×
01.07.2018
218.016.698f

Результат интеллектуальной деятельности: Способ определения качества герметика кабельных гермовводов

Вид РИД

Изобретение

Аннотация: Изобретение относится к кабельным сетям и может быть использовано для предотвращения распространения пожара в смежные помещения через кабельные уплотнительные коробки (герметичный ввод, гермоввод, кабельные коробки), например, на морских судах. Проводят обдув передней поверхности герметика теплым воздухом в течение нескольких минут и непрерывно контролируют температуру задней поверхности с помощью тепловизора. Регистрируют прохождение теплового поля от передней к задней поверхности. При наличии воздухопроницаемых дефектов, отверстий на задней поверхности с помощью тепловизора регистрируют участки с повышенной температурой. Технический результат - повышение точности контроля качества сплошности герметика и локализации места протечки воздуха конструкции. 3 з.п. ф-лы, 2 ил.

Изобретение относится к кабельным сетям и может быть использовано для предотвращения распространения пожара в смежные помещения через кабельные уплотнительные коробки (герметичный ввод, гермоввод, кабельные коробки), например, на морских судах. Суть заявляемого технического решения заключается в том, что способ определения качества кабельных гермовводов основан на принципах импульсного теплового неразрушающего контроля материала.

В качестве технического средства, регистрирующего температурное поле поверхности герметика после воздействия теплового импульса, используют тепловизор.

Качество герметика характеризуется отсутствием трещин и нарушений в его объеме. Наличие трещин и сплошности герметика приводит к возможности водо- и воздухопроницаемости, что является недопустимым при целостном гермовводе.

Изобретение позволяет оперативно оценить качество уплотнительной коробки (гермоввода), предназначенной для защиты проникновения пожара, воды, газов через непроницаемые переборки.

Известны несколько способов [1]-[4] определения качества герметика кабельных гермовводов.

Например, помещение, через которое проходят кабели, заливают водой и создают в нем давление, оговоренное спецификацией судна. Давление поддерживают в течение установленного программой испытаний времени, наблюдая с другой стороны переборок за пропуском воды через конструкции для уплотнения мест прохода кабелей (гермовводы).

Недостатком данного способа является то, что он возможен только в помещениях специального назначения, которые могут затапливаться водой в процессе нормальной эксплуатации судна.

Другой способ реализуется путем закрытия в помещениях, через которые проходят кабели, дверей, горловин и создания в них воздушного давления, оговоренного спецификацией судна. Давление воздуха поддерживают в течение установленного программой испытаний времени. Пропуски воздуха через уплотняющие конструкции контролируют по падению давления (по манометру) и смазыванием мест прохода кабелей с другой стороны мыльным раствором. Данные способ имеет ограничения по классу помещений, т.к. может быть применим в специальных помещениях, например котельных отделениях с принудительным общим дутьем и подобных им.

Для проверки уплотнительных устройств, расположенных на верхних палубах судов, используют способ, при котором уплотнительные конструкции для прохода кабелей обливают водой под давлением в 2 кг/см2 с расстояния в 5 м с любого направления в течение 5 минут. Качество уплотнения мест прохода кабелей считают удовлетворительным, если с противоположной стороны переборки палубы не будут обнаружены пропуски воды. Недостатком данного способа является сложность его использования во внутренних помещениях с электрически оборудованием.

Наконец, для проверки уплотнительных устройств, расположенных в служебных и бытовых помещениях судна, гермовводы (проходы кабелей, кабельные коробки) обдувают сжатым воздухом из шланга диаметром не менее 1/2 дюйма с расстояния в 100 мм. Пропуски воздуха через уплотнительные конструкции контролируют смазыванием мест проход кабелей с другой стороны мыльным раствором. Качество уплотнения мест прохода кабелей считают удовлетворительным, если с противоположной стороны переборки палубы или внутри помещения, внутри шкафа с электрооборудованием не будут обнаружены пропуски воздуха.

Описанные способы характеризуется значительной трудоемкостью и в ряде случаев невозможностью реализации в условиях эксплуатации судна или его ремонте.

Наиболее близкими к предлагаемому способу являются способы определения теплофизических материалов и конструкций путем измерения температуры поверхностей с помощью тепловизора [5]-[7], в основе которых лежит так называемый флэш-метод [5] - стимулирование объекта контроля с помощью теплового импульса от источников теплового излучения (ИК-ламп, ламп накаливания). В процессе испытаний происходит анализ условий прохождения тепловой волны в объеме исследуемого материала.

В отличие от методов, предлагаемых в [5]-[7], в предлагаемом способе используют тепловую активацию потоком теплого воздуха, который, проникая через дефекты герметика (отверстия, полости, поры), производит аномальный локальный нагрев на поверхности, противоположной нагреваемой.

Техническим результатом данного изобретения является повышение точности контроля качества сплошности герметика и локализация места протечки воздуха конструкции, которая должна быть водо- и воздухонепроницаемой.

Технический результат достигается тем, что в способе определения качества герметика кабельных гермовводов нагревают переднюю поверхность герметика до температуры 50°C-60°C обдувом теплого воздуха в течение 2-3 минут, непрерывно контролируют температуру задней поверхности герметика с помощью тепловизора, для этого производят снятие теплограмм через 15-30 секунд в течение времени, зависящего от толщины герметика и размеров сквозных дефектов, для локализации дефекта в области участка задней поверхности герметика определяют максимальную избыточную температуру ΔTзмакс по формуле:

,

где Tзмакс.(t), °C - максимальная температура задней поверхности слоя материала в момент времени t;

Tзсред °C - средняя температура выделенной области задней поверхности слоя материала, полученное значение ΔTзмакс сравнивают с погрешностью тепловизора, составляющей ±0,1-0,2°C, превышение ΔTзмакс над погрешностью свидетельствует о наличии дефекта в герметике.

При этом для определения температуры передней нагреваемой поверхности герметика используют пирометр, для обдува передней поверхности герметика может быть использован, например, фен, который устанавливают на расстоянии от передней поверхности герметика не более 100 мм, снятие теплограмм проводят в течение 15-20 минут.

Предлагаемый способ иллюстрируется чертежами, представленными на фиг. 1, 2.

На фиг. 1 приведена схема проведения испытаний для контроля качества герметика, на фиг. 2а - теплограмма задней поверхности герметика со сквозным отверстием, на фиг. 2б - объемная гистограмма с локализацией дефектной области.

На фиг. 1 приведены следующие позиции: 1 - фен (нагнетатель воздуха); 2 - переборка (стенка); 3 - герметик в проходной втулке; 4 - тепловизор; 5 - воздухопроницаемый дефект герметика; 6 - локализация участка с повышенной температурой на задней поверхности герметика.

Способ осуществляют следующим образом.

Проводят обдув передней поверхности герметика 3 теплым воздухом с помощью (фиг. 1), например, фена 1, в течение нескольких минут до двух-трех и непрерывно контролируют температуру задней поверхности с помощью тепловизора 4, регистрируя прохождение теплового поля от передней к задней поверхности. При наличии воздухопроницаемых дефектов, отверстий на задней поверхности с помощью тепловизора 4 регистрируют участки с повышенной температурой, обусловленные выходом теплого воздуха и ускоренной теплопередачей через сквозные дефекты герметика 3 от передней нагреваемой поверхности к задней наблюдаемой поверхности.

Для регистрации температуры задней (необлучаемой) поверхности слоя и локализации дефектов на задней поверхности используют тепловизор 4.

В процессе испытаний производят снятие теплограмм через 15-30 секунд в течение последующих 15-20 минут в зависимости от толщины герметика и размеров сквозных дефектов.

Результаты тепловизионной съемки изучаемого объекта обрабатывают при помощи прилагаемого к тепловизору 4 программного обеспечения, с помощью которого находят значения максимальной температуры задней поверхности объекта в области дефектов с течением времени и локализацию наблюдаемых дефектов герметика (фиг. 2).

Дефект в наблюдаемой области герметика 3 характеризуется повышенной температурой Tзмакс по сравнению со средней температурой Tзсред в анализируемой области поверхности; локализация дефекта может быть зафиксирована в области участка поверхности с максимальной избыточной температурой ΔTзмакс, значение которой находят из соотношения

,

где Tзмакс (t), °C - максимальная температура в области дефекта задней поверхности герметика в момент времени t; Tзсред °C - средняя температура анализируемой области задней поверхности герметика.

Пример

На фиг. 2 приведена гистограмма после обработки снимка с использованием специального программного обеспечения тепловизора (FLUKE). Был испытан герметик эпоксидной смолы толщиной 10 см. На фиг. 2а на теплограмме приведены значения Tзмакс=29,19°C, Tзсред=25,88°C при температуре окружающей среды Tз0=22°C. Превышение температуры ΔTзмакс в области выраженного дефекта (на фиг. 2б отмечается «пичком» на диаграмме) над средней температурой достигает 29,19-25,88=3,31°C.

Точность измерения температуры с помощью тепловизионного приемника составляет ±0,1-0,2°C. Поскольку превышение температуры в наблюдаемой области поверхности значительно больше погрешности изменения температуры по поверхности, можно сделать вывод о наличии сквозного дефекта, свидетельствующего о ненадлежащем качестве герметичного ввода.

Литература

1. Справочник электромонтажника / Под ред. Г.И. Китаенко. Т. 5. Л.: Судпромгиз (Государственное союзное издательство судостроительной промышленности), 1957, 575 с., с. 269.

2. Справочник судового электротехника / Под общей ред. Китаенко Г.И. в 3-х томах. Т. 3. Технология электромонтажных работ. - Л.: Судостроение, 1980, 264 с.

3. ОСТ5Р.1180-93. Отраслевой стандарт. Суда. Методы и нормы испытаний на проницаемость и герметичность, ЦНИИ «Лот», 1993.

4. ГОСТ 3285-77. Корпуса металлических судов. Методы испытаний на непроницаемость и герметичность, 1978.

5. Parker W.J., Jenkins RJ. et al. «A Flash Method of Determining Thermal Diffusivity, Heat Capasity, and Thermal Conductivity», Journal applied of physics, Vol. 32, 1964. - P. 1679-1684.

6. Власов А.Б. Способ определения теплофизических характеристик материалов. Патент РФ на изобретение №2224245, заявка №202108341, МКП 7 G01N 25/18, 2003.

7. Власов А.Б., Мухин Е.А. Способ теплового контроля температуры обмоток электрических машин. Патент РФ на изобретение №2216265. Заявка №2011110026/ 28(014596), МКП G01R 35/00 (2006/01) от 16.03.2011, Россия, 2011.


Способ определения качества герметика кабельных гермовводов
Способ определения качества герметика кабельных гермовводов
Источник поступления информации: Роспатент

Showing 1-10 of 19 items.
10.05.2018
№218.016.4367

Способ производства маринованных мелкокусковых мясных полуфабрикатов

Изобретение относится к пищевой промышленности, а именно к производству мясных маринованных мелкокусковых полуфабрикатов из мяса одомашненного северного оленя. Маринованный полуфабрикат содержит оленину, 6%-ный яблочный уксус, сушеные ягоды можжевельника, репчатый лук. Лук предварительно...
Тип: Изобретение
Номер охранного документа: 0002649641
Дата охранного документа: 04.04.2018
10.05.2018
№218.016.4fd1

Способ производства полуфабрикатов рыбных рубленых замороженных

Способ включает первичную обработку рыбного сырья, измельчение рыбы и добавление к рыбному фаршу растительных компонентов, перемешивание, порционирование, формование, панирование и замораживание. В качестве рыбного сырья используют малорентабельные виды рыб семейства тресковых путассу или...
Тип: Изобретение
Номер охранного документа: 0002652823
Дата охранного документа: 03.05.2018
05.07.2018
№218.016.6afe

Комбинированная судовая телевизионная антенна

Изобретение относится к радиотехнике и может быть использовано в антенно-фидерных устройствах в качестве изотропной в горизонтальной плоскости антенны, при работе с горизонтальной поляризацией, в системах транспортной, мобильной и стационарной радиосвязи, телевидении и радионавигации....
Тип: Изобретение
Номер охранного документа: 0002660068
Дата охранного документа: 04.07.2018
05.07.2018
№218.016.6bd0

Этажерочная антенна круговой поляризации

Изобретение относится к антенной технике. Антенна содержит излучатель круговой поляризации квазишунтовой «клевер» из четырех изогнутых вибраторов, имеющих линейные начальные четвертьволновые участки, расположенные попарно во взаимно ортогональных плоскостях, исходящих из одной общей точки,...
Тип: Изобретение
Номер охранного документа: 0002659854
Дата охранного документа: 04.07.2018
08.11.2018
№218.016.9ada

Ик-дымогенератор непрерывного действия

Дымогенератор включает корпус с размещенными в нем генераторами инфракрасного излучения и расположенными над ними отражателями, вытяжной вентилятор и систему автоматизации. В корпусе горизонтально установлен топливоподающий конвейер, полотно которого выполнено из стальной тканой сетки с...
Тип: Изобретение
Номер охранного документа: 0002671713
Дата охранного документа: 06.11.2018
19.12.2018
№218.016.a8ef

Зигзагообразный излучатель с ассиметричным питанием

Изобретение относится к антенной технике. Излучатель с ассиметричным питанием, полотно которого сформировано в виде двойного треугольного вибратора зигзагообразными проводниками, образующими, по меньшей мере, две соединенные между собой незамкнутые рамки, размещенные вдоль общей оси,...
Тип: Изобретение
Номер охранного документа: 0002675220
Дата охранного документа: 17.12.2018
19.12.2018
№218.016.a90f

Широкополосный антенный модуль

Изобретение относится к антенной технике. Антенна состоит из двух равнобедренных треугольных незамкнутых рамок, расположенных в одной плоскости вдоль общей оси и соединенных между собой разомкнутыми углами с образованием точек питания. В первой треугольной рамке основание протяженностью 0,4λ и...
Тип: Изобретение
Номер охранного документа: 0002675207
Дата охранного документа: 17.12.2018
29.12.2018
№218.016.acee

Полуфабрикат мясорастительный рубленый с мясом страуса и филе куриным

Изобретение относится к пищевой промышленности и может быть использовано в производстве мясорастительных рубленых полуфабрикатов. Полуфабрикат содержит мясо страуса, филе куриное, лук репчатый свежий очищенный, картофель свежий очищенный, молоко коровье, ламинарию, чеснок свежий, перец черный...
Тип: Изобретение
Номер охранного документа: 0002676174
Дата охранного документа: 27.12.2018
12.04.2019
№219.017.0bd6

Способ производства пастеризованных деликатесных консервов из филе форели

Способ включает мойку сырья, разделывание на филе, фасовку в банки, герметическое укупоривание и пастеризацию. Филе форели режут на полоски, укладывают на полоски форели кусочки ананаса и скручивают в виде рулетов. При этом предварительно свежий ананас моют и режут на кусочки, затем кусочки...
Тип: Изобретение
Номер охранного документа: 0002684591
Дата охранного документа: 09.04.2019
09.05.2019
№219.017.4a07

Способ производства фаршевых консервов скат и треска в белом соусе

Изобретение относится к технологии изготовления рыбных фаршевых консервов. В качестве сырья используют мороженые крылья ската и мороженую потрошеную треску. Сырье размораживают, моют, треску разделывают на филе с кожей, крылья ската подвергают ИК-бланшированию в ИК-бланширователе прогревом...
Тип: Изобретение
Номер охранного документа: 0002687191
Дата охранного документа: 07.05.2019
Showing 1-4 of 4 items.
27.11.2014
№216.013.0be4

Способ дистанционного измерения температуры среды

Изобретение относится к области пирометрии и касается способа дистанционного измерения температуры. В среду для измерения ее температуры помещают светоизлучающий прибор (светодиод или лазер). Измеряют длину волны λ излучения светоизлучающего прибора и определяют разность Δλ между измеренной...
Тип: Изобретение
Номер охранного документа: 0002534452
Дата охранного документа: 27.11.2014
12.01.2017
№217.015.5b07

Способ дистанционного измерения температуры

Изобретение относится к измерительной технике и может быть использовано для дистанционного измерения температуры среды или объектов в различных сферах промышленности, в том числе при криогенных температурах. Согласно заявленному изобретению используют полупроводниковый лазерный диод. Помещают...
Тип: Изобретение
Номер охранного документа: 0002589525
Дата охранного документа: 10.07.2016
25.08.2017
№217.015.bd80

Способ определения параметров теплофизических характеристик слоя сыпучих технологических материалов

Изобретение относится к области исследования и анализа технологических сыпучих материалов, в т.ч. пищевых, характеризующихся насыпной плотностью. Способ предусматривает определение параметров теплофизических характеристик слоя сыпучего материала и основан на принципах импульсного теплового...
Тип: Изобретение
Номер охранного документа: 0002616343
Дата охранного документа: 14.04.2017
19.01.2018
№218.016.0bab

Способ определения качества резиновой изоляции кабелей

Изобретение относится к области силовых кабелей, в частности резиновой изоляции кабелей, и может быть использовано для диагностики и оценки качества резиновой изоляции кабелей. Выбирают участок кабельной трассы для анализа твердости шланговой изоляции и изоляции жилы. Производят на выбранном...
Тип: Изобретение
Номер охранного документа: 0002632566
Дата охранного документа: 05.10.2017
+ добавить свой РИД