×
28.06.2018
218.016.6859

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ПРОФИЛЯ ТЕПЛОПРОВОДНОСТИ ГОРНЫХ ПОРОД В СКВАЖИНЕ

Вид РИД

Изобретение

№ охранного документа
0002658856
Дата охранного документа
25.06.2018
Аннотация: Изобретение относится к геофизическим исследованиям скважин и может найти применение для определения тепловых свойств пластов горных пород, окружающих скважины. Технический результат заключается в обеспечении возможности одновременного определения теплопроводности пород и радиуса скважины, используя результаты измерения температуры в скважине во время гидратации цемента. В соответствии со способом опускают в скважину обсадную колонну, снабженную датчиками температуры, размещенными на наружной поверхности обсадной колонны по всей ее длине, и в кольцевой зазор между обсадной колонной и стенками скважины закачивают цементный раствор. В процессе закачки и затвердевания цемента посредством размещенных на обсадной трубе датчиков температуры осуществляют измерения температуры на разных глубинах. Затем, используя численную температурную модель гидратации цемента в скважине, рассчитывают зависимость измеренной в скважине температуры от времени, радиуса скважины и теплопроводности породы, определяют радиус скважины на каждой глубине путем минимизации разности между измеренной и расчетной температурами и на основе рассчитанной зависимости и радиуса скважины определяют теплопроводность окружающих скважину горных пород на каждой глубине. 3 з.п. ф-лы, 5 ил., 1 табл.

Изобретение относится к геофизическим исследованиям скважин и может найти применение для определения тепловых свойств пластов горных пород, окружающих скважины.

Знание тепловых свойств и, в частности, теплопроводности горных пород необходимо для моделирования и оптимизации процесса добычи нефти и газа, особенно для оптимизации тепловых способов добычи тяжелых нефтей и добычи метана из метан-гидратных залежей.

Тепловые свойства пород обычно измеряют в лабораторных условиях на образцах керна, извлеченного из скважины. При этом результаты измерения теплоемкости пород вполне применимы для моделирования поля температур нефтяного пласта, а результаты измерения теплопроводности керна могут существенно отличаться от теплопроводности блоков горных пород in-situ. Это связано с влиянием следующих факторов:

(1) отличием свойств керна от свойств пород in-situ, например, из-за растрескивания керна при бурении или в процессе его извлечения на поверхность,

(2) отличием лабораторных условий (давление и температура) от пластовых,

(3) влиянием свойств пластовых флюидов, которое не всегда учитывают при проведении лабораторных измерений.

Одной из важнейших проблем является представительность результатов лабораторных измерений. Обычно выход керна существенно ниже 100% и лабораторные исследования не дают информации о свойствах трещиноватых пропластков и слабо консолидированных пород (где выход керна мал), что может существенно повлиять на величину теплопроводности больших блоков горных пород, которая используется при моделировании резервуаров. Поэтому, в дополнение к лабораторным исследованиям на керне, на протяжении многих лет проводят эксперименты по определению тепловых свойств пород in-situ, в скважине, но до настоящего времени не разработан пригодный для практического использования способ или прибор.

Было предложено много различных подходов к определению теплопроводности пород in-situ. Например, предлагалось использовать для этой цели процесс восстановления невозмущенной температуры массива после бурения или после промывки скважины (см. Дахнов В.Н., Дьяконов Д.И. Термические исследования скважин, 1952, ГНТИНГТЛ. М., с. 84, 88, 96). Недостатком этого способа является сильная зависимость результатов измерений от перетоков и свободной тепловой конвекции флюида в скважине, от радиуса скважины и положения датчика температуры в скважине. Кроме того, сложно точно смоделировать тепловое возбуждение массива при бурении или промывке скважины, что необходимо для количественной интерпретации измеренной температуры и оценки тепловых свойств пород.

Большая часть работ по определению теплопроводности пород in-situ основана на теории линейного источника тепла. В скважину помещают достаточно длинный (2-5 м) нагреваемый зонд и регистрируют скорость увеличения температуры этого зонда, которая зависит от тепловых свойств окружающих пород (см., например, In Situ Determination of Thermal Properties of Rocks in Crystalline Rock Drill Holes with TERO56 and TERO76 Devices, I. Kukkonen, A. Korpisalo, I. Suppala, T. Koskinen, S Oy., POSIVA 2013-06). Основными недостатками этого способа являются большое время (порядка 10÷20 часов), необходимое для измерения тепловых свойств на каждом участке скважины и необходимость подвода к скважинному зонду значительной электрической мощности.

Некоторые способы используют небольшие нагреваемые зонды, которые прижимают к стенке скважины (см. Kiyohashi Н., Okumura К., Sakaguchi К., and Matsuki К., 2000. Development of direct measurement method for thermophysical properties of reservoir rocks in situ by well logging, Proceedings World Geothermal Congress 2000, Kyushu-Tohoku, Japan, May 28 - June 10, 2000). Эти способы позволяют уменьшить продолжительность измерений, однако они требуют гладких стенок скважины, сложного оборудования, сложной численной модели для определения тепловых свойств пород по результатам измерения температуры зонда и позволяют оценить тепловые свойства только очень тонкого (1-3 см) слоя породы вблизи стенок скважины. Этот слой был подвергнут механическим напряжениям при бурении, может иметь техногенную трещиноватость, поры в породе заполнены буровым раствором, а не пластовым флюидом, поэтому тепловые свойства этого слоя могут существенно отличаться от свойств пород вдали от скважины.

Известны также способы, использующие подвижные зонды. Источник тепла находится в головной части зонда, датчик температуры - на конце зонда (см., например, патент США 3892128). Эти способы позволяют быстро оценивать тепловые свойства пород на значительном интервале глубин, однако, как и в предыдущем случае, они дают информацию о свойствах только очень тонкого слоя пород вокруг скважины.

Наиболее близким аналогом заявленного способа является способ определения профиля теплопроводности горных пород, который осуществляют одновременно с цементацией скважины (патент РФ №2539084). Для этого опускают в скважину обсадную колонну с прикрепленными на ее наружную поверхность датчиками температуры (Фиг. 1), закачивают цемент в кольцевой зазор между обсадной колонной и стенками скважины, в процессе закачки и затвердевания цемента измеряют температуру цемента и определяют распределение по глубине теплопроводности λ(y) окружающих скважину горных пород по формуле

где величина K(y) находится с помощью линейной регрессии из поведения температуры при больших временах t (более 500÷1000 час), прошедших после закачки цемента:

где Tf(y) - температура пород на глубине y, которая тоже определяется с помощью линейной регрессии, QV - объемная теплота гидратации цемента [Дж/м3], Va - объем цемента, приходящийся на 1 м длины скважины [м3/м]:

rco и rw(y) - внешний радиус обсадной колонны и радиус скважины [м].

Основным недостатком способа, описанного в патенте РФ №2539084, является сильная зависимость оцененной таким образом теплопроводности массива от радиуса скважины rw(y), которая определяется с помощью кавенометрии.

Технический результат, достигаемый при реализации изобретения, заключается в обеспечении возможности одновременного определения теплопроводности пород и радиуса скважины, используя результаты измерения температуры Trec(t) в скважине во время гидратации цемента. Этот способ может быть использован при отсутствии результатов кавернометрии или при недостаточно точном определении радиуса скважины с помощью кавернометрии.

Указанный технический результат достигается тем, что в соответствии с предлагаемым способом опускают в скважину обсадную колонну, снабженную датчиками температуры (Фиг. 1), размещенными на наружной поверхности обсадной колонны по всей ее длине, и в кольцевой зазор между обсадной колонной и стенками скважины закачивают цементный раствор.

В процессе закачки и затвердевания цемента посредством размещенных на обсадной трубе датчиков температуры осуществляют измерения температуры Trec(y,t) на разных глубинах y.

Затем, используя численную температурную модель гидратации цемента в скважине, рассчитывают зависимость измеренной в скважине температуры от времени, радиуса скважины и теплопроводности породы

Tsim(t,rw)=Tsim[t,rw,λ(rw)],

определяют радиус скважины rw на каждой глубине путем минимизации разности между измеренной Trec(t) и расчетной Tsim(t) температурами:

,

Теплопроводность окружающих скважину горных пород на каждой глубине определяют по формуле

где λ(rw,y) - теплопроводность пород на глубине y, QV - тепло гидратации цемента, rco - внешний радиус обсадной колонны, rw(y) - радиус скважины на глубине y, K(y) - коэффициент, определяемый методом линейной регрессии при аппроксимации зависимости измеренной в скважине температуры Trec(y,t) от обратного времени t-1 асимптотической формулой

где Tf(y) - температура пород на глубине y, определенная методом регрессии.

Сравнение измеренной и рассчитанной температуры проводят используя значения температуры, измеренные спустя более 50÷70 часов после цементации скважины.

В качестве датчиков температуры может быть использован оптиковолоконный датчик.

Изобретение поясняется чертежами, где на Фиг. 1 приведена схема скважины, на Фиг. 2 приведены лабораторные данные по объемной генерации тепла при гидратации цемента и ее аппроксимация, на фиг. 3 - результаты численного моделирования температуры цемента от времени, прошедшего после начала гидратации, для разных значений теплопроводности пород и радиуса скважины, на фиг. 4 показаны расчетные температуры в зависимости от обратного времени и их линейная аппроксимация, на фиг. 5 - показана процедура определения радиуса скважины из сравнения максимальной температуры цемента и температуры, рассчитанной по упрощенной численной модели скважины.

В данном изобретении предлагается способ одновременного определения теплопроводности пород и радиуса скважины используя результаты измерения температуры Trec(t) в скважине во время гидратации цемента.

В соответствии с одним из вариантов осуществления изобретения, показанным на фиг. 1, в скважину 1, окруженную породой 2, опускают обсадную колонну 3 с прикрепленным к ней кабелем 4 волоконного измерителя температуры.

Во время гидратации цемента 5, закаченного в кольцевой зазор между обсадной колонной 3 и стенками скважины 1, происходит выделение значительного количества тепла (QV=100÷200 МДж на 1 м3 цементного раствора). Радиус скважины 6 - rw(y).

В процессе закачки и затвердевания цемента посредством размещенного на обсадной колонне 3 кабеля 4 волоконного измерителя температуры осуществляют измерения температуры Trec(y,t) на разных глубинах y.

Используют численную температурную модель гидратации цемента в скважине, которая позволяет рассчитать зависимость измеренной в скважине температуры от времени, радиуса скважины и теплопроводности породы

Искомый радиус скважины rw на каждой глубине находится путем минимизации разности между измеренной Trec(t) и расчетной Tsim(t) температурами:

Методом линейной регрессии при аппроксимации зависимости, измеренной в скважине температуры Trec(y,t) от обратного времени t-1 асимптотической формулой

определяют значения коэффициента K(y) для всех глубин'у', на которых проводилось измерение температуры и соответствующие значения температуры пород Tf(y).

Теплопроводность окружающих скважину горных пород на каждой глубине определяют по формуле

где λ(rw,y) - теплопроводность пород на глубине y, QV - тепло гидратации цемента, rco - внешний радиус обсадной колонны, rw(y) - радиус скважины на глубине y.

Анализ полевых данных показывает, что наиболее надежные результаты могут быть получены, если определение rw с помощью минимизации разности температур проводится в следующем интервале времен: начиная с 50÷70 часов и заканчивая 300÷400 часов после цементации. При меньших временах измеренная и расчетная температуры существенно зависят от трудно контролируемых деталей конструкции скважины и расположения в скважине датчиков температуры, а при больших временах слишком малым становится полезный температурный сигнал.

Определение радиуса rw для сотен точек по глубине реальной скважины с помощью минимизации функции S(rw) (2) требует разработки детальной численной модели и использования высокоэффективного численного кода.

Для иллюстрации применимости предлагаемого способа ниже рассмотрен упрощенный вариант реализации предлагаемого изобретения. В качестве входных данных используются результаты детального численного моделирования гидратации цемента с помощью коммерческого пакета COMSOL, а для определения радиуса скважины rw используется упрощенная температурная модель гидратации цемента в скважине и определение rw проводится по величине максимальной температуры Tm, достигнутой в процессе гидратации:

На фиг. 2 приведены лабораторные данные по объемной генерации тепла q0(t) [Вт/м3] при гидратации цемента (сплошная линия) и ее аппроксимация с помощью формул (6), (7).

где t0 - время после начала гидратации при котором мощность тепловыделения максимальна,

tmax принятая продолжительность гидратации (~95% от полного тепловыделения). Далее приняты следующие значения параметров: QV=1.5*108, Дж/м3, n=3.72, d=1.72 и F(n,d)=0.639, t0=4.1 час, tmax=60 час, rco=0.12 м.

На фиг. 3 приведены результаты численного моделирования с помощью коммерческого пакета COMSOL температуры цемента на расстоянии 14 см от оси скважины для разных значений теплопроводности пород (2 и 4 Вт/м/К) и радиуса скважины (15 см и 17 см). Начальная температура принималась равной температуре пород и равна 0. Расчетные значения наибольших температур для каждого варианта приведены в Табл. 1.

Фиг. 4 показывает расчетные температуры T-Tf в зависимости от 1/t (для t>1500 час) и их линейную аппроксимацию T=K⋅(1/t). Расчетные значения вуличин K приведены в Табл. 1:

Основные допущения предлагаемой упрощенной модели гидратации цемента в скважине:

- К тому времени (tm=6÷8), когда температура цемента достигает своего наибольшего значения Tm, температура в скважине приблизительно постоянна по радиусу скважины: T(r,t)≈T(t).

- Потери тепла из цементируемой скважины определяются ее температурой T(t), теплопроводностью окружающих пород λ и характерным расстоянием ΔrT(t), которое определяет величину градиента температуры в породе, на стенке скважины

С учетом сделанных допущений уравнение для температуры скважины можно записать в виде:

где C(rw) - теплоемкость скважины в расчете на 1 м tt длины.

С учетом формул (6), (7), находим окончательный вид уравнения энергии (8):

где

Общее решение этого уравнения имеет вид:

Наибольшую температуру цемент имеет через tm=6÷8 часов после начала гидратации (фиг. 3). Можно показать, что при таких временах величина ΔrT(t) определяется классическим выражением: где α является температуропроводностью породы: , ρc - объемная теплопроводность породы, γ - безразмерная константа порядка 1, которая должна быть определена из сравнения с результатами численного моделирования. Учитывая эту аппроксимацию ΔrT(t) функцию ϕ(t) можно записать в виде

где

Окончательно получаем упрощенную формулу для температуры цемента:

Расчеты показывают, что при значении параметра γ=0.7 формула (15) хорошо согласуется с результатами расчетов с помощью COMSOL.

Расчетное значение максимальной температуры как функции радиуса скважины Tsim[tm,rw,λ(rw)] (5) определяется формулой (9), формулой (4) и значениями K, приведенными в Табл. 1.

Процедуру определения радиуса скважины (решения уравнения (5)) иллюстрирует Фиг. 5. Горизонтальные линии соответствуют значениям Tm, приведенным в Таблице 1 (COMSOL), наклонные линии соответствуют результатам расчета по формуле (12) (для t=tm) для ряда значений радиуса скважины. Кружки отмечают найденные радиусы скважины, которые практически совпадают с заданными значениями Tm(tm)=Tsim[tm,rw,λ(rw)]. Очевидно, что значения теплопроводности, рассчитанные по формуле (4), совпадают с заданными.


СПОСОБ ОПРЕДЕЛЕНИЯ ПРОФИЛЯ ТЕПЛОПРОВОДНОСТИ ГОРНЫХ ПОРОД В СКВАЖИНЕ
СПОСОБ ОПРЕДЕЛЕНИЯ ПРОФИЛЯ ТЕПЛОПРОВОДНОСТИ ГОРНЫХ ПОРОД В СКВАЖИНЕ
СПОСОБ ОПРЕДЕЛЕНИЯ ПРОФИЛЯ ТЕПЛОПРОВОДНОСТИ ГОРНЫХ ПОРОД В СКВАЖИНЕ
СПОСОБ ОПРЕДЕЛЕНИЯ ПРОФИЛЯ ТЕПЛОПРОВОДНОСТИ ГОРНЫХ ПОРОД В СКВАЖИНЕ
СПОСОБ ОПРЕДЕЛЕНИЯ ПРОФИЛЯ ТЕПЛОПРОВОДНОСТИ ГОРНЫХ ПОРОД В СКВАЖИНЕ
СПОСОБ ОПРЕДЕЛЕНИЯ ПРОФИЛЯ ТЕПЛОПРОВОДНОСТИ ГОРНЫХ ПОРОД В СКВАЖИНЕ
СПОСОБ ОПРЕДЕЛЕНИЯ ПРОФИЛЯ ТЕПЛОПРОВОДНОСТИ ГОРНЫХ ПОРОД В СКВАЖИНЕ
СПОСОБ ОПРЕДЕЛЕНИЯ ПРОФИЛЯ ТЕПЛОПРОВОДНОСТИ ГОРНЫХ ПОРОД В СКВАЖИНЕ
СПОСОБ ОПРЕДЕЛЕНИЯ ПРОФИЛЯ ТЕПЛОПРОВОДНОСТИ ГОРНЫХ ПОРОД В СКВАЖИНЕ
Источник поступления информации: Роспатент

Showing 61-70 of 112 items.
10.04.2016
№216.015.3218

Способ размещения приемников сейсмических сигналов для системы наблюдений в сейсморазведке

Изобретение относится к области геофизики и может быть использовано при проведении сейсморазведки. Выбирают стандартную систему наблюдений, содержащую источники сейсмических сигналов, расположенные на поверхности возмущения, и приемники сейсмических сигналов, расположенные на поверхности...
Тип: Изобретение
Номер охранного документа: 0002580206
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.3298

Способ акустического каротажа

Изобретение относится к средствам акустического каротажа в скважине. Техническим результатом является повышение качества получаемых в процессе каротажа акустических данных за счет компенсации вращения прибора акустического каротажа во время проведения измерений в скважине. Предложен способ...
Тип: Изобретение
Номер охранного документа: 0002581074
Дата охранного документа: 10.04.2016
13.01.2017
№217.015.68ec

Способ ориентирования трещин гидравлического разрыва в подземном пласте, вскрытом горизонтальными стволами

Изобретение относится к горному делу и может быть применено при гидравлическом разрыве пласта. Для обеспечения контролируемого инициирования и распространения трещин гидроразрыва осуществляют закачку первой жидкости гидроразрыва в первый горизонтальный ствол, сообщающийся с пластом по меньшей...
Тип: Изобретение
Номер охранного документа: 0002591999
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.80cb

Способ определения характеристик газонефтяной переходной зоны в необсаженной скважине

Изобретение относится к способам геофизических исследований скважин для нефтяных залежей с газовыми шапками с известным минералогическим составом слагающих пород. Для определения характеристик газонефтяной переходной зоны берут по меньшей мере по одной пробе из газовой части и из нефтяной части...
Тип: Изобретение
Номер охранного документа: 0002602249
Дата охранного документа: 10.11.2016
25.08.2017
№217.015.9cc0

Способ определения температурного коэффициента линейного расширения материала и устройство для его осуществления

Изобретение относится к области исследования механических и тепловых свойств материалов. Способ определения температурного коэффициента линейного расширения материала предусматривает перемещение относительно друг друга образца исследуемого материала и источника нагрева поверхности образца. В...
Тип: Изобретение
Номер охранного документа: 0002610550
Дата охранного документа: 13.02.2017
25.08.2017
№217.015.9d2f

Способ определения расходов фаз двухфазной смеси в трубопроводе

Изобретение относится к измерениям параметров многофазных смесей при их транспортировке по трубопроводам. Для определения расходов фаз двухфазной смеси в трубопроводе формируют нестационарный импульсный режим течения многофазной смеси, обеспечивающий на выходе трубопровода пульсирующие выплески...
Тип: Изобретение
Номер охранного документа: 0002610548
Дата охранного документа: 13.02.2017
25.08.2017
№217.015.a2ba

Измерительная ячейка дифференциального сканирующего калориметра

Изобретение относится к области термопорометрии, в частности к устройствам для проведения измерений распределения размера пор пористых сред, и может найти применение в различных отраслях промышленности, например нефтегазовой, химической и пищевой. Измерительная ячейка дифференциального...
Тип: Изобретение
Номер охранного документа: 0002607265
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a61d

Способ гидроразрыва подземного пласта

Изобретение относится к горному делу и может быть применено для гидроразрыва подземного пласта. Для создания в расклиненных трещинах стабилизированных каналов высокой проводимости в ствол скважины сначала закачивают первую гидроразрывную жидкость, не содержащую частиц проппанта, а затем вторую...
Тип: Изобретение
Номер охранного документа: 0002608380
Дата охранного документа: 18.01.2017
25.08.2017
№217.015.b384

Способ количественного анализа распределения твердых частиц загрязнителя, проникших в пористую среду при фильтрации

Изобретение относится к анализу образцов пористых материалов применительно к исследованию свойств околоскважинной зоны нефте/газосодержащих пластов. Смешивают окрашенные катионным красителем твердые частицы с гранулами сыпучей среды, близкой по цвету к исследуемой пористой среде, и...
Тип: Изобретение
Номер охранного документа: 0002613903
Дата охранного документа: 21.03.2017
25.08.2017
№217.015.b387

Способ разработки нефтеносного пласта

Изобретение относится к нефтедобывающей промышленности и может найти применение при разработке месторождений вторичным методом. Способ разработки нефтеносного пласта содержит бурение и чередование через один ряд, размещая на первом расстоянии друг от друга, рядов горизонтальных эксплуатационных...
Тип: Изобретение
Номер охранного документа: 0002613713
Дата охранного документа: 21.03.2017
Showing 11-18 of 18 items.
10.01.2015
№216.013.1de8

Способ определения профиля теплопроводности горных пород в скважине

Изобретение относится к геофизическим исследованиям скважин и может найти применение для определения тепловых свойств пластов горных пород, окружающих скважины. Техническим результатом является возможность одновременного получения информации о свойствах относительно толстого (около 1 м) слоя...
Тип: Изобретение
Номер охранного документа: 0002539084
Дата охранного документа: 10.01.2015
27.11.2015
№216.013.940f

Способ определения давления в скважине

Изобретение относится к области исследования нефтяных и газовых скважин и предназначено для корректировки результатов измерений давления в высокопродуктивных скважинах, проведенных во время испытания скважины. Техническим результатом является повышение точности определения давления в скважине....
Тип: Изобретение
Номер охранного документа: 0002569522
Дата охранного документа: 27.11.2015
10.04.2016
№216.015.2f13

Способ определения профиля закачки воды в нагнетательной скважине

Изобретение относится к области геофизических исследований нефтяных и газовых скважин, а именно к определению профиля закачки воды в нагнетательных скважинах. Технический результат - повышение точности определения профиля закачки с использованием нестационарной термометрии скважины. По способу...
Тип: Изобретение
Номер охранного документа: 0002580547
Дата охранного документа: 10.04.2016
26.08.2017
№217.015.d8c2

Способ определения обводненности нефтеводяной смеси, добываемой из нефтяной скважины

Изобретение относится к способам определения состава водонефтяной смеси в скважине и, в частности, к способам, использующим измерение параметров потока добываемого флюида в трубке Вентури, через которую в основной ствол скважины обеспечивают поступление нефтеводяной смеси, добываемой из...
Тип: Изобретение
Номер охранного документа: 0002623389
Дата охранного документа: 26.06.2017
04.04.2018
№218.016.338a

Способ определения профиля притока флюида в многопластовой скважине

Изобретение относится к области геофизических исследований нефтяных и газовых скважин, а именно к определению профиля притока добываемого флюида в многопластовых скважинах с несколькими интервалами перфорации. Технический результат заключается в повышении точности определения профиля притока...
Тип: Изобретение
Номер охранного документа: 0002645692
Дата охранного документа: 27.02.2018
10.04.2019
№219.017.0396

Способ теплового каротажа скважин и устройство для его осуществления

Изобретение относится к способам и устройствам для геофизических исследований необсаженных скважин и предназначено для определения тепловых свойств горных пород. Техническим результатом изобретения является сокращение времени измерения, отсутствие в зонде подвижных элементов, минимизация...
Тип: Изобретение
Номер охранного документа: 0002386028
Дата охранного документа: 10.04.2010
09.06.2019
№219.017.7f46

Комплексный прибор для исследования скважин

Изобретение относится к области геофизики и предназначено для проведения комплекса геофизических исследований нефтяных и газовых скважин, эксплуатируемых горизонтальным стволом. Техническим результатом является повышение информативности исследований, эффективности работы устройства, расширение...
Тип: Изобретение
Номер охранного документа: 0002442891
Дата охранного документа: 20.02.2012
31.07.2020
№220.018.3aa1

Способ взаимной калибровки датчиков температуры скважинного флюида, установленных на перфорационной колонне

Изобретение относится к области измерений давления и температуры в скважине во время перфорации и последующего опробования скважины. Технический результат заключается в обеспечении взаимной калибровки датчиков температуры в скважине до проведения перфорации, что в свою очередь обеспечивает...
Тип: Изобретение
Номер охранного документа: 0002728116
Дата охранного документа: 28.07.2020
+ добавить свой РИД