×
05.07.2018
218.016.6ba5

Результат интеллектуальной деятельности: Способ оценки эффективности противотурбулентной присадки

Вид РИД

Изобретение

Аннотация: Изобретение относится к области гидродинамики жидкостей, в частности к способам оценки эффективности гидродинамического сопротивления углеводородных жидкостей, и может быть использовано при создании гидродинамических стендов для изучения углеводородных жидкостей и испытания присадок к ним, снижающих гидродинамическое сопротивление. Предложен способ оценки эффективности противотурбулентной присадки, характеризующийся тем, что измерения проводят на гидравлическом стенде, обеспечивающем турбулентный режим течения углеводородной жидкости и включающем измерительный участок, на входе и выходе которого установлены датчики температуры. При этом углеводородную жидкость циркулируют по измерительному участку, фиксируя ее температуру на входе и выходе измерительного участка, после чего вводят противотурбулентную присадку в циркулируемую углеводородную жидкость, фиксируя ее температуру на входе и выходе измерительного участка. Величину снижения сопротивления (DR) по перепаду температуры на измерительном участке рассчитывают по формуле DR (%)=А(1-ΔТ/ΔТр)*100, где А - экспериментально определяемая константа; ΔТ - перепад температуры углеводородной жидкости (нефти/нефтепродукта) без противотурбулентной присадки на входе и выходе измерительного участка, °С; ΔТр - перепад температуры углеводородной жидкости (нефти/нефтепродукта) с введенной противотурбулентной присадкой на входе и выходе измерительного участка, °С; причем в процессе измерения углеводородную жидкость подогревают или охлаждают с тем, чтобы ее температура отличалась от температуры окружающей среды. Технический результат - упрощение процесса проведения исследования по определению величины снижения гидравлического сопротивления (DR). 2 ил.

Изобретение относится к области гидродинамики жидкостей, в частности к способам оценки эффективности гидродинамического сопротивления углеводородных жидкостей, и может быть использовано при создании гидродинамических стендов для изучения углеводородных жидкостей и испытания присадок к ним, снижающих гидродинамическое сопротивление.

Из уровня техники известно, что растворы некоторых полимеров и поверхностно активных веществ обладают пониженным по сравнению с чистым растворителем коэффициентом сопротивления в турбулентном режиме течения [Virk P.S. Drag reduction fundamentals // AIChE Journal. V. 21. №4. 1975. Pp.625-656]. Это явление, называемое эффектом Томса, применяется на практике, в частности, для увеличения пропускной способности нефтепроводов [Burger Е.D., Munk W.R. and Wahl Н.A. Flow increase in the Trans Alaska Pipeline through use of a polymeric drag reducing additive // Journal of Petroleum Technology. V. 34. №2. 1982. Pp. 377-386], а сами агенты снижения сопротивления называют противотурбулентными присадками (ПТП).

В литературе также отмечается, что когда температура жидкости в трубопроводе превышает температуру окружающей среды, одновременно со снижением сопротивления (DR, Drag Reduction) наблюдается снижение коэффициента теплопередачи (HTR, Heat Transfer Reduction), причем DR и HTR сопоставимы по величине (Y. Dimant and М. Poreh, "Heat transfer in flows with drag reduction," Advances in Heat Transfer, vol. 12, pp. 77-113, 1976).

Отмечается также, что HTR даже немного превосходит по величине DR (G. Aguilar, К. Gasljevic, and Е.F. Matthys, "Coupling between heat and momentum transfer mechanisms for dragreducing polymer and surfactant solutions," Journal of Heat Transfer, vol. 121, no. 4, pp. 796-802, 1999). DR и HTR являются безразмерными величинами и выражаются в процентах.

Для оценки эффективности ПТП используют лабораторные измерительные стенды петлевого типа, где углеводородная жидкость циркулирует по измерительному участку под действием насоса. Величину эффекта снижения сопротивления (DR) определяют по формуле

где ΔР - перепад давления на измерительном участке, Q - расход жидкости, индексы p и s относятся к раствору и растворителю соответственно.

Для определения DR, как следует из формулы (1), необходимо знать перепад давления и расход для «чистой» углеводородной жидкости и углеводородной жидкости с введенной в нее ПТП. Таким образом, лабораторный измерительный стенд должен быть оборудован датчиками давления и расходомером [Jabir Shanshool, Marwa F. Abdul Jabbar and Izzat N. Slaiman «The influence of mechanical effects on degradation of polyisobutylenes as drag reducing agents», Petroleum & Coal, 53 (3), 2011, p. 218-222].

Однако для исследования тяжелой нефти такой стенд не подходит, поскольку для реализации турбулентного режима ее течения в лабораторных условиях стенд должен быть оборудован системой подогрева. Поскольку в реальной практике для транспортировки тяжелой нефти используют нефтепроводы с подогревом, температурные исследования на лабораторных стендах имеют прямой практический интерес.

Для температурных исследований углеводородных жидкостей известен гидродинамический стенд для испытания противотурбулентных присадок, реализующий способ оценки эффективности противотурбулентной присадки, характеризующийся тем, что углеводородную жидкость прокачивают по измерительному участку, обеспечивая турбулентный режим течения углеводородной жидкости, посредством датчика температуры следят за изменением температуры протекающей по измерительному участку углеводородной жидкости, после установления заданной температуры углеводородной жидкости в нее вводят противотурбулентную присадку и измеряют изменение температуры, а посредством дифференциальных датчиков давления измеряют падение давления жидкости в турбулентном режиме течения, при этом посредством расходомера, расположенного на выходе измерительного участка, проводят измерения объемной скорости потока углеводородной жидкости, по результатам измеренных данных определяют величину снижения гидродинамического сопротивления после введения в жидкость ПТП по формуле (1) и строят кривую зависимости снижения гидродинамического сопротивления от времени при различных значениях температуры углеводородной жидкости (патент РФ на полезную модель RU 151950 U1, дата публикации 20.04.2015).

Недостаток известного способа состоит в том, что традиционное измерение величины DR по формуле (1) сопряжено с большим разбросом показаний датчиков давления, которые в установке петлевого типа находятся на небольшом удалении от насоса и регистрируют пульсации, генерируемые насосом объемного типа.

Техническая проблема, на решение которой направлено заявляемое изобретение, состоит в создании способа оценки эффективности противотурбулентной присадки по изменению падения температуры на входе и выходе измерительного участка гидравлического измерительного стенда.

Техническим результатом предлагаемого изобретения является упрощение процесса проведения исследования по определению величины снижения гидравлического сопротивления (DR).

Технический результат достигается за счет того, что в способе оценки эффективности противотурбулентной присадки измерения проводят на гидравлическом стенде, обеспечивающем турбулентный режим течения углеводородной жидкости и включающем измерительный участок, на входе и выходе которого установлены датчики температуры, при этом углеводородную жидкость циркулируют по измерительному участку, фиксируя ее температуру на входе и выходе измерительного участка, после чего вводят противотурбулентную присадку в циркулируемую углеводородную жидкость, фиксируя ее температуру на входе и выходе измерительного участка, а величину снижения сопротивления (DR) по перепаду температуры на измерительном участке рассчитывают по формуле

где А - экспериментально определяемая константа;

ΔТ0 - перепад температуры углеводородной жидкости (нефти/ нефтепродукта) без противотурбулетной присадки на входе и выходе измерительного участка, °С;

ΔТp - перепад температуры углеводородной жидкости (нефти/ нефтепродукта) с введенной противотурбулентной присадкой на входе и выходе измерительного участка, °С;

причем в процессе циркуляции углеводородную жидкость подогревают или охлаждают с тем, чтобы ее температура отличалась от температуры окружающей среды.

Таким образом, используя перепад температуры на измерительном участке для оценки величины снижения сопротивления (DR), обеспечивается точность, сопоставимая с точностью при расчете DR, используя перепад давления, при этом обеспечивается существенное упрощение конструкции гидравлического стенда за счет отсутствия необходимости в монтаже датчиков давления.

На фиг. 1 представлена схема гидравлического стенда для проведения исследования гидравлического сопротивления, на фиг. 2 представлен график величины снижения гидравлического сопротивления (DR) в зависимости от продолжительности циркуляции нефти, содержащей ПТП.

Для реализации заявляемого способа может быть использован гидродинамический стенд для испытания противотурбулентных присадок, схема которого приведена на фиг. 1 и содержащий расходную емкость 1 для углеводородной жидкости, которая снабжена входным и выходным шаровыми кранами (на чертежах не показано), термостат 2, соединенный с расходной емкостью 1 и предназначенный для поддержания заданной температуры в трубной обвязке, образующей замкнутый контур для циркуляции углеводородной жидкости, содержащей измерительный участок 3. Замкнутый контур движения углеводородной жидкости представляет собой трубку диаметром 10-50 мм и длиной 5-10 м. После расходной емкости 1 в трубной обвязке последовательно установлены устройство ввода 4 противотурбулентной присадки и винтовой насос 5, задающий необходимую скорость движения углеводородной жидкости в замкнутом контуре 3. На участке трубной обвязки после винтового насоса 5 размещен измерительный участок 3, на входе и выходе которого установлены датчики температуры 6. Дополнительно на входе и выходе измерительного участка 3 могут быть установлены датчики давления 7, а на выходе - расходомер 8. Измерительный участок 3 имеет длину 2-3 м. Винтовой насос 5 может быть снабжен частотно-регулируемым приводом 9. Расходная емкость 1 также может быть снабжена датчиком температуры 6.

Способ реализуется следующим образом

В расходную емкость 1 через входной шаровой кран, расположенный в верхней ее части, заливают углеводородную жидкость, например нефть. Входной шаровой кран оставляют открытым для поддержания внутри емкости атмосферного давления.

Углеводородная жидкость в расходной емкости 1 подогревается или охлаждается до заданной температуры, отличающейся от температуры окружающей среды, посредством термостата 2 в зависимости от целей эксперимента. Термостат 2 выполнен с возможностью задания температур в диапазоне от -15 до +85°С.

Затем запускают работу винтового насоса 5, обеспечивающего в измерительном контуре 3 поддержание скорости потока углеводородной жидкости, при которой наблюдается турбулентный режим течения.

Посредством датчиков температуры 6 измеряют температуру протекающей углеводородной жидкости на входе и выходе измерительного участка 3. Далее из устройства 4 в трубную обвязку вводят ПТП и измеряют температуру углеводородной жидкости с введенной ПТП на входе и выходе измерительного участка 3 посредством датчика температуры 6.

После проведения измерений углеводородную жидкость сливают из расходной емкости 1 посредством шарового крана 1.1.

По результатам измеренных данных определяют величину снижения гидродинамического сопротивления после введения в жидкость ПТП и строят кривую зависимости снижения гидродинамического сопротивления от времени циркуляции при различных значениях температуры углеводородной жидкости. Заявленное устройство позволяет оценить эффективность противотурбулентной присадки при различных температурных режимах.

При этом одновременная регистрация величины DR и относительного изменения разности температуры в экспериментах с нагретой нефтью показала их однозначное соответствие друг другу (фиг. 2, зеленая линия рассчитана по перепаду давления и расходу; красная линия - по перепаду температуры), что позволяет вычислить константу А в формуле (2), при том, что разброс данных относительного изменения температуры гораздо меньше относительного разброса значений давления. Это делает возможным определение величины DR по перепаду температуры на измерительном участке трубопровода

где А - экспериментально определяемая константа;

ΔТ0 - перепад температуры углеводородной жидкости (нефти/нефтепродукта) без противотурбулентной присадки на входе и выходе измерительного участка, °С;

ΔТр - перепад температуры углеводородной жидкости (нефти/нефтепродукта) с введенной противотурбулентной присадкой на входе и выходе измерительного участка, °С.

Таким образом, при измерении перепад температуры не теряется точность определения величины снижения гидравлического сопротивления по сравнению с методом измерения по перепаду давления, но при этом существенно упрощается конструкция гидравлического стенда для проведения исследования за счет исключения необходимости применения датчиков давления.


Способ оценки эффективности противотурбулентной присадки
Способ оценки эффективности противотурбулентной присадки
Источник поступления информации: Роспатент

Showing 91-100 of 151 items.
26.05.2019
№219.017.6142

Способ получения депрессорной присадки in situ в процессе трубопроводного транспорта высокопарафинистой нефти, обработанной противотурбулентной присадкой

Изобретение относится к способу получения депрессорной присадки in situ в процессе трубопроводного транспорта высокопарафинистой нефти. Способ получения депрессорной присадки in situ заключается в том, что через дозирующее устройство в поток перекачиваемой нефти вводят противотурбулентную...
Тип: Изобретение
Номер охранного документа: 0002689113
Дата охранного документа: 24.05.2019
30.05.2019
№219.017.6bc5

Способ компаундирования нефтей и система его осуществления

Изобретение относится к области трубопроводного транспорта, а именно к способам компаундирования нефти с различными физико-химическими свойствами, в том числе при обеспечении транспортировки высокопарафинистой, высоковязкой нефти и нефти с высоким содержанием серы. В частности, предложена...
Тип: Изобретение
Номер охранного документа: 0002689458
Дата охранного документа: 28.05.2019
30.05.2019
№219.017.6bd2

Способ пенной атаки при тушении пожаров в резервуарном парке

Настоящее изобретение относится к области пожарной безопасности, а именно к пенной атаке при тушении пожаров в резервуарном парке (РП) для хранения нефти и нефтепродуктов. Способ пенной атаки при тушении пожаров в резервуарном парке, заключающийся в подаче раствора из пенообразователя типа AFFF...
Тип: Изобретение
Номер охранного документа: 0002689450
Дата охранного документа: 28.05.2019
31.05.2019
№219.017.7184

Способ гидродинамической очистки внутренней поверхности технологических трубопроводов нефте- и нефтепродуктоперекачивающих станций

Изобретение относится к области трубопроводного транспорта, а именно к способам очистки внутренней поверхности технологических трубопроводов объектов магистрального трубопроводного транспорта нефти и нефтепродуктов от асфальтосмолопарафиновых отложений (АСПО) для восстановления нормативного...
Тип: Изобретение
Номер охранного документа: 0002689629
Дата охранного документа: 28.05.2019
09.06.2019
№219.017.762b

Способ определения сигнала от стенки трубы по данным вип cd статистики энергетических линий

Использование: для выявления дефектов трубопровода по данным ультразвукового внутритрубного дефектоскопа. Сущность изобретения заключается в том, что для анализа отраженных от стенки трубопровода ультразвуковых сигналов формируют частотную карту откликов отраженных от внутренней стенки...
Тип: Изобретение
Номер охранного документа: 0002690975
Дата охранного документа: 07.06.2019
09.06.2019
№219.017.7638

Устройство для измерения внутреннего профиля трубопровода

Изобретение относится к области неразрушающего контроля технического состояния трубопроводов путем пропуска внутритрубного устройства. Технический результат: повышение точности диагностических данных по измерению внутреннего профиля за счет защиты от поперечных нагрузок, приводящих к...
Тип: Изобретение
Номер охранного документа: 0002690973
Дата охранного документа: 07.06.2019
02.07.2019
№219.017.a2a6

Взрывозащищенное внутритрубное устройство

Изобретение относится к области контроля трубопроводов, в частности к обеспечению защиты внутритрубного устройства и трубопровода от возможного взрыва во время диагностического пропуска внутритрубного устройства в трубопроводе. Изобретение включает по меньшей мере одну секцию, которая содержит...
Тип: Изобретение
Номер охранного документа: 0002692875
Дата охранного документа: 28.06.2019
02.07.2019
№219.017.a2cd

Носитель датчиков дефектоскопа внутритрубного ультразвукового

Изобретение относится к устройствам контроля технического состояния магистральных нефтепроводов, нефтепродуктопроводов неразрушающими методами путем пропуска внутри обследуемого трубопровода внутритрубного ультразвукового дефектоскопа. Носитель датчиков содержит корпус, на переднем конце...
Тип: Изобретение
Номер охранного документа: 0002692870
Дата охранного документа: 28.06.2019
02.07.2019
№219.017.a320

Носитель датчиков внутритрубного ультразвукового дефектоскопа

Заявляемое изобретение относится к области внутритрубной диагностики технического состояния трубопроводов большой протяженности. Носитель датчиков содержит корпус, на переднем и заднем концах которого размещены манжеты, между которыми расположены конус и диск. Между конусом и диском установлены...
Тип: Изобретение
Номер охранного документа: 0002692869
Дата охранного документа: 28.06.2019
02.07.2019
№219.017.a326

Носитель датчиков дефектоскопа внутритрубного ультразвукового

Изобретение относится к устройствам контроля технического состояния магистральных нефтепроводов, нефтепродуктопроводов неразрушающими методами путем пропуска внутри обследуемого трубопровода внутритрубного ультразвукового дефектоскопа. Измерительная система носителя датчиков содержит держатели,...
Тип: Изобретение
Номер охранного документа: 0002692868
Дата охранного документа: 28.06.2019
Showing 21-22 of 22 items.
21.04.2023
№223.018.5072

Способ получения депрессора и ингибитора асфальтосмолопарафиновых отложений аспо, используемого в депрессорно-диспергирующих присадках к нефти

Изобретение относится к нефтехимии и нефтепереработке, а именно к полимерам, используемым в качестве депрессоров и ингибиторов асфальтосмолопарафиновых отложений АСПО. Технический результат - увеличение пропускной способности трубопровода при транспортировке сырой нефти различного состава. В...
Тип: Изобретение
Номер охранного документа: 0002794111
Дата охранного документа: 11.04.2023
16.06.2023
№223.018.7a6f

Способ очистки дизельного топлива

Изобретение относится к способу очистки дизельного топлива от дисперсных механических загрязнений. Способ включает в себя введение глицерина в количестве 5-10 мас. % в дизельное топливо при его перемешивании в течение 80-170 мин с последующим отстаиванием смеси в течение 12 ч. Технический...
Тип: Изобретение
Номер охранного документа: 0002730318
Дата охранного документа: 21.08.2020
+ добавить свой РИД