×
25.06.2018
218.016.6606

Результат интеллектуальной деятельности: МЕТАЛЛОПОРИСТЫЙ КАТОД И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к электронной технике, а именно к металлопористым катодам (МПК) электронных приборов СВЧ. В торцевую часть металлопористого катода, выполненного в виде корпуса из тугоплавкого металла, погружена пропитанная активным веществом состава - алюминат бария-кальция с соотношением СаО - 4,9%, ВаО - 76,6%, AlO - 18,4-18,3% с добавлением водного раствора сульфоаддукта нанокластеров углерода с концентрацией 6 г/л (в количестве от 0,1 до 0,2 мас.%) покрытая снаружи слоем Os+Ir+Al вольфрамовая губка, которая состоит из отожженного вольфрамового порошка фракции Б (в количестве от 99,3 до 99,8 мас.%) и порошка полиэдральных наночастиц фуллероидного типа тороидальной формы в количестве 0,2-0,7 мас.%. Изобретение позволяет повысить долговечность и плотность токоотбора. 2 н. и 2 з.п. ф-лы, 1 табл.

Изобретение относится к электронной технике, а именно к металлопористым катодам (МПК) электронных приборов СВЧ.

Известны различные конструкции металлопористых катодов [Кудинцева Г.А. и др. Термоэлектронные катоды. Энергия, 1966], состоящие из пористой вольфрамовой губки, пропитанной активным эмиссионным веществом.

Наиболее близким аналогом заявляемого металлопористого катода является катод [патент RU на изобретение №2172997], содержащий керн из тугоплавкого металла и матрицу, поры которой заполнены эмитирующим составом. Достоинством такой конструкции является то, что для изготовления МПК не требуется дорогостоящего оборудования. К недостаткам относится невысокая долговечность.

Известна конструкция и упрощенный процесс изготовления металлопористого катода [патент на изобретение RU 2333565], включающий запрессовку порошка тугоплавкого металла в стакан из молибдена и пропитку сформированной пористой губки активным веществом в виде порошка из алюмината или алюмосиликата бария-кальция при температуре 1700-1800°C в среде водорода, с последующим удалением активного вещества с поверхности стакана и губки многократным смыванием струей воды и формированием таким образом эмитирующей поверхности катода. Достоинством этой конструкции также является простота изготовления металлопористого катода. Однако такая технология не обеспечивает необходимой долговечности МПК, так как губка катода в силу недостаточной температуры спекания запрессованного в корпус катода порошка (1700-1800°C вместо 2000°C при обычной технологии изготовления) имеет повышенную пористость, что вызывает повышенное испарение бария во время работы катода и, соответственно, меньшую долговечность.

Известно получение различных форм углеродных наночастиц. К ним, в частности, относятся полиэдральные многослойные углеродные наноструктуры фуллероидного типа [Патент RU 2196731], многослойные углеродные наночастицы фуллероидного типа тороидальной формы [Патент RU 2397950].

Известен также автоэмиссионный катод [Патент RU 2504858], при изготовлении которого применяются углеродные нанотрубки. Такой катод содержит частицы металла, окруженные наноструктурированным углеродным материалом. При этом металл обеспечивает низкое удельное сопротивление, высокую теплопроводность и механическую прочность, а наноуглеродный материал - высокие эмиссионные свойства катода. Достоинством такой конструкции является повышение эффективности автоэлектронной эмиссии. К недостаткам таких катодов можно отнести высокую скорость их деградации.

Техническим результатом предлагаемого изобретения является повышение долговечности и плотности токоотбора.

Технический результат достигается тем, что в торцевую часть металлопористого катода, выполненного в виде корпуса из тугоплавкого металла, погружена пропитанная активным веществом состава - алюминат бария-кальция с соотношением СаО - 4,9%, ВаО - 76,6%, Al2O3 - 18,4-18,3% с добавлением водного раствора сульфоаддукта нанокластеров углерода (Углерона®) с концентрацией 6 г/л (в количестве от 0,1% до 0,2% масс) и покрытая снаружи слоем Os+Ir+Al вольфрамовая губка, которая состоит из отожженного вольфрамового порошка фракции Б (в количестве от 99,3% до 99,8% масс) и порошка полиэдральных наночастиц фуллероидного типа тороидальной формы (Астраленов®) в количестве 0,2% - 0,7% масс.

Кроме того, технический результат достигается тем, что при изготовлении металлопористого катода, включающем формирование корпуса из тугоплавкого металла и вольфрамовой губки, первоначально готовится смесь для приготовления тугоплавкой матрицы, которая имеет в своем составе отожженный вольфрамовый порошок фракции Б (в количестве 99,3% 99,8% масс.) с добавкой порошка полиэдральных наночастиц фуллероидного типа тороидальной формы в количестве 0,2%-0,7% масс. Полученная смесь, предварительно растертая пестиком, прессуется под давлением свыше Р=7,4 кг/см2. Далее заготовки отжигаются (при температуре от 600°C до 1700°C в среде водорода в течение 8 часов), и после охлаждения для повышения механической прочности проводится дополнительный отжиг (при температуре от 1500°C до 1950°C в среде водорода в течение 9 мин), после чего диски должны получить металлический оттенок. Затем диски пропитываются активным веществом, состоящим из алюмината бария-кальция с соотношением СаО - 4,9%, ВаО - 76,6%, Al2O3 -18,4- 18,3% с добавкой водного раствора сульфоаддукта нанокластеров углерода с концентрацией 6 г/л (в количестве от 0,1% до 0,2% масс), после чего готовую губку закрепляют в корпус, проводят механическую обработку и подвергают поочередно процессу вакуумного отжига, глубокого ионного травления и наносят ионно-плазменное покрытие состава Os+Ir+Al.

При этом после механической доработки используется только процесс вакуумного отжига или процесс вакуумного отжига и глубокого ионного травления эмитирующей поверхности.

Варианты концентраций, полученные параметры катодов и их сравнение с аналогами приведены в таблице. Все значения таблицы представлены при токоотборе 2,2 А/см2. Под характеристической температурой понимается температура катода, при которой режим работы катода меняется с режима ограничения пространственным зарядом на режим с температурным ограничением. Соответственно, для наиболее эмиссионно активных катодов изменение режима происходит при достаточно низких температурах. Исследование эмиссионной активности катодов проводилось в режиме импульсного токоотбора на анод при скваженности 1000.

Источники информации

1. Кудинцева Г.А. и др. Термоэлектронные катоды. Энергия, 1966.

2. Патент RU на изобретение №2172997.

3. Патент на изобретение RU 2333565.

4. Полиэдральные многослойные углеродные наноструктуры фуллероидного типа. Патент RU 2196731.

5. Пономарев А.Н., Юдович М.Е. Многослойные углеродные наночастицы фуллероидного типа тороидальной формы. Патент RU 2397950, под. 23.04.2008, опубл. 27.08.2010.

6. Патент RU 2504858.

Источник поступления информации: Роспатент

Showing 31-36 of 36 items.
23.02.2020
№220.018.05ce

Способ бессеточной модуляции пучка в свч-приборах о-типа

Изобретение относится к электровакуумным приборам СВЧ О-типа, в частности к электронным пушкам, и может быть использовано в лампах бегущей волны и клистронах. Технический результат - уменьшение величины напряжения модуляции пучка. Способ бессеточной модуляции пучка в СВЧ-приборах О-типа...
Тип: Изобретение
Номер охранного документа: 0002714692
Дата охранного документа: 19.02.2020
30.05.2020
№220.018.2286

Способ изготовления спирали для замедляющей системы лбв

Изобретение относится к области электронной техники, а именно к спиральным замедляющим системам ламп бегущей волны (ЛБВ). Технический результат - изготовления спирали для замедляющей системы ЛБВ, снижение температуры спирали, уменьшение потерь СВЧ-мощности в ЗС, увеличение срока службы ЛБВ,...
Тип: Изобретение
Номер охранного документа: 0002722211
Дата охранного документа: 28.05.2020
01.07.2020
№220.018.2d73

Двухслойный металлопористый катод и способ его изготовления

Изобретение относится к электронной технике, в частности к металлопористым катодам (МПК) электронных приборов СВЧ с повышенным сроком службы и надежностью. Техническим результатом предлагаемого изобретения является повышение долговечности металлопористого катода. Технический результат...
Тип: Изобретение
Номер охранного документа: 0002724980
Дата охранного документа: 29.06.2020
18.07.2020
№220.018.3427

Волноводная замедляющая система лбв о-типа

Изобретение относится к области электронной техники, в частности к замедляющим системам для ламп бегущей волны (ЛБВ) и ламп обратной волны (ЛОВ) О-типа. Техническим результатом настоящего изобретения является уменьшение потерь СВЧ-мощности в волноводной ЗС ЛБВ О-типа, увеличение выходной...
Тип: Изобретение
Номер охранного документа: 0002726906
Дата охранного документа: 16.07.2020
20.04.2023
№223.018.4dc6

Способ первоначального включения и настройки лампы бегущей волны

Изобретение относится к электровакуумным приборам СВЧ О-типа, в частности, к лампе бегущей волны. Технический результат - сокращение времени настройки ЛБВ, увеличение тока электронов, осевших на коллектор, и недопущение при этом опасности перегорания замедляющей системы. В процессе...
Тип: Изобретение
Номер охранного документа: 0002793201
Дата охранного документа: 30.03.2023
21.04.2023
№223.018.4f6a

Двухслойный металлопористый катод

Изобретение относится к электронной технике, в частности к металлопористым катодам (МПК) электронных приборов СВЧ с увеличенной токовой нагрузкой и повышенным сроком службы. Технический результат - повышение эмиссионной способности МПК при его высокой долговечности. В торцевую часть МПК,...
Тип: Изобретение
Номер охранного документа: 0002792873
Дата охранного документа: 29.03.2023
Showing 21-21 of 21 items.
21.04.2023
№223.018.4f6a

Двухслойный металлопористый катод

Изобретение относится к электронной технике, в частности к металлопористым катодам (МПК) электронных приборов СВЧ с увеличенной токовой нагрузкой и повышенным сроком службы. Технический результат - повышение эмиссионной способности МПК при его высокой долговечности. В торцевую часть МПК,...
Тип: Изобретение
Номер охранного документа: 0002792873
Дата охранного документа: 29.03.2023
+ добавить свой РИД