×
25.06.2018
218.016.66b0

Результат интеллектуальной деятельности: Способ разделения скандия и сопутствующих металлов

Вид РИД

Изобретение

Аннотация: Изобретение относится к технологии неорганических веществ, а именно к гидрометаллургии скандия. Способ разделения скандия и сопутствующих металлов заключается в обработке скандийсодержащего раствора серной кислотой в присутствии соли, содержащей ионы аммония, при нагревании с последующими фильтрацией полученного осадка, его промывкой этиловым спиртом и сушкой. Обработку ведут серной кислотой при ее концентрации 350-500 г/дм, в присутствии соли, содержащей ионы аммония в количестве 1,5-2,0 моль/дм. В качестве соли, содержащей соли аммония, используют сульфат аммония или ацетат аммония. Обеспечивается возможность осаждения скандия из растворов с низким содержанием скандия с высокой степенью извлечения скандия в осадок с одновременным отделением скандия от примесей металлов. 2 пр., 1 табл.

Изобретение относится к технологии неорганических веществ, конкретно к гидрометаллургии скандия.

Известен способ разделения скандия и редкоземельных металлов, в частности иттрия и иттербия, по которому разделение осуществляют путем осаждения скандия из кислых растворов, в частности из сернокислых растворов в присутствии соединения, содержащего сульфат-ионы и/или ионы аммония, при температуре при 40-95°С. Отделение образовавшегося осадка от раствора осуществляют фильтрацией, а затем осадок промывают и сушат (патент РФ №2079431, МПК C01F 17/00, 1997 г.).

Недостатками известного способа являются:

- необходимость использования растворов с исходно высоким содержанием скандия, которая обеспечивает степень осаждения скандия 98,26%, а степень разделения скандия и иттрия βSc/Y 58,92 и скандия и иттербия βSc/Yb 98,84;

- большие потери скандия за счет высокого остаточного содержания в маточном растворе, составляющие не менее 0,28 г/дм3, а также в растворе от промывки осадка за счет хорошей растворимости образующейся в осадке двойной соли скандия в водных растворах;

- ограничение возможности использования способа (узкий диапазон примесного состава элементов в виде группы РЗЭ).

Наиболее близким по технической сущности к предлагаемому способу является способ получения оксида скандия, включающий растворение скандийсодержащего концентрата в серной кислоте, удаление кислотонерастворимого осадка, перевод скандия в осадок в присутствии соединения аммония. Затем ведут фильтрацию, промывку, сушку и прокаливание осадка с получением оксида скандия. При этом после удаления кислотонерастворимого осадка концентрацию серной кислоты в фильтрате доводят до 540-600 г/дм3, в качестве соединения аммония используют хлорид аммония, введенный в раствор в количестве 26,7-53,5 г/дм3 при температуре 50-70°С с последующей выдержкой в течение 1-2 ч при перемешивании. Промывку полученного осадка осуществляют этиловым спиртом при объемном соотношении 1-10÷11 (патент RU 2478725, МПК С22В 59/00, C01F 17/00, С22В 3/06; 2013 год)(прототип).

Недостатками известного способа:

- высокая концентрация серной кислоты в рабочем растворе, что обусловливает достижение предела насыщения по растворимости металлов и снижает коэффициенты разделения скандия и сопутствующих элементов при увеличении их содержания;

- ведение процесса в присутствии хлорида аммония повышает растворимость скандия и снижает степень осаждения скандия в виде сульфата скандия-аммония, что также отрицательно сказывается на коэффициентах разделения скандия и сопутствующих элементов.

Таким образом, перед авторами стояла задача - разработать способ, позволяющий повысить коэффициенты разделения скандия и сопутствующих элементов.

Поставленная задача решена в предлагаемом способе разделения скандия и сопутствующих металлов путем обработки скандийсодержащего раствора серной кислотой в присутствии соли, содержащей ионы аммония, при нагревании с последующими фильтрацией полученного осадка, его промывкой этиловым спиртом и сушкой, в котором обработку ведут при концентрации серной кислоты 350-500 г/дм3, а в качестве соли, содержащей ионы аммония, используют сульфат аммония или ацетат аммония в количестве ионов аммония 1,5-2,0 моль/дм3.

В настоящее время из патентной и научно-технической литературы не известен способ разделения скандия и сопутствующих металлов, в котором технологический процесс осуществляют обработкой серной кислотой растворов при концентрации 350-500 г/дм3 в присутствии сульфата аммония или ацетата аммония используют сульфат аммония или ацетат аммония в количестве ионов аммония 1,5-2,0 моль/дм3.

Таким образом, авторами разработаны условия разделения, обеспечивающие использование в качестве исходного раствора скандийсодержащий раствор с низким содержанием скандия не более 1-5 г/дм3, при этом обеспечивается снижение остаточного содержания скандия в маточном растворе менее 30 мг/дм3 и одновременное отделение скандия от примесей других металлов при их исходном содержании в скандийсодержащем растворе, г/дм3: до 40 железа (III), до 6-8 титана, до 8-10 алюминия, до 10-15 циркония, которые являются наиболее распространенными элементами-примесями скандия.

Скандий является рассеянным элементом и содержится в малых количествах в рудах других металлов. Как правило, при извлечении скандия в сернокислые растворы переходит большое количество элементов-примесей, поэтому существует необходимость разработки технологической схемы, предусматривающей процессы концентрирования скандия и его отделения в виде малорастворимых соединений от сопутствующих металлов.

Экспериментальные исследования, проведенные авторами, позволили установить, что при использовании предлагаемого способа, обеспечивающего получение осадка сульфата скандия-аммония в качестве конечного продукта, осаждение происходит полно, а остаточное содержание скандия достигает менее 30 мг/дм3. Для количественного осаждения сульфата скандия-аммония необходимо было установить пределы концентрации серной кислоты и возможность использования разных солей, содержащих ионы аммония, а также условия выдержки раствора с осадком для максимального отделения скандия от примесей металлов в сернокислых растворах и промывки осадка сульфата скандия-аммония.

Авторами опытным путем установлено, практически полное осаждение скандия (при его низком содержании в исходном растворе 1-5 г/дм3 скандия) в виде сульфата скандия-аммония достигается за счет оптимального сочетания концентрации серной кислоты и количества вводимо сульфата или ацетата аммония, а также соблюдения температурных режимов выдержки пульпы и промывки осадка сульфата скандия-аммония этиловым спиртом.

Так введение сульфата или ацетата аммония менее 1,5 моль/дм3 при концентрации серной кислоты менее 350 г/дм3 при комнатной температуре наблюдается резкое снижение количества образовавшегося осадка сульфата скандия-аммония за счет его высокой растворимости в водном сернокислом растворе при комнатной температуре, то есть снижаются степень осаждения скандия и степень разделения скандия и сопутствующих металлов, повышаются потери скандия с маточным раствором. При концентрации сернокислого раствора более 500 г/дм3 и при введении сульфата или ацетата аммония более 2,0 моль/дм3 наблюдается появление в осадке сульфата скандия-аммония в значительных количествах исходно вводимой соли аммония, а также сульфатов примесных металлов, что не обеспечивает высокие значения коэффициентов разделения скандия и примесных металлов.

Использование растворов с концентрацией серной кислоты не более 500 г/дм3 позволяет снизить плотность раствора с улучшением процессов седиментации с осаждением нерастворимого в данных условиях сульфата скандия-аммония и последующего фильтрования.

Промывка осадка как горячей, так и ледяной водой приводит к растворению некоторой части осадка сульфата скандия-аммония и дополнительным потерям скандия с промывочными водами. Промывка осадка сульфата скандия-аммония этиловым спиртом от маточного сернокислого позволяет избежать потерь скандия на этой стадии и получить осадок, не загрязненный примесными металлами, содержащимися в исходном растворе.

Предлагаемый способ, характеризующийся получением осадка сульфата скандия-аммония в качестве конечного продукта, может быть осуществлен следующим образом. В сернокислый скандийсодержащий раствор (содержание скандия 1-5 г/дм3) вводят серную кислоту до ее концентрации 350-500 г/дм3 и нагревают до 70-80°С. Затем вводят сульфат аммония или ацетат аммония используют сульфат аммония или ацетат аммония в количестве ионов аммония 1,5-2,0 моль/дм3.

Раствор выдерживают не более 1 часа на водяной бане при температуре 70-80°С и далее не более 24 ч при комнатной температуре. Затем осадок сульфата скандия-аммония отфильтровывают с помощью фильтра Шотта, промывают на фильтре небольшим количеством этилового спирта и сушат при комнатной температуре. Химический анализ конечного продукта подтверждает образование сульфата скандия-аммония состава NH4Sс(SO4)2.

Для расчета коэффициентов разделения скандия и металлов-примесей используется формула:

βSc/М = (СSc осад × СМ. р-р)/( СSc р-р × СМ. осад),

где CSc осад - содержание скандия в осадке сульфата скандия-аммония, %;

СМ. р-р - содержание металла-примеси в исходном растворе, г/дм3;

CSc p-p - содержание скандия в исходном растворе, г/дм3;

СM. осад - содержание металла-примеси в осадке сульфата скандия-аммония, %.

Таким образом, предлагаемый способ позволяет повысить коэффициенты разделения скандия и сопутствующих металлов, при этом отделять скандий в виде осадка сульфата скандия-аммония от сопутствующих ионов наиболее распространенных примесей Fe, Al, Ti и Zr, которые остаются в маточном сернокислом растворе в виде растворимых соединений. Кроме того, получать полноту осаждения осадка сульфата скандия-аммония из растворов до остаточного содержания в маточном растворе не более 10-30 мг/дм3; (максимальная степень осаждения 98,0%).

Предлагаемый способ иллюстрируется следующими примерами.

Пример 1.

Берут 100 дм3 сернокислого раствора, содержащего, г/дм3: 1,0 скандия, 5,8 титана, 6,2 алюминия, 10,0 циркония, 41,0 железа (III), вводят в него концентрированную серную кислоту до ее концентрации 350 г/дм3 и нагревают раствор до 70°С. В горячий раствор вводят 15 г сульфата аммония (концентрация ионов аммония 1,9 моль/дм3) при перемешивании и выдерживают на водяной бане при температуре 70°С в течение 1 ч и затем не более 24 ч при комнатной температуре. Затем образовавшийся осадок отфильтровывают с помощью фильтра Шотта, промывают на фильтре небольшим количеством этилового спирта и сушат при комнатной температуре. Химический состав продукта: сульфат скандия аммония формулы NH4Sc(SO4)2.

Остаточное содержание скандия в маточном растворе составляет 26 мг/дм3 скандия. Масса сухого осадка составляет 0,58 г содержание в нем скандия 16,7 мас.%, что соответствует степени извлечения 96,86%. Коэффициенты разделения скандия и сопутствующих металлов приведены в табл. 1.

Пример 2.

Берут 100 дм3 сернокислого раствора, содержащего, г/дм3: 1,7 скандия, 5,7 титана, 9,3 алюминия, 10,4 циркония, 40,0 железа (III), вводят в него концентрированную серную кислоту до ее концентрации 450 г/дм3 и нагревают раствор до 90°С. В горячий раствор вводят 15 г ацетата аммония (концентрация ионов аммония 1,55 моль/дм3) при перемешивании и выдерживают на водяной бане при температуре 70°С в течение 1 ч и затем не более 24 ч при комнатной температуре. Затем образовавшийся осадок отфильтровывают с помощью фильтра Шотта, промывают на фильтре небольшим количеством этилового спирта и сушат при комнатной температуре. Химический состав продукта: сульфат скандия аммония формулы NH4Sc(SO4)2.

Остаточное содержание скандия в маточном растворе составляет 34 мг/дм3 скандия, что составляет 2,5% от исходного содержания. Масса сухою осадка составляет 0,97 г, содержание в нем скандия 16,9 мас.%, что соответствует степени извлечения 96,43%. Коэффициенты разделения скандия и сопутствующих металлов приведены в табл. 1.

Таким образом, предлагается способ разделения скандия и сопутствующих металлов, который обеспечивает возможность эффективного отделения скандия от примесей других металлов, в частности железа (III), алюминия, титана и циркония, которые являются наиболее распространенными элементами-примесями скандия.

Таблица

Пример
№ п/п
Концент-
рация
Н2SO4,
г/дм3
Концентрация иона-NH4+, моль/дм3, состав соли Концентрация Sc, г/дм3

Степень осаждения Sc, %
Коэффициенты
разделения
в исходном р-ре в маточном р-ре
βSc/Ti

βSc/Al

βSc/Zr

βSc/Fe
1 350 1,9 моль/дм3 (NH4)2SO4

1,0

0,026

96,86

76

4330

98

240
2 450 1,55 моль/дм3 СН3СООNH4

1,7

0,034

96,43

105

4330

105

190

Способ разделения скандия и сопутствующих металлов путем обработки скандийсодержащего раствора серной кислотой в присутствии соли, содержащей ионы аммония, при нагревании с последующими фильтрацией полученного осадка, его промывкой этиловым спиртом и сушкой, отличающийся тем, что обработку ведут при концентрации серной кислоты 350-500 г/дм, а в качестве соли, содержащей ионы аммония, используют сульфат аммония или ацетат аммония в количестве ионов аммония 1,5-2,0 моль/дм.
Источник поступления информации: Роспатент

Showing 41-50 of 99 items.
18.05.2018
№218.016.5071

Способ получения композита триоксид ванадия/углерод

Изобретение может быть использовано для получения электродного материала литиевых источников тока. Способ получения композита триоксид ванадия/углерод VO/C включает растворение в воде карбоновой кислоты, добавление оксидного соединения ванадия, сушку и последующий отжиг. В качестве карбоновой...
Тип: Изобретение
Номер охранного документа: 0002653020
Дата охранного документа: 04.05.2018
29.05.2018
№218.016.53d3

Способ получения наноструктурированных порошков ферритов и установка для его осуществления

Изобретение может быть использовано в химической промышленности. Способ получения наноструктурированных порошков ферритов включает получение смеси соли азотной кислоты и по крайней мере одного оксидного соединения металла, ультразвуковую обработку, термообработку и фильтрацию. Получают смесь...
Тип: Изобретение
Номер охранного документа: 0002653824
Дата охранного документа: 14.05.2018
09.06.2018
№218.016.5e01

Способ получения композита диоксид молибдена/углерод

Изобретение относится к способу получения композитов в мелкодисперсном состоянии, в частности композита диоксид молибдена/углерод MoO/C, который может быть использован в качестве эффективного анодного материала литиевых источников тока. Способ включает растворение порошка металлического...
Тип: Изобретение
Номер охранного документа: 0002656466
Дата охранного документа: 05.06.2018
20.06.2018
№218.016.6538

Способ получения наноструктурированного углерода

Изобретение относится к химической технологии и может быть использовано при изготовлении сорбентов, катализаторов и носителей для катализаторов, сенсоров, газовых накопителей, конструкционных, футеровочных, оптических материалов и электродов для высокоёмких источников тока и энергетических...
Тип: Изобретение
Номер охранного документа: 0002658036
Дата охранного документа: 19.06.2018
01.07.2018
№218.016.697d

Способ получения серебросодержащей ткани растительного происхождения

Изобретение относится к способу получения серебросодержащих тканей, обладающих антибактериальными свойствами. Способ получения серебросодержащей ткани растительного происхождения включает обработку ткани водным раствором смеси нитрата серебра, восстановителя и соединения, содержащего группу NH,...
Тип: Изобретение
Номер охранного документа: 0002659267
Дата охранного документа: 29.06.2018
05.07.2018
№218.016.6c2a

Способ определения оптических констант пленок химически активных металлов или их сплавов

Изобретение относится к способам оптико-физических измерений. Способ определения оптических констант пленок химически активных металлов или их сплавов включает измерения эллипсометрических параметров и пленки соответствующего металла или его сплава, предварительно нанесенной путем вакуумного...
Тип: Изобретение
Номер охранного документа: 0002659873
Дата охранного документа: 04.07.2018
10.08.2018
№218.016.7b57

Способ получения полых микросфер феррита висмута

Изобретение может быть использовано для получения наноструктурированных порошков феррита висмута BiFeO, применяемых в микроэлектронике, спинтронике, устройствах для магнитной записи информации, в производстве фотокатализаторов, материалов для фотовольтаики. Способ получения полых микросфер...
Тип: Изобретение
Номер охранного документа: 0002663738
Дата охранного документа: 09.08.2018
25.10.2018
№218.016.9605

Способ получения формиата железа (ii)

Изобретение относится к получению солей железа из органических кислот, в частности к соли двухвалентного железа из муравьиной кислоты. Предлагается способ получения формиата железа (II), включающий нагревание соединения железа и муравьиной кислоты в присутствии металлической стружки, где...
Тип: Изобретение
Номер охранного документа: 0002670440
Дата охранного документа: 23.10.2018
15.11.2018
№218.016.9da3

Способ получения нанокристаллического порошка титан-молибденового карбида

Изобретение может быть использовано в металлургии при получении тугоплавкой основы безвольфрамовых твердых сплавов. Способ получения нанокристаллического порошка титан-молибденового карбида включает высокотемпературную обработку исходной смеси порошков соединения титана и молибдена с...
Тип: Изобретение
Номер охранного документа: 0002672422
Дата охранного документа: 14.11.2018
24.11.2018
№218.016.a0ba

Германат редкоземельных элементов в наноаморфном состоянии

Изобретение может быть использовано в электронике. Германат редкоземельных элементов состава CaLaEuGeO, где 0,05≤х≤0,15, в наноаморфном состоянии используют в качестве люминофора белого цвета свечения. Предложенное изобретение позволяет расширить номенклатуру люминофоров белого свечения,...
Тип: Изобретение
Номер охранного документа: 0002673287
Дата охранного документа: 23.11.2018
Showing 31-34 of 34 items.
15.05.2023
№223.018.5b29

Способ переработки отходов титанмагнетитовой руды

Изобретение относится к технологии переработки техногенных отходов, в частности титанмагнетитовой руды, с получением продуктов, используемых в промышленности. Отходы титанмагнетитовой руды обрабатывают гидрофторидом аммония с последующей обработкой полученного продукта водным раствором аммиака....
Тип: Изобретение
Номер охранного документа: 0002763715
Дата охранного документа: 30.12.2021
15.05.2023
№223.018.5b39

Оптически прозрачный люминесцентный наноструктурный керамический материал

Изобретение относится к области создания оптически прозрачных люминесцентных наноструктурных керамических материалов на основе алюмомагниевой шпинели (MgAlO) и может быть использовано в качестве функционального материала устройств фотоники, оптоэлектроники и лазерной техники. Предлагается...
Тип: Изобретение
Номер охранного документа: 0002763148
Дата охранного документа: 27.12.2021
15.05.2023
№223.018.5b3a

Оптически прозрачный люминесцентный наноструктурный керамический материал

Изобретение относится к области создания оптически прозрачных люминесцентных наноструктурных керамических материалов на основе алюмомагниевой шпинели (MgAlO) и может быть использовано в качестве функционального материала устройств фотоники, оптоэлектроники и лазерной техники. Предлагается...
Тип: Изобретение
Номер охранного документа: 0002763148
Дата охранного документа: 27.12.2021
16.05.2023
№223.018.630b

Композиционный материал на основе гидроксиапатита для костных имплантатов и способ его получения

Изобретение относится к получению материала для костных имплантатов, используемых в ортопедической хирургии при восстановлении и лечении костной ткани. Способ получения композиционного материала для костных имплантатов включает получение исходной порошковой смеси, содержащей (мас.%):...
Тип: Изобретение
Номер охранного документа: 0002771382
Дата охранного документа: 04.05.2022
+ добавить свой РИД