×
14.06.2018
218.016.61af

Результат интеллектуальной деятельности: Устройство для измерения составляющих векторов аэродинамической силы и момента

Вид РИД

Изобретение

Аннотация: Изобретение относится к области аэромеханических измерений и может быть использовано для измерения компонентов векторов аэродинамической силы и момента, действующих на модели воздушных винтов самолетов, несущих винтов вертолетов и гребных винтов судов, испытываемых в аэродинамических трубах, бассейнах и в гидроканалах. Устройство содержит соединяемую с двигателем ступицу, обод для крепления испытываемого винта, соединенный со ступицей четырьмя пакетами балок с наклеенными тензорезисторами, собранными в измерительные мосты. Причем каждый пакет балок состоит из трех или более балок с пониженной жесткостью центральной части. При этом балки имеют непризматическую форму и понижение жесткости центральной части обеспечено за счет заужения центральной части. Пониженная жесткость центральной части обеспечена за счет отверстий и вырезов различных размеров и форм. Технический результат заключается в повышении точности измерения нагрузок на вращающиеся воздушные винты. 2 з.п. ф-лы, 7 ил.

Изобретение относится к области аэромеханических и гидромеханических измерений, в частности, для измерения компонентов векторов аэрогидродинамической силы и момента, действующих на модели воздушных винтов самолетов, несущих винтов вертолетов, и гребных винтов судов, испытываемых в аэродинамических трубах, бассейнах и в гидроканалах.

Область применения - авиация, вертолетостроение и судостроение.

Зависимости составляющих векторов аэродинамической силы и момента от скорости потока, углового положения винта, скорости вращения и других режимов испытаний являются основными аэродинамическими характеристиками винта.

Количественное определение аэродинамических характеристик составляет цель испытаний моделей винтов в аэродинамических трубах.

Известное устройство - винтовой прибор ВП-107, в который встроены аэродинамические тензовесы (см. Остроухов С.П. «Аэродинамика воздушных винтов и винтокольцевых движителей». - М.: ФИЗМАТЛИТ, 2014. - 328 с. - ISBN 978-5-9221-1531-5, стр. 61-62). Данный прибор предназначен для исследования воздушных винтов как соосной, так и одиночной схемы. Для исследования винтов соосной схемы передняя и задняя часть винтового прибора ВП-107 устанавливаются друг напротив друга с зазором между втулками переднего и заднего венца воздушных винтов.

Винтовой прибор ВП-107 позволяет измерять силу тяги и крутящий момент на валу винта.

Основными недостатками винтового прибора ВП-107 является:

- влияние корпуса самого винтового прибора ВП-107 на измерение силы тяги и крутящего момента винта и необходимость ввода поправочных коэффициентов;

- всего два измеряемых компонента: тяга и крутящий момент;

- в силу конструктивных особенностей недостаточная точность измерения тяги переднего и заднего винтов соосной схемы.

Наиболее близким техническим решением, принятым за прототип, является устройство для измерения векторов аэродинамической силы и момента (см. материалы четвертого международного симпозиума по тензометрическим весам в Сан Диего, Калифорния, США Iwan Philipsen, Harrie Hoeijmakers "Dynamic Check and Temperature Correction for Six-Component Rotating Shaft Balances" приложение 2).

Устройство состоит из обода и ступицы, соединенных между собой четырьмя пакетами непризматических балок, содержащих по две балки в каждом пакете.

Для более полного представления об устройстве прототипа в приложении 1 показана фотография общего вида устройства, заимствованная из указанного выше источника.

Известное устройство с пакетами из двух балок каждый и нерегламентируемым расположением тензорезисторов на балках не обеспечивает требуемой точности измерения составляющих Y, Z и не исключает влияния компонент Му, Mz на X и X на Му, Mz, что снижает точность измерения указанных составляющих.

Техническим результатом предлагаемого изобретения является повышение точности измерения аэрогидродинамических нагрузок на винты самолетов, вертолетов, беспилотных летательных аппаратов, морских судов, энергетических установок.

Технический результат достигается тем, что в устройстве для измерения составляющих векторов аэродинамической силы и момента, действующих на вращающийся винт, содержащем соединяемую с двигателем ступицу, обод для крепления испытываемого винта, соединенный со ступицей четырьмя пакетами балок с наклеенными тензорезисторами, собранными в измерительные мосты, каждый пакет балок состоит из трех или более балок с пониженной жесткостью центральной части. При этом балки имеют непризматическую форму, и понижение жесткости центральной части обеспечено за счет заужения центральной части. Пониженная жесткость центральной части обеспечена за счет отверстий и вырезов различных размеров и форм.

Для более подробного пояснения предполагаемого устройства рассмотрим конструкцию, принцип действия и уравнения измерения, связывающие составляющие векторов аэродинамической силы и момента с выходными сигналами.

На фиг. 1 приведена конструкция устройства

На фиг. 2 показана 3D конструкция устройства

На фиг. 3 показан пакет балок

На фиг. 4 приведен график зависимости напряжений на вертикальных гранях балок от радиуса сопрягающей окружности

На фиг. 5 приведена кривая распределения напряжения σх(у)

На фиг. 6 приведена зависимость сигнального напряжения σn(у) от длины балки

На фиг. 7 приведены эпюры моментов Mn(у) и Ms(у).

Устройство фиг. 1 представляет собой моноблочную конструкцию, состоящую из обода 1, ступицы 2 и четырех пакетов балок 3, ориентированных вдоль прямоугольных осей OYZ. Ступица 2 выполняет роль адаптера, соединяющего устройство для измерения составляющих вектора аэродинамической силы и момента с валом двигателя при помощи шлицевого соединения 4, а обод является адаптером, соединяющим весы с втулкой через отверстие 5.

Пакет балок 3 представляет собой систему, состоящую из трех балок - двух крайних 6 и одной средней 7. Балки (фиг. 2) имеют одинаковую непризматическую (трапециедальную) форму в плане. Понижение жесткости центральной части балки обеспечено за счет заужения центральной части. Вертикальные грани балок - подкосы сопрягаются окружностями радиуса r. Длина балок , высота крайних балок 6 - b1, а средней балки 7 - b; расстояние между осями крайних балок 10.

На фиг. 3 приведена 3D конструкция устройства, у которого для большей наглядности вырезана одна четверть.

На вертикальных гранях средних балок 7 в сечениях наклеены тензорезисторы R1…R8 (фиг. 1) для измерения сил Y, Z. Размещение тензорезисторов на цилиндрических поверхностях (радиуса r) вертикальных граней позволяет повысить чувствительность устройства к сигналам Y, Z и, как следствие, увеличить точность измерения одноименных сил.

Механизм повышения чувствительности заключается в использовании явления концентрации напряжений в областях сопряжения подкосов балок.

На фиг. 4 приведен расчетный график зависимости напряжений на вертикальных гранях от безразмерного радиуса сопрягающей окружности.

Малые радиусы дают большую концентрацию напряжения и, следовательно, большую чувствительность, однако с уменьшением радиуса возникают сложности с наклейкой тензорезисторов на криволинейной поверхности.

Для принятых нами размеров балок разумный компромисс достигается при r=1,16⋅h1, обеспечивающий увеличение чувствительности в 1,3 раза.

Легко видеть, что составляющие Му, Mz и X не оказывают влияние на измерение сил Y, Z, т.к. тензорезисторы R1…R8 расположены симметрично относительно нейтральной оси средней балки 7, а сама балка 7 защищена от действия моментов двумя крайними балками 6.

Важным вопросом является достижение независимости измерения моментов Му, Mz от силы X и, наоборот, силы X от моментов Му, Mz. Сила X формирует эпюры моментов, действующих на балки:

где Х1 - сила X, приходящаяся на одну крайнюю балку 6.

Тензорезисторы R9…R16 (фиг. 1) размещаются в сечении , в котором эпюра моментов проходит через ноль , а сигнальное напряжение σn(у) от компонент Y, Mz достигает максимума (фиг. 6).

Таким путем обеспечивается независимость измерения компонент Му, Mz от силы X.

Заметим, что тензорезисторы с нечетными номерами (фиг. 1) расположены на верхних балках пакета балок 3, а с четными номерами, заключенными в скобки, на нижних балках.

Независимость измерения силы X от моментов Му, Mz достигается следующим образом: эпюры моментов Mn(у) и Ms(у), справедливые для двухбалочного пакета (приложение 1), отличаются от аналогичных графиков для трехбалочного пакета лишь масштабом. По этой причине последние могут быть использованы для восстановления качественной картины распределения деформаций в крайних балках 6 (фиг 7).

Из графиков следует, что деформации правой части балки от моментов Mn(у) и Ms(у) имеют различные знаки. Следовательно, существует сечение в указанном интервале изменения координаты у, в котором деформация обращается в ноль.

Если совместить поперечные оси решеток тензорезисторов компонента X с указанным сечением, то влияние Му и Mz на X исчезнет.

Обозначим через у0 координату такого сечения.

Условие равенства нулю напряжения в сечении у=у0

или с учетом (2)

откуда:

Входящие в выражение (10) коэффициенты жесткости и моменты сопротивления Wn0) и Ws0) трехбалочной схемы определяются по аналогии с введенными ранее одноименными параметрами двухбалочной схемы.

Заметим, что входящее в выражение (10) отношение моментов сопротивления не зависит от координаты у0.

На фиг. 1 показаны тензорезисторы R12…R24, расположенные на расстоянии у0 от корневых сечений, примыкающих к втулке 2, служащие для измерения составляющей X.

Для измерения составляющей Мх (крутящий момент) служат тензорезисторы R25…R32 расположенные на расстоянии от корневого сечения, примыкающего к ступице.

Максимум функции достигается в сечении , однако данное сечение находится на радиусе скругления между корнем балки и ступицей 2. Ввиду технологических особенностей наклеить в этом сечении резисторы не представляется возможным. Если не рассматривать сечение , то через максимум кривая напряжения проходит в сечении , а затем с ростом у круто падает. Следовательно, именно в сечении целесообразно наклеить тензорезисторы R25…R32.

Таким образом, обеспечивается максимальная чувствительность к измеряемому моменту Мх. Важно отметить, что смешение тензорезисторов вправо к центру балки ведет к резкой потере чувствительности. Расчеты показывают, что такое поведение кривой объясняется действием двух факторов: падением эпюры пропорционально у и падением момента сопротивления балки пропорционально .

Устройство работает следующим образом. Пакет балок 3 (фиг. 1) измеряет силы реакции по шести компонентам аэродинамической силы и момента. Деформации балок измеряются при помощи тензорезисторов, наклеенных на балки и включенных в тензометрический мост. Благодаря симметричности устройства можно измерять только четыре компонента из шести (X, Мх, Z, Mz), а оставшиеся два компонента (Y, Му) измеряются согласно угловому положению весов. Пакет балок состоит из двух крайних балок 6 и одной центральной 7 (фиг. 1). Крайние балки предназначены для измерения компонентов X, Мх, Mz, а центральная балка предназначена для измерения компонентов Z. Крайние балки 6 уменьшают влияние от компонентов X, Мх, Mz на центральную балку 7, что позволяет повысить точность измерения компонента Z.

Таким образом, предлагаемая конструкция обеспечивает высокую точность измерения по компоненту Z и является нечувствительной к паразитной температурной деформации модели.

Макет устройства изготовлен и находится в стадии испытаний.


Устройство для измерения составляющих векторов аэродинамической силы и момента
Устройство для измерения составляющих векторов аэродинамической силы и момента
Устройство для измерения составляющих векторов аэродинамической силы и момента
Устройство для измерения составляющих векторов аэродинамической силы и момента
Устройство для измерения составляющих векторов аэродинамической силы и момента
Источник поступления информации: Роспатент

Showing 31-40 of 295 items.
20.10.2013
№216.012.75af

Законцовка крыла летательного аппарата

Изобретение относится к авиационной технике. Законцовка крыла летательного аппарата имеет корневой профиль, который выполнен с S-образной средней линией и участком отрицательной вогнутости длиной 20-70% хорды. Изломный и концевой профили законцовки выполнены с положительной вогнутостью....
Тип: Изобретение
Номер охранного документа: 0002495787
Дата охранного документа: 20.10.2013
20.11.2013
№216.012.82ed

Сверхзвуковой плазмохимический стабилизатор горения

Изобретение относится к области авиационной техники. Сверхзвуковой плазмохимический стабилизатор горения для прямоточной камеры сгорания состоит из установленных в проточной части камеры сгорания двух последовательно расположенных по потоку электродов, выполненных в виде обтекаемых пилонов с...
Тип: Изобретение
Номер охранного документа: 0002499193
Дата охранного документа: 20.11.2013
10.12.2013
№216.012.8808

Способ изготовления аэродинамических поверхностей лопаток роторов газотурбинных двигателей на станках с чпу

Изобретение относится к машиностроению и может быть использовано при обработке профиля пера рабочих лопаток газотурбинных двигателей. Способ основан на выборе безопасной частоты вращения шпинделя, обеспечивающей исключение резонанса между частотами колебаний фрезы, воздействующих на...
Тип: Изобретение
Номер охранного документа: 0002500506
Дата охранного документа: 10.12.2013
10.12.2013
№216.012.8812

Способ снижения вибраций нежесткой заготовки, обрабатываемой фрезерованием

Изобретение относится к машиностроению и может быть использовано при обработке нежестких заготовок при фрезеровании. Способ включает прикрепление к вибрирующей нежесткой заготовке динамического виброгасителя, который состоит из набора механических резонаторов с различными значениями собственной...
Тип: Изобретение
Номер охранного документа: 0002500516
Дата охранного документа: 10.12.2013
10.12.2013
№216.012.88d0

Способ диспергирования наночастиц в эпоксидной смоле

Изобретение относится к области нанотехнологии и может применяться в отраслях машиностроения, транспорта, строительства, энергетики для повышения прочности и ресурса конструкций из металлических, композиционных полимерных и металлополимерных материалов. Способ диспергирования заключается в...
Тип: Изобретение
Номер охранного документа: 0002500706
Дата охранного документа: 10.12.2013
10.12.2013
№216.012.89f1

Разборная упругоподобная аэродинамическая модель и способ ее изготовления

Изобретение относится к области экспериментальной аэродинамики, в частности к исследованию проблем аэроупругости летательных аппаратов в области авиационной техники, а именно к разработке моделей для аэродинамических труб. Модель содержит силовой сердечник и крышку, представляющие в сборе...
Тип: Изобретение
Номер охранного документа: 0002500995
Дата охранного документа: 10.12.2013
20.12.2013
№216.012.8e1b

Способ испытания железобетонных шпал и стенд для его реализации

Изобретение относится к области машиностроения и может быть использовано, в частности, при аттестации, сертификации и исследовании продукции заводов, выпускающих шпалы. Сущность: максимальную нормированную нагрузку на шпалу задают отдельно в ее наиболее нагруженных сечениях. Проводят испытания...
Тип: Изобретение
Номер охранного документа: 0002502062
Дата охранного документа: 20.12.2013
27.12.2013
№216.012.9015

Способ изготовления бескремнеземной керамической формы для литья по выплавляемым моделям

Изобретение относится к литейному производству и может быть использовано для литья из жаропрочных сплавов преимущественно на основе никеля, кобальта и ниобия лопаток газотурбинных двигателей и газотурбинных установок. На модельный блок наносят по крайней мере два слоя огнеупорной суспензии,...
Тип: Изобретение
Номер охранного документа: 0002502578
Дата охранного документа: 27.12.2013
27.12.2013
№216.012.904e

Механизированное крыло летательного аппарата

Изобретение относится к авиационной технике. Механизированное крыло летательного аппарата состоит из кессонной части крыла, внутренней и внешней секций однощелевых закрылков, внутренней и внешних секций однощелевых предкрылков, элерона, интерцепторов, воздушных тормозов, мотогондолы с пилоном,...
Тип: Изобретение
Номер охранного документа: 0002502635
Дата охранного документа: 27.12.2013
27.12.2013
№216.012.9052

Способ ослабления волнового отрыва при взаимодействии скачка уплотнения с пограничным слоем

Изобретение относится к летательным аппаратам околозвуковых скоростей. Способ ослабления волнового отрыва при взаимодействии скачка уплотнения с пограничным слоем на обтекаемой поверхности включает отсос части потока через перфорацию в поверхности в полость под ней на участке обтекаемой...
Тип: Изобретение
Номер охранного документа: 0002502639
Дата охранного документа: 27.12.2013
Showing 11-11 of 11 items.
07.06.2020
№220.018.2563

Способ определения погрешности стенда для измерения характеристик геометрии масс изделий и устройство для его осуществления

Изобретение относится к области измерительной техники и может быть использовано для подтверждения метрологических характеристик при поверке, калибровке, испытаниях в целях утверждения типа стендов для измерения характеристик геометрии масс изделий с помощью статической балансировки,...
Тип: Изобретение
Номер охранного документа: 0002722962
Дата охранного документа: 05.06.2020
+ добавить свой РИД