×
11.06.2018
218.016.6117

Результат интеллектуальной деятельности: СПОСОБ ПОПЕРЕЧНОЙ НАКАЧКИ АКТИВНОЙ СРЕДЫ ЛАЗЕРА

Вид РИД

Изобретение

Аннотация: Изобретение относится к лазерной технике и может быть использовано для оптической поперечной накачки активной среды лазерной кюветы. Сущность изобретения: по сравнению с известным способом поперечной накачки активной среды лазера, включающим передачу излучения от диодных источников накачки с помощью оптических волокон плотно упакованных на концевом участке в ряд с расположением всех торцов волокон в одной плоскости, образующей излучающую площадку, к формирующей оптике, создающей область накачки лазера на пересечении пучка накачки и излучения генерации в активной среде лазера, новым является то, что формирующую оптику, состоящую, по меньшей мере, из одной аксиально-симметричной линзы, рассчитывают так, чтобы ее эквивалентное фокусное расстояние удовлетворяло равенству где D - размер области накачки, совпадающий с размером активной среды по оси распространения излучения генерации; θ - полная расходимость излучения на выходе из оптических волокон, причем размер излучающей площадки волокон h по оси распространения излучения генерации выбирают из условия , где n - показатель преломления материала линз формирующей оптики, а размер излучающей площадки волокон d в направлении, перпендикулярном оси распространения излучения генерации увеличивают за счет добавления рядов волокон, причем d≤h, при этом излучающую площадку располагают на расстоянии от передней главной плоскости формирующей оптики с образованием на расстоянии ƒ от задней главной плоскости формирующей оптики области накачки длиной , где располагают активную среду лазера. Техническим результатом настоящего изобретения является повышение выходных энергетических характеристик лазера при осуществлении поперечной накачки за счет создания протяженной области накачки с высокой интенсивностью излучения. 5 з.п. ф-лы, 2 ил.

Изобретение относится к лазерной технике и может быть использовано для оптической поперечной накачки активной среды в лазерной кювете.

Для накачки активных сред лазеров различают два способа ввода излучения накачки - продольный и поперечный. При продольном способе ввода излучение накачки распространяется вдоль одной оси с генерируемым излучением. Такая схема позволяет добиться высокого КПД с хорошей стабилизацией выходных параметров и обеспечить генерацию лазерного излучения с низкой расходимостью. Однако схема продольной накачки конструктивно не позволяет накачать значительный объем активной среды, тем самым ограничивая выходную мощность лазера. Кроме того, повышенную лучевую нагрузку испытывают элементы вблизи активной среды лазера, что может привести к их разрушению.

Схемы с поперечным способом ввода избавлены от недостатков продольного ввода. Вектора направленности излучения накачки и генерации находятся во взаимно ортогональных плоскостях, что позволяет увеличивать мощность генерации путем увеличения габаритных размеров накачиваемой активной среды за счет наращивания мощности накачки. Благодаря эффективному преобразованию электрической энергии в световую для накачки активной среды лазера широко используются диодные источники накачки.

Известен способ поперечной накачки активной среды лазера по патенту US 5774489 «Transversely pumped solid state laser», опубл. 30.06.1998 г., в котором излучение накачки от источников излучения на основе лазерных диодов, установленных вдоль боковой грани активного элемента, передают к цилиндрической линзе, формирующей пучок накачки внутри активной среды лазера, при этом направление пучка накачки ориентировано перпендикулярно оси резонатора лазера.

Недостатками известного способа является низкая интенсивность пучка накачки в активной среде лазера, изменение размера области накачки в активной среде лазера вдоль оси резонатора, из-за чего в активной среде появляются зоны, не занятые излучением накачки; необходимость расположения лазерных диодов с их системами термостабилизации и питания вблизи лазерной кюветы с активной средой из-за большой расходимости и сильной асимметричности излучения лазерных диодов, что увеличивает габариты и усложняет эксплуатацию лазера.

Известен способ поперечной накачки активной среды лазера, описанный в статье D. Golla, М. Bode, S. Knoke, , and «62-W cw TEM00 Nd: YAG laser side-pumped by fiber-coupled diode lasers». Optics Letters, Vol. 21. Issue 3, pp. 210-212 (1996), включающий передачу излучения от диодных источников накачки к активному элементу лазера с помощью оптических волокон, плотно упакованных на концевом участке в один ряд с расположением всех торцов волокон в одной плоскости, образующей излучающую площадку. Используют несколько излучающих площадок, расположенных вокруг цилиндрического активного элемента на равном угловом расстоянии друг от друга.

Недостатками известного способа являются неравномерность формируемого излучения накачки в активной среде лазера и малая протяженность области накачки, из-за отсутствия формирующей оптики, что ограничивает выходную мощность генерации лазера. Кроме того, расположение торцов волокон в непосредственной близости с активным элементом приводит к их разогреву и возможному разрушению.

Совокупность признаков, наиболее близкая к совокупности существенных признаков заявляемого изобретения, присуща известному способу поперечной накачки активной среды лазера по патенту US 4713822 «Laser device» опубл. 15.12.1987 г., включающему передачу излучения от диодных источников накачки с помощью оптических волокон плотно упакованных на концевом участке в ряд с расположением всех торцов волокон в одной плоскости, образующей излучающую площадку, к формирующей оптике, создающей область накачки лазера на пересечении пучка накачки и излучения генерации в активной среде лазера. Излучающую площадку располагают в фокусе формирующей оптики, состоящей из одной цилиндрической линзы.

Недостатками указанного способа, принятого за прототип, является формирование области накачки лишь по одной оси из-за использования цилиндрической линзы, что уменьшает интенсивность пучка накачки в активной среде лазера и не позволяет сохранить постоянным размер формируемой области накачки вдоль распространения излучения генерации, образуя в активной среде лазера зоны с отсутствием излучения накачки, что приводит к снижению выходных энергетических характеристик лазера.

Увеличение мощности накачки путем добавлением новых рядов волокон нарушает коллимацию пучка накачки в активной среде, что приводит к уменьшению длины области накачки и не позволяет повысить выходные энергетические характеристики лазера. Использование только одного типа формы излучающей площадки уменьшает экспериментальные возможности применения данного способа. Необходимость расположения активной среды вблизи формирующей оптики усложняет доступ к элементам лазера и сокращает варианты модернизации центральной части лазера.

Задачей, на решение которой направлено заявляемое изобретение, является формирование области накачки активной среды лазера с сохранением постоянного размера вдоль направления распространения излучения генерации на всем протяжении активной среды с созданием высокой интенсивности излучения.

Техническим результатом настоящего изобретения является повышение выходных энергетических характеристик лазера при осуществлении поперечной накачки за счет создания протяженной области накачки с высокой интенсивностью излучения.

Технический результат достигается тем, что в способе поперечной накачки активной среды лазера, включающем передачу излучения от диодных источников накачки с помощью оптических волокон, плотно упакованных на концевом участке в ряд с расположением всех торцов волокон в одной плоскости, образующей излучающую площадку, к формирующей оптике, создающей область накачки лазера на пересечении пучка накачки и излучения генерации в активной среде лазера, новым является то, что формирующую оптику, состоящую, по меньшей мере, из одной аксиально-симметричной линзы, рассчитывают так, чтобы ее эквивалентное фокусное расстояние удовлетворяло равенству, где

D - размер области накачки, совпадающий с размером активной среды по оси распространения излучения генерации;

θ - полная расходимость излучения на выходе из оптических волокон;

причем размер излучающей площадки волокон h по оси распространения излучения генерации выбирают из условия , где

n - показатель преломления материала линз формирующей оптики,

а размер излучающей площадки волокон d в направлении, перпендикулярном оси распространения излучения генерации, увеличивают за счет добавления рядов волокон, причем d≤h, при этом излучающую площадку располагают на расстоянии от передней главной плоскости формирующей оптики с образованием на расстоянии fэкв от задней главной плоскости формирующей оптики области накачки длиной , где располагают активную среду лазера.

Кроме того, при использовании двух линз в формирующей оптике поверхности линз с наименьшими радиусами кривизны располагают на минимально возможном расстоянии друг от друга или с контактом.

Аксиально-симметричная оптика формирует пучок накачки по двум осям, что позволяет создать высокую интенсивность накачки внутри активной среды, что приводит к эффективному преобразованию излучения накачки в излучение генерации и тем самым к повышению выходных энергетических характеристик лазера.

При размере активной среды лазера по оси распространения излучения накачки l≤lmax дальнюю границу активной среды располагают на расстоянии lmax от задней фокальной плоскости линзовой системы, симметрично относительно оси накачки.

Увеличение размера излучающей площадки в направлении, перпендикулярном оси распространения излучения генерации, путем добавления торцов волокон позволяет увеличить суммарную вводимую мощность накачки в активную среду лазера, что увеличивает выходную мощность генерации. При этом при использовании излучающей площадки различной формы ее максимальный размер должен быть равен h.

Расположение излучающей площадки на расстоянии от передней главной плоскости рассчитанной формирующей оптики с эквивалентным фокусным расстоянием , позволяет осуществлять контроль ее состояния и дает возможность воплощать конструктивные решения для защиты торцов волокон от внешних факторов и их облучения отраженным излучением при высоких мощностях накачки. При этом обеспечивается накачка значительного объема активной среды с отсутствием в ней по оси генерации зон, не занятых излучением накачки за счет сохранения постоянным размера D по оси генерации на всем протяжении , что увеличивает выходные энергетические характеристики лазера и КПД установки в целом.

При использовании двух линз в формирующей оптике поверхности линз с наименьшими радиусами кривизны располагают на минимальном расстоянии друг от друга. Это уменьшает сферическую аберрацию формирующей оптики и увеличивает задний фокальный отрезок данной линзовой системы. Уменьшение сферической аберрации формирующей оптики делает границы области накачки более резкими, что позволяет наиболее точно согласовать объем активной среды с объемом области накачки для эффективного преобразования излучения накачки в излучение генерации. Увеличение заднего фокального отрезка данной линзовой системы отдаляет активную среду от последней поверхности линзы, что дает возможность производить модернизацию центральной части лазерной кюветы, направленную на повышение выходных характеристик лазера.

В частном случае, при размере активной среды лазера по оси распространения излучения накачки l=lmax, ближнюю и дальнюю границу активной среды располагают на расстоянии от задней главной плоскости линзовой системы, равном fэкв и fэкв+lmax соответственно, симметрично относительно оси накачки.

При размере активной среды лазера по оси распространения излучения накачки l<lmax дальнюю границу активной среды эффективнее располагать на расстоянии от задней главной плоскости линзовой системы. В таком случае достигается наиболее постоянный уровень интенсивности излучения накачки вдоль оси генерации, приводящий к более быстрому развитию генерации и равномерному коэффициенту усиления в активной среде лазера, что увеличивает выходные энергетические характеристики устройства и однородность излучения генерации во время работы лазера.

В другом частном случае, с целью улучшения выходных характеристик лазера выбирают сочетания линз с различной кривизной при сохранении .

Способ поперечной накачки активной среды лазера поясняется рисунками.

На фиг. 1 показаны диодные источники (1), излучение от которых с помощью оптических волокон (2) с расходимостью излучения на выходе передается к предварительно рассчитанной и выбранной формирующей оптике (4), состоящей из одной аксиально-симметричной линзы, создающей область накачки (5) лазера. Волокна плотно упакованы на концевом участке с расположением всех торцов волокон в одной плоскости, образующей излучающую площадку (3) размером h×d, которая установлена на расстоянии L от передней главной плоскости Н формирующей оптики. Показан ход лучей из торцов крайних волокон, поясняющий формирование области накачки (5) с поперечным размером D и протяженностью lmax. На фиг. 2 формирующая оптика (4) состоит из двух аксиально-симметричных линз.

С целью подтверждения осуществимости заявленного способа и достигнутого технического результата был изготовлен и испытан лабораторный макет газового лазера, в котором излучение от диодных модулей передавалось посредством кварцевых оптических волокон с диаметром сердцевины 400 мкм, легированной оболочкой 440 мкм, защитной медной оболочкой 520 мкм и расходимостью на выходе из волокна θ=0,4 рад. Данный способ реализовывал поперечную накачку газовой активной среды лазера с размером активной среды вдоль оси распространения излучения генерации D=16 мм и размером - вдоль оси накачки. Формирующая оптика состояла из двух одинаковых кварцевых плоско-выпуклых линз, состыкованных выпуклыми поверхностями друг с другом, эффективное фокусное расстояние которых было рассчитано по формуле и составило . Посредством компоновки торцов волокон собрана прямоугольная излучающая площадка размером h=10.5 мм и d=5.5 мм, установленная на расчетном расстоянии L=66.2 мм. При этом сформирована область накачки, сохраняющая размер D=16 мм, совпадающий с размером активной среды, вдоль которого распространяется излучение генерации, на всем протяжении lmax=60 мм, в пределах которого была расположена активная среда лазера. Максимальная интенсивность, создаваемая в области накачки, более чем в 2 раза превышает интенсивность накачки на выходе из излучающей площадки.

Пространство между последней линзой и активной средой лазера позволило установить конструкцию уплотнения окон лазерной кюветы, предотвращающую разгерметизацию при давлении внутри лазерной кюветы от 10-6 атм до 10 атм.

Увеличение размера излучающей площадки до 10.5×10.5 увеличило выходную мощность лазера в 8 раз, КПД в 4 раза. Проведенные испытания показали осуществимость заявленного способа.


СПОСОБ ПОПЕРЕЧНОЙ НАКАЧКИ АКТИВНОЙ СРЕДЫ ЛАЗЕРА
СПОСОБ ПОПЕРЕЧНОЙ НАКАЧКИ АКТИВНОЙ СРЕДЫ ЛАЗЕРА
СПОСОБ ПОПЕРЕЧНОЙ НАКАЧКИ АКТИВНОЙ СРЕДЫ ЛАЗЕРА
СПОСОБ ПОПЕРЕЧНОЙ НАКАЧКИ АКТИВНОЙ СРЕДЫ ЛАЗЕРА
СПОСОБ ПОПЕРЕЧНОЙ НАКАЧКИ АКТИВНОЙ СРЕДЫ ЛАЗЕРА
СПОСОБ ПОПЕРЕЧНОЙ НАКАЧКИ АКТИВНОЙ СРЕДЫ ЛАЗЕРА
СПОСОБ ПОПЕРЕЧНОЙ НАКАЧКИ АКТИВНОЙ СРЕДЫ ЛАЗЕРА
СПОСОБ ПОПЕРЕЧНОЙ НАКАЧКИ АКТИВНОЙ СРЕДЫ ЛАЗЕРА
СПОСОБ ПОПЕРЕЧНОЙ НАКАЧКИ АКТИВНОЙ СРЕДЫ ЛАЗЕРА
СПОСОБ ПОПЕРЕЧНОЙ НАКАЧКИ АКТИВНОЙ СРЕДЫ ЛАЗЕРА
СПОСОБ ПОПЕРЕЧНОЙ НАКАЧКИ АКТИВНОЙ СРЕДЫ ЛАЗЕРА
Источник поступления информации: Роспатент

Showing 91-100 of 796 items.
13.01.2017
№217.015.69bf

Способ приведения в действие инициатора газодинамического импульсного устройства

Изобретение относится к области вооружений и может быть использовано в неконтактных взрывателях боеприпасов. Способ приведения в действие инициатора газодинамического импульсного устройства включает обнаружение объекта. Обнаружение осуществляется с помощью датчика, реагирующего на сближение с...
Тип: Изобретение
Номер охранного документа: 0002591293
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.6ba3

Способ создания сквозных микроканалов с диаметрами микронных и субмикронных размеров в кристалле кремния с помощью лазерных импульсов

Использование: для создания сквозных микро- и субмикронных каналов в кристалле кремния. Сущность изобретения заключается в том, что способ создания сквозных микроканалов с диаметрами микронных и субмикронных размеров в кристалле кремния с помощью лазерных импульсов заключается в прошивке...
Тип: Изобретение
Номер охранного документа: 0002592732
Дата охранного документа: 27.07.2016
13.01.2017
№217.015.6cee

Способ определения наличия подрыва заряда взрывчатого вещества, содержащегося в объекте испытания, и задержки его подрыва от момента контакта объекта испытания с преградой и устройство для его осуществления

Изобретения относятся к области испытательной и измерительной техники. Способ включает регистрацию оптического излучения в спектре чувствительности фотодиода, сопровождающего инициирование заряда взрывчатого вещества (ВВ), находящегося в объекте испытания (ОИ). Регистрацию оптического...
Тип: Изобретение
Номер охранного документа: 0002597034
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.6d77

Способ регистрации радиографических изображений, сформированных с помощью ионизирующего излучения

Изобретение используется для регистрации радиографических изображений, сформированных с помощью ионизирующего излучения, относится к области радиографии, в частности к способам регистрации оптических изображений, сформированных с помощью протонного излучения, и может быть использовано,...
Тип: Изобретение
Номер охранного документа: 0002597026
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.6e2d

Устройство юстировки оправы оптического элемента

Изобретение относится к области лазерной техники и касается устройства юстировки оправы оптического элемента. Устройство содержит закрепленный на кронштейне корпус, в отверстии которого установлен оптический элемент, фиксирующие элементы, фиксатор юстировки и пружину. В корпусе выполнены...
Тип: Изобретение
Номер охранного документа: 0002596906
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.6e76

Устройство формирования объемного разряда

Использование: для формирования объемного самостоятельного разряда в электроразрядных импульсно-периодических газовых лазерах. Сущность изобретения заключается в том, что устройство формирования объемного разряда включает разрядную камеру с рабочим газом, по меньшей мере, с одной электродной...
Тип: Изобретение
Номер охранного документа: 0002596908
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.7068

Поглотитель водорода

Изобретение относится к области химии. Поглотитель водорода размещают в замкнутом объеме с очищаемой кислородсодержащей или кислородобедненной газовой средой. Обеспечивают окисление содержащегося в смеси водорода на палладиевом катализаторе 4. Образующиеся пары воды проникают через мембрану 5...
Тип: Изобретение
Номер охранного документа: 0002596258
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.71aa

Способ доставки взрывозащитной камеры к месту проведения опыта и транспортно-юстировочный комплекс для его осуществления

Изобретение относится к транспорту и предназначено для перемещения и позиционирования крупногабаритных объектов, в частности взрывозащитных камер (ВЗК). Способ доставки ВЗК к месту проведения опыта включает размещение и закрепление последней на транспортном устройстве (1) и перемещение...
Тип: Изобретение
Номер охранного документа: 0002596858
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.71c9

Способ испытаний боеприпасов

Изобретение относится к испытательной технике и может быть использовано при проектировании и отработке новых образцов боеприпасов. Способ включает механическое и/или климатическое воздействие на боеприпас и осуществление последующей оценки его состояния по совокупности состояния всех составных...
Тип: Изобретение
Номер охранного документа: 0002596552
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.73f5

Способ измерения интегральной излучательной способности с помощью прямого лазерного нагрева (варианты)

Изобретение относится к измерительной технике. Способ измерения интегральной излучательной способности заключается в закреплении эталонного образца в виде абсолютно черного тела (АЧТ) и в отдельной вакуумной камере исследуемого образца твердого тела, нагревании эталонного образца указанного...
Тип: Изобретение
Номер охранного документа: 0002597937
Дата охранного документа: 20.09.2016
Showing 11-14 of 14 items.
18.05.2019
№219.017.5986

Пространственно-временной модулятор света

Изобретение относится к квантовой электронике. В модуляторе света, содержащем установленную в корпусе базу из твердофазного электрооптического материала с оптически обработанной поверхностью в плоскости, перпендикулярной падающему световому излучению, база представляет собой расположенные в...
Тип: Изобретение
Номер охранного документа: 0002429512
Дата охранного документа: 20.09.2011
23.02.2020
№220.018.05ba

Способ поперечной накачки рабочей среды лазера

Изобретение относится к лазерной технике. В способе поперечной накачки рабочей среды лазера, включающем передачу излучения от диодных источников накачки в рабочую среду лазера с помощью оптических волокон, плотно упакованных на концевом участке с образованием излучающей площадки размером d×h,...
Тип: Изобретение
Номер охранного документа: 0002714781
Дата охранного документа: 19.02.2020
07.06.2020
№220.018.24c7

Система для циркуляции рабочей среды газового лазера

Изобретение относится к лазерной технике. Система для циркуляции рабочей среды газового лазера содержит лазерную камеру и два газовых контура с нагнетателями, проходящих через внутренний объем камеры с образованием каналов так, что внутри камеры первый канал отделен от второго канала стенками с...
Тип: Изобретение
Номер охранного документа: 0002722864
Дата охранного документа: 04.06.2020
17.06.2023
№223.018.819c

Устройство для выравнивания профиля скоростей потока жидкости или газа

Изобретение относится к энергетическому и химическому машиностроению и может быть использовано в теплообменном, массообменном оборудовании атомных и тепловых электростанций, химических производств. В устройстве для выравнивания профиля скоростей потока жидкости или газа, состоящем из участка...
Тип: Изобретение
Номер охранного документа: 0002756397
Дата охранного документа: 30.09.2021
+ добавить свой РИД