×
25.06.2018
218.016.659d

Результат интеллектуальной деятельности: УСТРОЙСТВО ДЛЯ ИССЛЕДОВАНИЯ В СКВАЖИНАХ ДИНАМИЧЕСКОГО СОСТОЯНИЯ ГОРНЫХ ПОРОД

Вид РИД

Изобретение

Аннотация: Изобретение относится к области геофизики и может быть использовано как при каротажных работах, так и для мониторинга динамического состояния горных пород в скважинах. Заявленное устройство содержит следующие элементы: три ферритовых антенны (1, 2, 3), третий коммутатор ферритовых антенн (4), первый коммутатор конденсаторов (5), три конденсатора (6), первый усилитель (7), смеситель сигналов (8), переключаемый генератор (9), фильтр нижних частот (10), выпрямитель электромагнитных сигналов (11), три датчика геоакустических сигналов (12, 13, 14), второй коммутатор геоакустических сигналов (15), второй усилитель (16), заграждающий фильтр (17), датчик гамма-излучения (18), блок полосовых фильтров (19), блок выпрямителей (20), четвертый коммутатор (21), аналого-цифровой преобразователь (22), блок передачи (23), блок питания (24), блок управления (25), каротажный кабель (26). Технический результат - повышение информативности исследований. 1 ил.

Процесс трещинообразования в горных породах сопровождается сейсмоакустической эмиссией и электромагнитным излучением среды, однако наличие сейсмоакустического излучения и электромагнитного излучения в объеме геосреды происходит по-разному. В анизотропных средах распределение сигналов по направлениям не одинаково. Это позволяет классифицировать зоны нарушенности по их тектонофизической природе. Применение 3-компонентных измерений рассматриваемых процессов позволяет по расхождению амплитуд сигналов определять интервалы трещиноватости с разной направленностью трещин и тем самым выделять анизотропные и изотропные зоны по разрезу скважин. Применение трехкомпонентных измерений сейсмоакустической эмиссии и электромагнитного излучения позволяет увеличить объем информации в нарушенных зонах при естественном залегании пород и осуществляется впервые. Это также снижает стоимость геофизических исследований и расширяет область применения предлагаемого устройства.

Известно устройство [1], содержащее три взаимно ортогональных датчика акустических сигналов, коммутатор, блок управления, антенну для приема электромагнитных сигналов, высокочастотный перестраиваемый усилитель. К недостаткам устройства следует отнести то, что оно измеряет только одну составляющую электромагнитного сигнала, что существенно снижает его возможности. Кроме того, требуется трехжильный кабель и дополнительные устройства для преобразования измеряемых сигналов в цифровую форму.

Известно устройство [2], содержащее три взаимно ортогональных датчика акустических сигналов, термометр, блок гамма-каротажа. Это устройство не позволяет измерять электромагнитные сигналы. Кроме того, применение частотно-импульсного модулятора, работающего на частоте, близкой к частотам электромагнитных сигналов, исключает возможность их измерения из-за высоких помех со стороны модулятора.

Наиболее близким техническим решением к предлагаемому изобретению является устройство [3], содержащее в скважинном приборе три взаимно ортогональных датчика акустических сигналов, первый и второй коммутаторы, усилитель, блок фильтров, аналого-цифровой преобразователь, ферритовую антенну, блок передачи. К недостаткам устройства следует отнести то, что оно измеряет только одну составляющую электромагнитного сигнала, что может привести к ошибкам измерений при определении динамического состояния среды.

Устройство для исследования в скважинах динамического состояния горных пород, содержащее ферритовую антенну, три конденсатора, первый коммутатор конденсаторов, первый усилитель, смеситель, фильтр нижних частот, переключаемый генератор, выпрямитель, три взаимно ортогональных датчика акустических сигналов, второй коммутатор, второй усилитель, блок полосовых фильтров, блок выпрямителей, четвертый коммутатор, аналого-цифровой преобразователь, блок передачи, блок гамма-каротажа, отличается тем, что в него дополнительно введены две ферритовые антенны, расположенные перпендикулярно оси скважинного прибора таким образом, что с первой антенной они образуют взаимно ортогональную систему, оси чувствительности которой параллельны осям геоакустических датчиков, третий коммутатор ферритовых антенн, выход которого подключен к входу первого коммутатора конденсаторов и входу первого усилителя, а также заграждающий фильтр, вход которого подключен к выходу второго усилителя, а выход - к входу блока полосовых фильтров.

На чертеже изображена функциональная схема устройства. Устройство содержит:

1, 2, 3 - три ферритовых антенны,

4 - третий коммутатор ферритовых антенн,

5 - первый коммутатор конденсаторов,

6 - три конденсатора,

7 - первый усилитель,

8 - смеситель сигналов,

9 - переключаемый генератор,

10 - фильтр нижних частот,

11 - выпрямитель электромагнитных сигналов,

12, 13, 14 - три датчика геоакустических сигналов,

15 - второй коммутатор геоакустических сигналов,

16 - второй усилитель,

17 - заграждающий фильтр,

18 - блок-гамма каротажа,

19 - блок полосовых фильтров,

20 - блок выпрямителей,

21 - четвертый коммутатор,

22 - аналого-цифровой преобразователь,

23 - блок передачи,

24 - блок питания,

25 - блок управления,

26 - каротажный кабель.

Устройство работает следующим образом: связь скважинного прибора с наземным пультом осуществляется при помощи одножильного каротажного кабеля, по которому также подается напряжение питания скважинного прибора. Скважинный прибор устройства работает с временным разделением каналов за 19 тактов. Управляет работой устройства блок управления 25. Синхронизация принимаемой наземным пультом информации осуществляется в момент паузы ее передачи со скважинного прибора. В первый, второй, третий такты коммутатор 4 подключает ферритовую антенну 1 к входу первого коммутатора конденсаторов 5, при этом в каждый из этих тактов параллельно катушке ферритовой антенны подключаются коммутатором 5 различные конденсаторы 6, образуя входной колебательный контур с частотами измеряемого сигнала (например, 40 кГц, 80 кГц, 120 кГц). Синхронно с этим изменяется частота генератора 9, которая в каждый такт соответствует частоте колебательного контура. После усиления блоком 7 сигнал поступает на один из входов смесителя 8, на второй вход которого поступает сигнал с генератора 9. На выходе смесителя 8 в каждый такт образуется сигнал в полосе частот

(fвx±fнч)-fч,

где fвx - частота принимаемого сигнала;

fнч - верхняя частота пропускания фильтра нижних частот 10;

fч - частота генератора 9 и входного контура, образованного ферритовой антенной 1 и одним из конденсаторов 6.

Выходной сигнал смесителя 8 через фильтр нижних частот 10 и выпрямитель 11 поступает на вход коммутатора 21, АЦП 22, и полученный цифровой сигнал через блок передачи 23 поступает на каротажный кабель 26. В четвертый, пятый, шестой такты коммутатор 4 подключает ферритовую антенну 2 к входу коммутатора 5 и, соответственно, к конденсаторам 6. В седьмой, восьмой, девятый такты аналогичным образом коммутатор 4 подключает ферритовую антенну 3. В такты с четвертого по девятый устройство работает таким же образом, как в первый, второй, третий такты, при подключении антенн 2, 3. Индуктивность антенн 1, 2, 3 подбирается одинаковой с достаточно высокой точностью. В десятый, одиннадцатый, двенадцатый такты коммутатор 15 подключает датчик геоакустических сигналов 12 к усилителю 16 и, далее, к заграждающему фильтру 17. Выходной сигнал блока 17 подается на блок полосовых фильтров, который разделяет этот сигнал на три полосы и подает эти частоты на входы блока выпрямителей, выходы которого через коммутатор 21 подаются на вход аналого-цифрового преобразователя 22, блок передачи 23 и каротажный кабель 26. В тринадцатый, четырнадцатый, пятнадцатый такт коммутатор 15 подключает датчик 13, а в шестнадцатый, семнадцатый, восемнадцатый такты - датчик 14 к входу усилителя 16. Устройство работает аналогично работе в десятый, одиннадцатый, двенадцатый такты. В девятнадцатый такт выходной сигнал блока гамма-каротажа постоянного тока через коммутатор 21 поступает на вход АЦП 22. Из-за большой инерционности блока 18 он не выключается при измерении геоакустических сигналов. Блок гамма-каротажа содержит блокинг-генератор, работающий на частотах 5-10 кГц, который создает вибрацию корпуса скважинного прибора, создавая помехи при измерении геоакустических сигналов. Помехи эти могут быть значительными, и блок полосовых фильтров 19 зачастую не может их подавить или требует существенного усложнения. Для ликвидации этих помех между выходом блока 16 и входом блока 19 установлен заграждающий фильтр 17, настроенный на частоту блокинг-генератора.

Конструктивно ферритовые антенны и датчики геоакустических сигналов представляют собой две взаимно ортогональные системы. Оси чувствительности обеих систем расположены параллельно, что позволяет при интерпретации повысить информативность определения динамического состояния горных пород в скважине в интервалах с различной направленностью трещин и других нарушенностей.

Источники информации

1. Фадеев В.А. Аппаратура для регистрации естественного сейсмоакустического и электромагнитного излучения горных пород в скважинах. Сб. научн. тр. Геофизические методы исследования месторождений полезных ископаемых. - Караганда, 1991, с. 45-48.

2. Астраханцев Ю.Г., Троянов А.К. Устройство для проведения геоакустического каротажа. Патент РФ №2445653, GO1V 1/40.

3. Астраханцев Ю.Г., Белоглазова Н.А., Троянов А.К. Устройство для проведения исследований динамического состояния горных пород в скважинах. Патент РФ №2533334, GO1V 1/40, GO1V 11/00, GO1V 3/18.

Устройство для исследования в скважинах динамического состояния горных пород, содержащее ферритовую антенну, три конденсатора, первый коммутатор конденсаторов, первый усилитель, смеситель, фильтр нижних частот, переключаемый генератор, выпрямитель, три взаимно ортогональных датчика акустических сигналов, второй коммутатор, второй усилитель, блок полосовых фильтров, блок выпрямителей, четвертый коммутатор, аналого-цифровой преобразователь, блок передачи, блок гамма-каротажа, отличающееся тем, что в него дополнительно введены две ферритовые антенны, расположенные перпендикулярно оси скважинного прибора так, что образуют взаимно ортогональную систему с первой антенной, направленную параллельно осям чувствительности датчиков геоакустических сигналов, третий коммутатор ферритовых антенн, выход которого подключен к входу первого коммутатора конденсаторов и входу первого усилителя, а также заграждающий фильтр, вход которого подключен к выходу второго усилителя, а выход - к входу блока полосовых фильтров.
УСТРОЙСТВО ДЛЯ ИССЛЕДОВАНИЯ В СКВАЖИНАХ ДИНАМИЧЕСКОГО СОСТОЯНИЯ ГОРНЫХ ПОРОД
УСТРОЙСТВО ДЛЯ ИССЛЕДОВАНИЯ В СКВАЖИНАХ ДИНАМИЧЕСКОГО СОСТОЯНИЯ ГОРНЫХ ПОРОД
Источник поступления информации: Роспатент

Showing 1-5 of 5 items.
04.10.2018
№218.016.8f0d

Устройство для измерения в скважине геоакустических сигналов

Изобретение относится к области геофизики и предназначено для измерения трех составляющих вектора вибрации среды, обусловленного движением нефти, газа, воды, трещинообразованием и другими причинами. Устройство также предназначено для определения направления плоскости нахождения источников...
Тип: Изобретение
Номер охранного документа: 0002668654
Дата охранного документа: 02.10.2018
05.04.2019
№219.016.fd5e

Устройство речевого сопровождения в сейсмической станции, использующее принцип адаптивной дельта-модуляции

Изобретение относится к области автоматики в геофизическом приборостроении и может быть использовано в различных геофизических приборах, например таких, как сейсмические станции. В линейный дельта-демодулятор, использующийся в известном блоке речевого сопровождения, вводится дополнительный...
Тип: Изобретение
Номер охранного документа: 0002683894
Дата охранного документа: 03.04.2019
01.05.2019
№219.017.4789

Способ сейсмического микрорайонирования

Изобретение относится к области сейсмических исследований и может быть использовано в инженерной сейсмологии для оценки интенсивности сейсмических колебаний с учетом свойств грунтов, слагающих территории городов и строительных площадок. Для повышения точности определения приращений сейсмической...
Тип: Изобретение
Номер охранного документа: 0002686514
Дата охранного документа: 29.04.2019
12.04.2023
№223.018.45a6

Способ измерения полуосей полного эллипса поляризации магнитного поля и устройство для его осуществления

Изобретения относятся к измерениям полуосей полного эллипса поляризации магнитного поля и могут быть использованы в геофизических исследованиях верхней части земной коры, при поиске объектов повышенной проводимости в земле воздушными и наземными методами индукционного частотного зондирования и...
Тип: Изобретение
Номер охранного документа: 0002793393
Дата охранного документа: 03.04.2023
01.06.2023
№223.018.74a1

Способ сейсмического микрорайонирования с использованием коэффициента уязвимости

Изобретение относится к области сейсмических исследований и может быть использовано в инженерной сейсмологии для оценки интенсивности сейсмических колебаний с учетом свойств грунтов, слагающих территории городов и строительных площадок. Для повышения точности определения приращений сейсмической...
Тип: Изобретение
Номер охранного документа: 0002771156
Дата охранного документа: 27.04.2022
Showing 1-10 of 10 items.
20.11.2014
№216.013.078d

Устройство для проведения исследований динамического состояния горных пород в скважине

Изобретение относится к области геофизики и может быть использовано при каротажных работах. Сущность: устройство содержит следующие элементы: датчики (1-3) геоакустических сигналов, первый коммутатор (4), первый усилитель (5), блок фильтров (6), блок выпрямителей (7), второй коммутатор...
Тип: Изобретение
Номер охранного документа: 0002533334
Дата охранного документа: 20.11.2014
20.11.2014
№216.013.0936

Устройство для измерения спектральных характеристик геоакустических шумов в скважине

Устройство для измерения спектральных характеристик геоакустических шумов в скважине, содержащее в скважинном приборе три взаимно ортогональных датчика геоакустических сигналов, коммутатор датчиков, усилитель, микроконтроллер со встроенным высокоскоростным аналого-цифровым преобразователем,...
Тип: Изобретение
Номер охранного документа: 0002533759
Дата охранного документа: 20.11.2014
20.10.2015
№216.013.83f0

Устройство для проведения геоаккустического каротажа в газовых скважинах

Устройство относится к геофизике, в частности геофизическим исследованиям газовых скважин. Устройство содержит в скважинном приборе три взаимоортогональных датчика геоакустических сигналов, усилитель, полосовые фильтры, аналого-цифровой преобразователь, блок управления. Кроме того, в устройство...
Тип: Изобретение
Номер охранного документа: 0002565379
Дата охранного документа: 20.10.2015
10.07.2018
№218.016.6ef9

Способ диагностики железнодорожной насыпи, ее основания и устройство для его осуществления

Группа изобретений относится к способу и устройству поиска с использованием магнитных и электрических полей, изменяемых объектом, с помощью индукционных катушек. Способ диагностики железнодорожной насыпи, ее основания включает этапы, на которых магнитное поле создают разнополярным импульсным...
Тип: Изобретение
Номер охранного документа: 0002660750
Дата охранного документа: 09.07.2018
04.10.2018
№218.016.8f0d

Устройство для измерения в скважине геоакустических сигналов

Изобретение относится к области геофизики и предназначено для измерения трех составляющих вектора вибрации среды, обусловленного движением нефти, газа, воды, трещинообразованием и другими причинами. Устройство также предназначено для определения направления плоскости нахождения источников...
Тип: Изобретение
Номер охранного документа: 0002668654
Дата охранного документа: 02.10.2018
11.03.2019
№219.016.d7fb

Способ обнаружения газонасыщенных пластов в скважинах

Изобретение относится к области геофизики, в частности геофизическим методам исследования скважин, предназначено для обнаружения газонасыщенных пластов и может быть использовано при контроле за разработкой месторождений углеводородов. Способ обнаружения газонасыщенных пластов в скважинах...
Тип: Изобретение
Номер охранного документа: 0002344285
Дата охранного документа: 20.01.2009
11.03.2019
№219.016.d9a6

Способ обнаружения заколонных перетоков жидкости в скважинах

Изобретение относится к геофизическим методам исследования скважин и предназначено для выделения заколонных перетоков жидкости в обсаженных колоннами скважинах. Способ обнаружения заколонных перетоков жидкости в скважинах включает проведение измерений акустических сигналов вдоль оси обсаженной...
Тип: Изобретение
Номер охранного документа: 0002373392
Дата охранного документа: 20.11.2009
18.05.2019
№219.017.5b01

Устройство для проведения геоакустического каротажа

Изобретение относится к области геофизики и предназначено для измерения 3-х составляющих вектора вибрации среды, обусловленного движением нефти, газа, воды и др. причинами. Заявленное устройство содержит три взаимоортогональных датчика геоакустических сигналов, усилитель, коммутаторы,...
Тип: Изобретение
Номер охранного документа: 0002445653
Дата охранного документа: 20.03.2012
09.06.2019
№219.017.7bb5

Способ повышения проницаемости пластов-коллекторов

Изобретение относится к области геофизики, в частности к геофизическим методам повышения нефтеотдачи пласта, и может быть использовано в скважинах, дебит которых со временем их эксплуатации существенно снизился. Обеспечивает повышение нефтеотдачи пластов-коллекторов за счет установки отражателя...
Тип: Изобретение
Номер охранного документа: 0002304211
Дата охранного документа: 10.08.2007
17.06.2020
№220.018.272e

Устройство для измерения естественных электромагнитных сигналов в скважине

Изобретение относится к геофизике и применяется при исследовании скважин с целью определения нарушенных и трещиноватых зон. Сущность: устройство представляет собой приемник электромагнитных сигналов, работающий по принципу прямого усиления, и содержит ферритовую антенну 1, восемь конденсаторов...
Тип: Изобретение
Номер охранного документа: 0002723478
Дата охранного документа: 11.06.2020
+ добавить свой РИД