номер охранного документа: 0002521729
Дата охранного документа: 10.07.2014
10.07.2014
№216.012.dc1c

Флажковый ветрогенератор

Изобретение относится к области ветроэнергетики. Флажковый ветрогенератор содержит ветроприемник, выполненный в виде струн, расположенных в ветровом потоке между стойками, преобразователь колебаний струн в полезную энергию. Струны, натянутые между стойками, содержат навешанные на них полотнища...
Тип: Изобретение
Номер охранного документа: 0002522126
Дата охранного документа: 10.07.2014
Showing 21-30 of 41 items.
25.08.2017
№217.015.a8cf

Радиоволновый расходомер

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения массового расхода жидкостей в трубопроводах. В частности, при трубопроводной транспортировке нефтепродуктов, сжиженных газов, продуктов химического производства, в том числе химически агрессивных...
Тип: Изобретение
Номер охранного документа: 0002611255
Дата охранного документа: 21.02.2017
25.08.2017
№217.015.a902

Бесконтактный радиоволновый способ измерения уровня жидкости в емкости

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения уровня жидкости в емкости. Технический результат заключается в повышении точности измерений. В предлагаемом способе измерения уровня жидкости в емкости технический результат достигается тем,...
Тип: Изобретение
Номер охранного документа: 0002611333
Дата охранного документа: 21.02.2017
25.08.2017
№217.015.a91b

Доплеровский измеритель путевой скорости

Изобретение относится к измерительной технике, в частности к устройствам измерения путевой скорости транспортных средств с использованием эффекта Доплера для электромагнитных волн. Технический результат - повышение точности измерения скорости достигается тем, что в устройстве, содержащем...
Тип: Изобретение
Номер охранного документа: 0002611440
Дата охранного документа: 22.02.2017
25.08.2017
№217.015.aaa1

Доплеровский способ измерения путевой скорости

Изобретение относится к измерительной технике, в частности к способам измерения путевой скорости транспортных средств с использованием эффекта Доплера для электромагнитных волн. Технический результат - повышение точности измерения скорости достигается тем, что в способе измерения путевой...
Тип: Изобретение
Номер охранного документа: 0002611601
Дата охранного документа: 28.02.2017
25.08.2017
№217.015.cea4

Способ измерения массового расхода жидких сред

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения скорости потока и расхода диэлектрических жидкостей в трубопроводах, в частности при трубопроводной транспортировке нефтепродуктов, сжиженных газов. Способ измерения массового расхода жидких сред...
Тип: Изобретение
Номер охранного документа: 0002620774
Дата охранного документа: 29.05.2017
25.08.2017
№217.015.cedd

Устройство для измерения массового расхода жидких сред

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения скорости потока и расхода диэлектрических жидкостей в трубопроводах. В частности, при трубопроводной транспортировке нефтепродуктов, сжиженных газов. Устройство для измерения расхода жидких сред...
Тип: Изобретение
Номер охранного документа: 0002620779
Дата охранного документа: 29.05.2017
26.08.2017
№217.015.e377

Способ измерения уровня жидкости и сыпучих сред в емкости

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения уровня жидкости и сыпучих сред, находящихся в какой-либо емкости. В частности, оно может быть применено для измерения уровня нефтепродуктов, сжиженных газов, цемента и др. Технический результат...
Тип: Изобретение
Номер охранного документа: 0002626386
Дата охранного документа: 26.07.2017
26.08.2017
№217.015.e42c

Радиоволновый способ измерения путевой скорости и угла сноса летательного аппарата

Изобретение относится к измерительной технике, в частности к способам измерения путевой скорости и угла сноса летательного аппарата в автономных навигационных системах с использованием электромагнитных волн. Достигаемый технический результат - увеличение точности измерений. Указанный результат...
Тип: Изобретение
Номер охранного документа: 0002626411
Дата охранного документа: 27.07.2017
10.05.2018
№218.016.432a

Бесконтактный радиоволновый уровнемер

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения уровня жидкости в емкости. Технический результат - повышение точности измерения в предлагаемом уровнемере - достигается тем, что он содержит последовательно соединенные модулятор, генератор...
Тип: Изобретение
Номер охранного документа: 0002649665
Дата охранного документа: 04.04.2018
10.05.2018
№218.016.4741

Бесконтактный радиоволновый способ измерения уровня жидкости в емкости

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения уровня жидкости в емкости. Технический результат - повышение точности в предлагаемом способе измерения уровня жидкости в емкости достигается тем, что в сторону поверхности жидкости по нормали к...
Тип: Изобретение
Номер охранного документа: 0002650611
Дата охранного документа: 16.04.2018
+ добавить свой РИД