×
25.06.2018
218.016.6606

Результат интеллектуальной деятельности: МЕТАЛЛОПОРИСТЫЙ КАТОД И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к электронной технике, а именно к металлопористым катодам (МПК) электронных приборов СВЧ. В торцевую часть металлопористого катода, выполненного в виде корпуса из тугоплавкого металла, погружена пропитанная активным веществом состава - алюминат бария-кальция с соотношением СаО - 4,9%, ВаО - 76,6%, AlO - 18,4-18,3% с добавлением водного раствора сульфоаддукта нанокластеров углерода с концентрацией 6 г/л (в количестве от 0,1 до 0,2 мас.%) покрытая снаружи слоем Os+Ir+Al вольфрамовая губка, которая состоит из отожженного вольфрамового порошка фракции Б (в количестве от 99,3 до 99,8 мас.%) и порошка полиэдральных наночастиц фуллероидного типа тороидальной формы в количестве 0,2-0,7 мас.%. Изобретение позволяет повысить долговечность и плотность токоотбора. 2 н. и 2 з.п. ф-лы, 1 табл.

Изобретение относится к электронной технике, а именно к металлопористым катодам (МПК) электронных приборов СВЧ.

Известны различные конструкции металлопористых катодов [Кудинцева Г.А. и др. Термоэлектронные катоды. Энергия, 1966], состоящие из пористой вольфрамовой губки, пропитанной активным эмиссионным веществом.

Наиболее близким аналогом заявляемого металлопористого катода является катод [патент RU на изобретение №2172997], содержащий керн из тугоплавкого металла и матрицу, поры которой заполнены эмитирующим составом. Достоинством такой конструкции является то, что для изготовления МПК не требуется дорогостоящего оборудования. К недостаткам относится невысокая долговечность.

Известна конструкция и упрощенный процесс изготовления металлопористого катода [патент на изобретение RU 2333565], включающий запрессовку порошка тугоплавкого металла в стакан из молибдена и пропитку сформированной пористой губки активным веществом в виде порошка из алюмината или алюмосиликата бария-кальция при температуре 1700-1800°C в среде водорода, с последующим удалением активного вещества с поверхности стакана и губки многократным смыванием струей воды и формированием таким образом эмитирующей поверхности катода. Достоинством этой конструкции также является простота изготовления металлопористого катода. Однако такая технология не обеспечивает необходимой долговечности МПК, так как губка катода в силу недостаточной температуры спекания запрессованного в корпус катода порошка (1700-1800°C вместо 2000°C при обычной технологии изготовления) имеет повышенную пористость, что вызывает повышенное испарение бария во время работы катода и, соответственно, меньшую долговечность.

Известно получение различных форм углеродных наночастиц. К ним, в частности, относятся полиэдральные многослойные углеродные наноструктуры фуллероидного типа [Патент RU 2196731], многослойные углеродные наночастицы фуллероидного типа тороидальной формы [Патент RU 2397950].

Известен также автоэмиссионный катод [Патент RU 2504858], при изготовлении которого применяются углеродные нанотрубки. Такой катод содержит частицы металла, окруженные наноструктурированным углеродным материалом. При этом металл обеспечивает низкое удельное сопротивление, высокую теплопроводность и механическую прочность, а наноуглеродный материал - высокие эмиссионные свойства катода. Достоинством такой конструкции является повышение эффективности автоэлектронной эмиссии. К недостаткам таких катодов можно отнести высокую скорость их деградации.

Техническим результатом предлагаемого изобретения является повышение долговечности и плотности токоотбора.

Технический результат достигается тем, что в торцевую часть металлопористого катода, выполненного в виде корпуса из тугоплавкого металла, погружена пропитанная активным веществом состава - алюминат бария-кальция с соотношением СаО - 4,9%, ВаО - 76,6%, Al2O3 - 18,4-18,3% с добавлением водного раствора сульфоаддукта нанокластеров углерода (Углерона®) с концентрацией 6 г/л (в количестве от 0,1% до 0,2% масс) и покрытая снаружи слоем Os+Ir+Al вольфрамовая губка, которая состоит из отожженного вольфрамового порошка фракции Б (в количестве от 99,3% до 99,8% масс) и порошка полиэдральных наночастиц фуллероидного типа тороидальной формы (Астраленов®) в количестве 0,2% - 0,7% масс.

Кроме того, технический результат достигается тем, что при изготовлении металлопористого катода, включающем формирование корпуса из тугоплавкого металла и вольфрамовой губки, первоначально готовится смесь для приготовления тугоплавкой матрицы, которая имеет в своем составе отожженный вольфрамовый порошок фракции Б (в количестве 99,3% 99,8% масс.) с добавкой порошка полиэдральных наночастиц фуллероидного типа тороидальной формы в количестве 0,2%-0,7% масс. Полученная смесь, предварительно растертая пестиком, прессуется под давлением свыше Р=7,4 кг/см2. Далее заготовки отжигаются (при температуре от 600°C до 1700°C в среде водорода в течение 8 часов), и после охлаждения для повышения механической прочности проводится дополнительный отжиг (при температуре от 1500°C до 1950°C в среде водорода в течение 9 мин), после чего диски должны получить металлический оттенок. Затем диски пропитываются активным веществом, состоящим из алюмината бария-кальция с соотношением СаО - 4,9%, ВаО - 76,6%, Al2O3 -18,4- 18,3% с добавкой водного раствора сульфоаддукта нанокластеров углерода с концентрацией 6 г/л (в количестве от 0,1% до 0,2% масс), после чего готовую губку закрепляют в корпус, проводят механическую обработку и подвергают поочередно процессу вакуумного отжига, глубокого ионного травления и наносят ионно-плазменное покрытие состава Os+Ir+Al.

При этом после механической доработки используется только процесс вакуумного отжига или процесс вакуумного отжига и глубокого ионного травления эмитирующей поверхности.

Варианты концентраций, полученные параметры катодов и их сравнение с аналогами приведены в таблице. Все значения таблицы представлены при токоотборе 2,2 А/см2. Под характеристической температурой понимается температура катода, при которой режим работы катода меняется с режима ограничения пространственным зарядом на режим с температурным ограничением. Соответственно, для наиболее эмиссионно активных катодов изменение режима происходит при достаточно низких температурах. Исследование эмиссионной активности катодов проводилось в режиме импульсного токоотбора на анод при скваженности 1000.

Источники информации

1. Кудинцева Г.А. и др. Термоэлектронные катоды. Энергия, 1966.

2. Патент RU на изобретение №2172997.

3. Патент на изобретение RU 2333565.

4. Полиэдральные многослойные углеродные наноструктуры фуллероидного типа. Патент RU 2196731.

5. Пономарев А.Н., Юдович М.Е. Многослойные углеродные наночастицы фуллероидного типа тороидальной формы. Патент RU 2397950, под. 23.04.2008, опубл. 27.08.2010.

6. Патент RU 2504858.

Источник поступления информации: Роспатент

Showing 21-30 of 36 items.
18.01.2019
№219.016.b092

Способ пластического образования конусных отверстий

Изобретение относится к обработке металлов давлением и может быть использовано при изготовлении изделий с глухими или сквозными конусными отверстиями. Заготовку формообразуют в матрице, имеющей приемную и ступенчатую части. При этом на размещенную в приемной части заготовку воздействуют...
Тип: Изобретение
Номер охранного документа: 0002677450
Дата охранного документа: 16.01.2019
29.04.2019
№219.017.3e4a

Катодно-сеточный узел с пространственно-развитым аксиально-симметричным автоэмиссионным катодом

Изобретение относится к электронной технике, в частности к катодно-сеточным узлам для вакуумных электронных устройств, в том числе мощных приборов СВЧ-диапазона с микросекундным временем готовности. Технический результат - уменьшение угла расходимости траекторий электронов на выходе из...
Тип: Изобретение
Номер охранного документа: 0002686454
Дата охранного документа: 26.04.2019
15.08.2019
№219.017.bfde

Катодно-сеточный узел с автоэмиссионным катодом и управляющей сеткой, разделённой на элементы

Изобретение относится к электронной технике, в частности к созданию катодно-сеточных узлов с автоэмиссионными катодами для вакуумных электронных устройств, в том числе мощных приборов СВЧ-диапазона с микросекундным временем готовности. Технический результат - повышение равномерности токоотбора...
Тип: Изобретение
Номер охранного документа: 0002697193
Дата охранного документа: 13.08.2019
15.08.2019
№219.017.bff5

Способ изготовления катодно-сеточного узла с встроенной в катод теневой сеткой

Изобретение относится к электронной технике, в частности к созданию катодно-сеточных узлов для вакуумных электронных приборов, в том числе мощных импульсных приборов СВЧ-диапазона с низковольтным сеточным управлением электронным пучком. Технический результат - повышение долговечности...
Тип: Изобретение
Номер охранного документа: 0002697190
Дата охранного документа: 13.08.2019
18.10.2019
№219.017.d7a0

Способ изготовления катодно-сеточного узла с углеродными автоэмиттерами

Изобретение относится к электронной технике, в частности к изготовлению катодно-сеточных узлов с матричными автоэмиссионными катодами для электровакуумных приборов, в том числе сверхвысокочастотного диапазона. Технический результат - повышение надежности и долговечности низковольтных...
Тип: Изобретение
Номер охранного документа: 0002703292
Дата охранного документа: 16.10.2019
22.11.2019
№219.017.e4ea

Лампа бегущей волны для линейных усилителей свч мощности спутников связи

Изобретение относится к технике СВЧ приборов, преимущественно ламп бегущей волны (ЛБВ). Технический результат - увеличение КПД ЛБВЛ в режиме работы с высокими электронным КПД и линейностью характеристик. Лампа бегущей волны содержит электронную пушку, магнитную фокусирующую систему, замедляющую...
Тип: Изобретение
Номер охранного документа: 0002706644
Дата охранного документа: 19.11.2019
01.02.2020
№220.017.fcd7

Устройство для виброуплотнения заливки катодно-подогревательных узлов

Изобретение относится к устройству для виброуплотнения заливки катодно-подогревательных узлов. Устройство содержит корпус, в середине которого закреплена головка громкоговорителя динамическая, чашка из стеклотекстолита, установленная сверху динамической головки. В чашку помещается корпус...
Тип: Изобретение
Номер охранного документа: 0002712460
Дата охранного документа: 29.01.2020
06.02.2020
№220.017.ff2c

Способ изготовления катодно-сеточного узла с автоэмиссионным катодом

Изобретение относится к области электронной техники, а именно к области техники катодно-сеточных узлов (КСУ) с автоэмиссионными катодами для вакуумных электронных устройств, преимущественно приборов с микросекундным временем готовности. Технический результат - повышение точности расположения...
Тип: Изобретение
Номер охранного документа: 0002713381
Дата охранного документа: 05.02.2020
06.02.2020
№220.017.ff43

Способ измерения рабочей температуры катода в пушке или в составе электронного прибора

Изобретение относится к электронной технике, в частности к способам, предназначенным для измерения температуры катода при изготовлении в составе пушки и эксплуатации в составе готового прибора. Технический результат - повышение точности измерения температуры катода в составе пушечного узла...
Тип: Изобретение
Номер охранного документа: 0002713229
Дата охранного документа: 04.02.2020
20.02.2020
№220.018.0437

Миниатюрный многолучевой клистрон

Изобретение относится к миниатюрным многолучевым клистронам, используемым в качестве усилителей мощности электромагнитных волн коротковолновой части сантиметрового и длинноволновой части миллиметрового диапазонов длин волн в передатчиках радиолокационных станций, системах связи и в источниках...
Тип: Изобретение
Номер охранного документа: 0002714508
Дата охранного документа: 18.02.2020
Showing 21-21 of 21 items.
21.04.2023
№223.018.4f6a

Двухслойный металлопористый катод

Изобретение относится к электронной технике, в частности к металлопористым катодам (МПК) электронных приборов СВЧ с увеличенной токовой нагрузкой и повышенным сроком службы. Технический результат - повышение эмиссионной способности МПК при его высокой долговечности. В торцевую часть МПК,...
Тип: Изобретение
Номер охранного документа: 0002792873
Дата охранного документа: 29.03.2023
+ добавить свой РИД