×
09.06.2018
218.016.5f42

Результат интеллектуальной деятельности: Коррозионноустойчивая шахтная мультиблочная установка для очистки и утилизации дымовых газов

Вид РИД

Изобретение

Аннотация: Изобретение относится к теплоэнергетике и может быть использовано в процессах очистки дымовых газов от вредных примесей. Коррозионноустойчивая шахтная мультиблочная установка для очистки и утилизации дымовых газов содержит транзитный газоход, вертикальную шахту – камеру очистки, внизу соединенную с поддоном и наклонным газоходом с вертикальной шахтой – камерой доочистки. Камера очистки разделена вертикальными перегородками на блоки очистки и утилизации. Каждый из блоки очистки состоит из воздухоподогревателя–абсорбера, в котором расположены сверху–вниз три ступени охлаждения дымовых газов. Воздухоподогреватели–абсорберы выполнены в виде стеклоблочных теплообменников, выполненных из термостойкого малощелочного стекла армированного металлической сеткой. Между теплообменниками устроены окислительная камера с распределителем озоновоздушной смеси и камера усреднения. Теплообменник третьей ступени снабжен осевым вентилятором. Вертикальная шахта снизу соединена с поддоном, соединенным с наклонным газоходом с вертикальной шахтой – камерой доочистки. Внутри камеры доочистки расположены секции доочистки, содержащие по несколько рядов трапецеидальных с перфорированными стенками контейнеров. Контейнеры поставлены на опорные уголки в шахматном порядке по высоте и образуют между собой зигзагообразные газовые каналы. При этом контейнеры заполнены гранулами пемзы, изготовленной из металлургических шлаков с модулем основности М>1 и диаметром гранул от 5 до 10 мм. Внутри камеры доочистки над каждой секцией установлены распределители промывочной воды, соединенные с коллектором промывочной воды. Изобретение обеспечивает повышение надежности, экологической и экономической эффективности коррозионноустойчивой шахтной мультиблочной установки.1 н.п. ф-лы, 7 ил.

Изобретение относится к теплоэнергетике и может быть использовано в процессах очистки дымовых газов от вредных примесей и утилизации их тепла.

Известна мультиблочная установка для одновременной очистки и утилизации дымовых газов, которая содержит зону обработки, размещенную в газоходе и состоящую из нескольких параллельных газоходов с входными и выходными шиберами (клапанами), соединенными с блоками очистки и утилизации, каждый из которых состоит из воздухоподогревателя–абсорбера с поддоном и экономайзера, выполненных в виде трубчатых теплообменников, трубы которых снабжены с наружной стороны ребрами, причем воздухоподогреватель–абсорбер состоит из абсорбционно–конденсационной секции, снабженной патрубком подачи озоновоздушной смеси с перфорированным насадком и сепарационно–конденсационной секции, снабженной осевым вентилятором, а поддон воздухоподогревателя–абсорбера соединен посредством трубопровода с анионитовым фильтром (узлом утилизации конденсата) [Патент РФ № 2373989, МПК В01 D53/60, 2009].

Основными недостатками известного устройства являются использование в составе установки дополнительного экономайзера, применение которого влечет за собой изменение режима работы основного оборудования теплогенератора (в частности, режима работы основного экономайзера), компоновка основных узлов, при которой происходит соприкосновение поверхности кислого конденсата с горячими дымовыми газами на входе в воздухоподогреватель-абсорбер, вызывающее его повторное испарение и влекущее за собой повышенный расход охлаждающего воздуха, размещение патрубка подачи озоновоздушной смеси в поддоне непосредственно над поверхностью кислого конденсата, что влечет за собой опасность проскока озона в очищенные дымовые газы через гидрозатвор, неравномерное распределение озоновоздушной смеси в объеме дымовых газов, повышенный унос капель конденсата в транзитный газоход, размещение трубчатых теплообменников каждого блока очистки и утилизации в разных газоходах, вызывающее при движении дымовых газов вверх образование отложений на внутренней поверхности теплообменных труб, необходимость сооружения отводных и параллельного газоходов, что требует дополнительных производственных площадей, повышает экономические затраты на строительство и монтаж известного устройства, снижая, в конечном счете, экологическую и экономическую эффективность его работы.

Более близким по технической сущности к предлагаемому изобретению является мультиблочная шахтная мультиблочная установка для очистки и утилизации газообразных выбросов теплогенераторов, содержащая транзитный газоход с отсечным клапаном, соединенную с ним через окно в его днище зону обработки, представляющую собой вертикальную шахту, разделенную вертикальными перегородками на параллельные газоходы с входными и выходными клапанами, в которых устроены блоки очистки и утилизации, каждый из которых состоит из воздухоподогревателя–абсорбера, в котором размещены сверху–вниз три ступени охлаждения дымовых газов, причем между первой и второй ступенями охлаждения устроена окислительная камера, с помещенной в ней трубой подачи озоновоздушной смеси, снабженной насадком (распределителем), снаружи закрыта съемной крышкой между второй и третьей ступенями охлаждения помещена камера усреднения, первая и вторая ступени охлаждения соединены между собой по воздуху переточной камерой, третья ступень снабжена осевым вентилятором, все три ступени охлаждения дымовых газов выполнены в виде вертикальных трубчатых теплообменников с оребренными с наружной стороны трубами, шахта снизу соединена с поддоном, состоящим из газового коллектора и конического днища с конденсатным патрубком, соединенного с сепарационной камерой, состоящей из наклонного газохода, угол наклона днища α которого больше или равен углу естественного откоса воды, соединенного с вертикальным газоходом, вверху которого устроена сепарационная решетка, соединенного, в свою очередь, с магистральным газоходом [Патент РФ № 2448761, МПК В01 D53/60, 2012].

Основными недостатками известного устройства являются низкая коррозионная устойчивость кожухотрубчатых теплообменников всех трех ступеней охлаждения (выполняемых, как правило, из стали), работающих при температуре ниже точки росы дымовых газов в присутствии сильнейших окислителей (озона и азотной кислоты), создающих чрезвычайно агрессивную среду, а также значительный расход электроэнергии на работу озонатора для выработки количества озона, достаточного для требуемой степени окисления монооксида азота до диоксида, опасность проскока озона из зоны обработки в транзитный газоход, что снижает надежность, экологическую и экономическую эффективность устройства.

Техническим результатом, на решение которого направлено предлагаемое изобретение является повышение надежности, экологической и экономической эффективности коррозионноустойчивой шахтной мультиблочной установки.

Технический результат достигается тем, что предлагаемая коррозионноустойчивая шахтная мультиблочная установка для очистки и утилизации дымовых газов содержит транзитный газоход с отсечным клапаном, соединенную с ним через окно в его днище камеру очистки, представляющую собой вертикальную шахту, разделенную вертикальными перегородками на параллельные газоходы с входными и выходными клапанами, в которых устроены блоки очистки и утилизации, каждый из которых состоит из воздухоподогревателя–абсорбера, в котором расположены сверху–вниз три ступени охлаждения дымовых газов, выполненные в виде стеклоблочных теплообменников, между первой и второй ступенями охлаждения устроена окислительная камера, с помещенной в ней трубой подачи озоновоздушной смеси, снабженной распределителем, между второй и третьей ступенями охлаждения расположена камера усреднения, теплообменники первой и второй ступени соединены с прямым и обратным воздуховодами дутьевого воздуха, а между собой по воздуху переточной камерой, теплообменник третьей ступени снабжен осевым вентилятором, вертикальная шахта снизу соединена с поддоном, состоящим из газового коллектора и конического днища, снабженного конденсатным патрубком и соединенного наклонным газоходом, угол наклона днища α которого больше или равен углу естественного откоса воды, с вертикальной шахтой, образующей камеру доочистки, соединенную сверху с магистральным газоходом, внутри которой расположены секции доочистки, причем каждый из стеклоблочных теплообменников состоит из стеклоблоков, выполненных из термостойкого малощелочного стекла армированного металлической сеткой, имеет воздушные каналы с шероховатой поверхностью и газовые каналы с гладкой поверхностью, размещенные перпендикулярно относительно друг друга, вышеупомянутые стеклоблоки уложены многорядной системой перевязки по длине и ширине теплообменника, с упругими прокладками между ними и наружной прокладкой, с образованием зазоров между ними по длине, образующих также газовые каналы, а каждая секция камеры доочистки содержит несколько рядов трапецеидальных с перфорированными стенками контейнеров, поставленных на опорные уголки в шахматном порядке по ее высоте, образующих между собой зигзагообразные газовые каналы и закрыта с наружной боковой стороны съемной крышкой, при этом вышеупомянутые контейнеры заполнены гранулами пемзы, изготовленной из металлургических шлаков с модулем основности М>1 и диаметром гранул от 5 до 10 мм, внутри камеры доочистки над каждой секцией установлены распределители промывочной воды, представляющие собой перфорированные снизу трубы, соединенные с коллектором промывочной воды.

Предлагаемая коррозионноустойчивая шахтная мультиблочная установка для очистки и утилизации дымовых газов (КУШМБ) изображена на фиг.1–7 (фиг. 1–общий вид КУШМБ; фиг. 2, 3 – разрезы КУШМБ; фиг. 4 – теплообменник ступеней охлаждения; фиг. 5–7 – общий вид, разрез и узел секции камеры доочистки).

Коррозионноустойчивая шахтная мультиблочная установка для очистки и утилизации дымовых газов содержит транзитный газоход 1 с отсечным клапаном 2, соединенную с ним через окно 3 в его днище камеру очистки, представляющую собой вертикальную шахту 4, разделенную вертикальными перегородками 5 на параллельные газоходы 6 с входными и выходными клапанами 7 и 8, в которых устроены блоки очистки и утилизации, каждый из которых состоит из воздухоподогревателя–абсорбера 9, в которой расположены сверху–вниз три ступени охлаждения дымовых газов, выполненные в виде стеклоблочных теплообменников 10, 11, 12, между первой и второй ступенями охлаждения устроена окислительная камера 13, с помещенной в ней трубой подачи озоновоздушной смеси 14, снабженной распределителем15, между второй и третьей ступенями охлаждения расположена камера усреднения 16, первая и вторая ступени (теплообменники 10 и 11) соединены с прямым и обратным воздуховодами дутьевого воздуха (на фиг. 1–7 не показаны), а между собой по воздуху переточной камерой 17, третья ступень (теплообменник 12) снабжена осевым вентилятором 18, шахта 4 снизу соединена с поддоном 19, состоящим из газового коллектора 20 и конического днища 21, снабженного конденсатным патрубком 22 и соединенного наклонным газоходом 23, угол наклона днища α которого больше или равен углу естественного откоса воды, с вертикальной шахтой 24, образующей камеру доочистки 25, соединенную, в свою очередь, с магистральным газоходом 1, внутри которой расположены секции доочистки 26, причем каждый из стеклоблочных теплообменников 10,11,12 состоит из стеклоблоков 27с воздушными каналами 28 с шероховатой поверхностью и газовыми каналами 29 с гладкой поверхностью, выполненными из термостойкого малощелочного стекла армированного металлической сеткой, размещенными перпендикулярно относительно друг друга, с упругими прокладками между всеми стеклоблоками и наружной прокладкой (на фиг. 1–7 не показаны), вышеупомянутые стеклоблоки 27 уложены с образованием зазоров между ними по длине, которые образуют газовые каналы 30 с многорядной системой перевязки по длине и ширине теплообменников 10, 11, 12, а каждая секция 26 камеры доочистки 25 содержит несколько рядов трапецеидальных с перфорированными стенками контейнеров 31, поставленных на опорные уголки 32 в шахматном порядке по ее высоте, образующих между собой зигзагообразные газовые каналы 33 и с наружной боковой стороны закрыта съемной крышкой 34, при этом контейнеры 31 заполнены гранулами пемзы 35, изготовленной из металлургических шлаков с модулем основности М>1 и диаметром гранул от 5 до 10 мм, внутри камеры доочистки 25 над каждой секцией 26 установлены распределители промывочной воды 36, представляющие собой перфорированные снизу трубы, соединенные с коллектором промывочной воды 37.

В основе работы предлагаемой КУШМБ лежит использование активного окислителя – озона для предварительного окислении вредных компонентов выхлопных газов – оксидов азота, диоксидов серы и оксидов углерода (NOx, SOx, СОх) до NO2, SO3, СО2, у которых кислые свойства более высокие, чем у оксидов [Ежов В.С. Механизм процессов окисления оксидов азота при синхронной очистке и утилизации газообразных выбросов теплогенерирующих установок. Энергосбережение и водоподготовка. №3, 2008.–С. 48–58]. Для уменьшения расхода озона и, соответственно, уменьшения расхода электроэнергии в предлагаемом устройстве используется процесс адсорбции, в котором в качестве адсорбента для вредных компонентов дымовых газов используется гранулированная шлаковая пемза. Шлаковая пемза, изготовленная из основных металлургических шлаков, представляет собой материал с высокопористой механически прочной структурой (прочность на сдавливание до 2,7 МПа), состоящий из оксида кальция, оксида кремния, оксида алюминия и частично из оксида магния (CaO, SiO2, Al2O3, MnO) c модулем основности М>1 [Строительные материалы. Справочник. Под ред. Болдырева А. С. и др. –М.: Стройизд.,1989, с. 423; Домокеев А. К. Строительные материалы. – М.: Высш. школа, 1989, с. 163]. Высокое значение модуля основности придает гранулам шлаковой пемзы основные свойства, позволяющие сорбировать на их поверхности вещества, обладающие кислыми свойствами, к которым относятся и вредные примеси, которые присутствуют в отработавших газах (NOx, SOx , СО), а высокая пористость их структуры позволяет использовать гранулы шлаковой пемзы в качестве эффективного звукопоглощающего материала [В. Н. Богословский и др. Отопление и вентиляция, Ч. II.–М.; Стройиздат, 1978, с. 391]. Кроме того, исходя из своего состава, гранулы шлаковой пемзы устойчивы к коррозионному воздействию кислых компонентов выхлопных газов, широко доступны и дешевы.

КУШМБ работает следующим образом. Дымовые газы из транзитного газохода 1 направляются в зону обработки путем открытия входных клапанов 7, 8 и закрытия отсечного клапана 2, где поступают в газовые каналы 29, 30 стеклоблочного теплообменника первой ступени охлаждения дымовых газов 10 воздухоподогревателя–абсорбера 9, шероховатую наружную поверхность которого охлаждают дутьевым воздухом, поступающим из переточной камеры 17, где они частично охлаждаются. На выходе из первой ступени 10 частично охлажденные дымовые газы поступают в окислительную камеру 13, смешиваются с озоновоздушной смесью, подаваемой из патрубка 14, снабженным насадком 15, устройство которого обеспечивает полное смешение ее с дымовыми газами, что обеспечивает более полное протекание реакции окисления NO до NO2. Из окислительной камеры 13 дымовые газы поступают в газовые каналы 29,30 стеклоблочного теплообменника второй ступени охлаждения 11, шероховатую наружную поверхность которых охлаждают дутьевым воздухом, подаваемым дутьевым вентилятором (на фиг. 1–7 не показан), где охлаждаются до более низкой температуры (70–80°С) с конденсацией части водяных паров. Из второй ступени охлаждения 11 дымовые газы поступают в камеру усреднения 16, где происходит усреднение концентраций реагирующих компонентов по всему объему, после чего дымовые газы поступают в газовые каналы 29,30 теплообменника третьей ступени охлаждения, шероховатую наружную поверхность труб которых охлаждают наружным воздухом, подаваемым осевым вентилятором 18, где охлаждаются до конечной температуры (40–50°С) с конденсацией большей части водяных паров (дальнейшее охлаждение ограничено величиной температурного напора, обусловленного начальной температурой наружного воздуха). При этом, процессы охлаждения и конденсации протекают со значительной скоростью, обусловленной высокой скоростью движения газа в газовых каналах 29, 30 (15–25 м/с) и шероховатой поверхностью теплообмена со стороны воздуха. Так как температура дымовых газов значительно меньше 100°С и в них присутствуют озон и кислород, то в ступенях охлаждения 11 и 12 воздухоподогревателя–абсорбера 9 происходит быстрая реакция окисления труднорастворимого монооксида азота (NO) в легкорастворимый диоксид азота (NO2), соединяющийся с водой с образованием азотной кислоты (HNO3). Кроме того, в условиях конденсации скорость кислотообразования возрастает по сравнению с обычной абсорбцией окислов азота в 10 раз, а так как в третьей ступени 12 воздухоподогревателя–абсорбера 9 дымовые газы охлаждаются наружным воздухом (имеющим значительно более низкую температуру, чем дутьевой воздух) до температуры (40-50)°С, то скорости реакций окисления оксидов азота и абсорбции их водой дополнительно значительно возрастают, что обеспечивает более полное удаление оксидов азота из дымовых газов [Производство азотной кислоты в агрегатах большой единичной мощности / под. ред. В. М. Олевского – М.: Химия, 1985, с.42–50]. Образуюшийся конденсат стекает по стенкам газовых каналов 29,30 теплообменников ступеней охлаждения 11 и 12 в виде пленки, контактируя с дымовыми газами в прямотоке, что обеспечивает минимальное гидравлическое сопротивление аппарата [А. Г. Касаткин. Основные процессы и аппараты химической технологии – М.: Химия, 1974, с.484], с образованием диоксида азота (NO2), серного ангидрида (SO3), их абсорбцией с образованием азотной и серной кислот (HNO3 и H2SO4), насыщается кислотными компонентами, после чего кислый конденсат (смесь разбавленной азотной и серной кислот), при выходе дымовых газов в газовый коллектор 20 за счет силы тяжести, осаждается в коническом днище 21 поддона 19, откуда через конденсатный патрубок 22 в количестве равном сконденсировавшимся водяным парам в воздухоподогревателе–абсорбере 9 подается на утилизацию кислотных компонентов с получение очищенного конденсата. Частично очищенные дымовые газы из газового коллектора 20 через наклонный газоход 23 поступают в шахту 24 камеры доочистки 25. где последовательно проходят секции доочистки 26. В секциях 26 газы поступают в зигзагообразные газовые каналы 33, где они двигаются также зигзагообразно, что значительно турбулизирует их потоки и позволяет проникать через отверстия в стенках трапецеидальных перфорированных контейнеров 33, заполненных гранулами 36 шлаковой пемзы диаметром от 5 до 10 мм, изготовленной из основных металлургических шлаков. Дымовые газы через отверстия в трапецеидальных перфорированных контейнерах 31 заполняют свободное пространство между гранулами шлаковой пемзы 35, находящиеся в газовой смеси NOx, SOx, СОх контактируют с гранулами 33, адсорбируясь на поверхности их пор, причем NO2, SO3, СО2 адсорбируются значительно быстрее, чем NO, SO2, СО, ввиду указанных выше обстоятельств. Поток выхлопных газов, проходя зигзагообразные газовые каналы 33 и многократно попадая на поверхность гранул 35 и вовнутрь их, очищается от вредных примесей (NOx, SOx, СОх), которые сорбируются на поверхности и внутри гранул 35. Адсорбированные из отработавших газов оксиды азота, диоксиды серы, оксиды углерода в порах гранул 35 обладают повышенной реакционной способностью, обусловленной их взаимодействием с поверхностью адсорбента – гранул 36 шлаковой пемзы [Неницеску К. Общая химия – М.: Мир, 1968, с. 298], поэтому окисляются кислородом (кислород присутствует в отработавших газах в результате избытка воздуха, подаваемого на сжигание топлива) со скоростью большей, чем в газовой фазе с образованием легкорастворимых в воде NO2 и SО3. Так как в дымовых газах присутствуют остатки озона, поступающего с ними из воздухоподогревателя–абсорбера 9, он также интенсифицирует процесс окисления вышеуказанных вредных компонентов и в камере доочистки 25. Адсорбированные NO2, SO3, СО2, в свою очередь, взаимодействуют с частицами воды образующейся в порах гранул 35 в результате капиллярной конденсации паров воды, находящихся в дымовых газах, с образованием соответствующих кислот HNO3, H2SO4 и H2СO3. Кроме того, на поверхности и в порах гранул 36 оседают мелкодисперсные частицы (сажа и пр.). После прохождения самой верхней секции 26 камеры доочистки 25 очищенные до требуемой степени дымовые газы поступают в транзитный газоход 1 и выбрасываются в атмосферу.

При падении активности гранул 35 их подвергают регенерации. Процесс регенерации заключается в очистке поверхности и пор гранул шлаковой пемзы 35 от мелкодисперсных частиц и абсорбированных молекул вредных примесей и осуществляется путем промывки гранул 35 из распределителей 36 водой (например, очищенным конденсатом), подаваемой из коллектора 37, которая по днищу наклонного газохода 23 стекает в поддон 19. Регенерацию загрузки проводят без остановки процесса очистки. Замену адсорбента (гранул 35) на свежий производят путем снятия боковых крышек 34.

При этом, однонаправленное движение сверху–вниз дымовых газов и пленки конденсата в газовых каналах 29,30 теплообменников ступеней охлаждения 10, 11, 12 в воздухоподогревателе–абсорбере 9 предотвращает образование на внутренней поверхности труб 10, 11, 12 отложений (частиц сажи, золы и т. д.), так как они уносятся потоком дымовых газов и конденсата в поддон 19, где осаждаются вместе с кислым конденсатом в днище 21 Кроме того, использование стеклоблочных теплообменников 10,11,12 ввиду их высокой коррозионной устойчивости позволяет существенно увеличить продолжительность их эксплуатации и снизить температуру охлаждения дымовых газов, что обеспечивает более высокую степень их очистки, а применение в камере доочистки 26 адсорбции вредных примесей гранулированным шлаком 36 – уменьшение расхода озона в воздухоподогревателе–абсорбере 9 и, соответственно, значительное снижение расхода электроэнергии на получение озона и проведение обработки дымовых газов.

Размеры воздухоподогревателя–абсорбера 9 КУШМБ и, соответственно стеклоблочных теплообменников 10, 11, 12 , число секций 26 в камере доочистки 25, расход озона, суммарный объем гранул шлаковой пемзы 35, число перфорированных контейнеров 31, их длина, высота и ширина, ширина газовых каналов 33, расход промывочной воды определяются в зависимости от мощности котельной установки, типа топлива и требуемых степени очистки.

В случае отказа какого-либо элемента КУШМБ, для ее очистки или ремонта открывают отсечный клапан 2 магистрального газохода 1, закрывают входной и выходной клапаны 7 и 8 соответствующего блока утилизации и очистки, не нарушая режима работы теплоэнергетического агрегата в целом. В случае изменения тепловой нагрузки ТЭС (котельной) и соответственно изменения расхода дымовых газов изменение нагрузки установки регулируют также включением и отключением отдельных блоков.

Таким образом, использование стеклоблочных теплообменников в блоках очистки и утилизации позволяет существенно увеличить продолжительность их эксплуатации и снизить температуру охлаждения дымовых газов, устройство камеры доочистки для адсорбции оставшихся вредных примесей гранулированным шлаком обеспечивает снижение концентраций вредных примесей, опасность проскока озона и унос капель кислого конденсата в очищенных дымовых газах, уменьшает расход озона в воздухоподогревателе–абсорбере и, соответственно, обеспечивает значительное снижение расхода электроэнергии на получение озона, что, в конечном итоге, увеличивает надежность, экологическую и экономическую эффективность предлагаемой коррозионноустойчивой шахтной мультиблочной установки.

Коррозионноустойчивая шахтная мультиблочная установка для очистки и утилизации дымовых газов, содержащая транзитный газоход с отсечным клапаном, соединенную с ним через окно в его днище камеру очистки, представляющую собой вертикальную шахту, разделенную вертикальными перегородками на параллельные газоходы с входными и выходными клапанами, в которых устроены блоки очистки и утилизации, каждый из которых состоит из воздухоподогревателя–абсорбера, в котором расположены сверху–вниз три ступени охлаждения дымовых газов, выполненные в виде теплообменников, между первой и второй ступенями охлаждения устроена окислительная камера с помещенной в ней трубой подачи озоновоздушной смеси, снабженной распределителем, между второй и третьей ступенями охлаждения расположена камера усреднения, теплообменники первой и второй ступени соединены с прямым и обратным воздуховодами дутьевого воздуха, а между собой по воздуху переточной камерой, теплообменник третьей ступени снабжен осевым вентилятором, вертикальная шахта снизу соединена с поддоном, состоящим из газового коллектора и конического днища, снабженного конденсатным патрубком и наклонным газоходом, угол наклона днища α которого больше или равен углу естественного откоса воды, соединенного со второй вертикальной шахтой, соединенной сверху с магистральным газоходом, отличающаяся тем, что каждый теплообменник – стеклоблочный и состоит из стеклоблоков, выполненных из термостойкого малощелочного стекла, армированного металлической сеткой, имеет воздушные каналы с шероховатой поверхностью и газовые каналы с гладкой поверхностью, размещенные перпендикулярно относительно друг друга, вышеупомянутые стеклоблоки уложены многорядной системой перевязки по длине и ширине теплообменника с упругими прокладками между ними и наружной прокладкой с образованием зазоров между ними по длине, образующих также газовые каналы, во второй вертикальной шахте устроена камера доочистки, в которой расположены секции доочистки, закрытые с наружной боковой стороны съемными крышками, в каждой секции установлены горизонтальные ряды трапецеидальных с перфорированными стенками контейнеров, поставленные на опорные уголки в шахматном порядке по ее высоте, образующие между собой зигзагообразные газовые каналы, при этом вышеупомянутые контейнеры заполнены гранулами пемзы, изготовленной из металлургических шлаков с модулем основности М>1 и диаметром гранул от 5 до 10 мм, а над каждой секцией доочистки установлены распределители промывочной воды, представляющие собой перфорированные снизу трубы, соединенные с коллектором промывочной воды.
Коррозионноустойчивая шахтная мультиблочная установка для очистки и утилизации дымовых газов
Коррозионноустойчивая шахтная мультиблочная установка для очистки и утилизации дымовых газов
Коррозионноустойчивая шахтная мультиблочная установка для очистки и утилизации дымовых газов
Коррозионноустойчивая шахтная мультиблочная установка для очистки и утилизации дымовых газов
Источник поступления информации: Роспатент

Showing 11-19 of 19 items.
28.08.2018
№218.016.7fcc

Вытяжное устройство для оголовка купола

Изобретение относится к области вентиляции и может быть использовано для естественной и искусственной вентиляции различных зданий, например культовых сооружений. Вытяжное устройство для оголовка купола содержит оголовок, помещенный вверху купола, состоящий из вертикального ограждения с...
Тип: Изобретение
Номер охранного документа: 0002664950
Дата охранного документа: 23.08.2018
26.10.2018
№218.016.9630

Кольцевой капиллярный конденсатор

Изобретение относится к энергомашиностроению, а именно к теплообменной аппаратуре, и может быть использовано для конденсации отработанного пара без использования хладоагента. Технический результат - повышение надежности и эффективности работы кольцевого капиллярного конденсатора. Кольцевой...
Тип: Изобретение
Номер охранного документа: 0002670728
Дата охранного документа: 24.10.2018
14.12.2018
№218.016.a758

Неинвертирующий повторитель напряжения

Изобретение относится к схемотехнике, автоматике, промышленной электронике и измерительной технике. Технический результат заключается в увеличении значения коэффициента передачи неинвертирующего повторителя напряжения и приближение его к идеальному значению, равному единице. Технический...
Тип: Изобретение
Номер охранного документа: 0002674927
Дата охранного документа: 13.12.2018
13.01.2019
№219.016.af32

Ленточный термоэлектрогенератор

Предлагаемое изобретение относится к теплоэнергетике и может быть использовано для трансформации тепловой энергии в электрическую, при отсутствии источников электроснабжения. Технический результат заключается в повышении эффективности ленточного термоэлектрогенератора. Ленточный...
Тип: Изобретение
Номер охранного документа: 0002676803
Дата охранного документа: 11.01.2019
18.01.2019
№219.016.b0b7

Устройство декодирования произведений кодов рида-соломона

Изобретение относится к области декодирования произведений кодов Рида-Соломона. Техническим результатом является повышение эффективности коррекции ошибок без снижения пропускной способности устройства декодирования произведения кодов Рида-Соломона путем увеличения числа итераций декодирования...
Тип: Изобретение
Номер охранного документа: 0002677372
Дата охранного документа: 16.01.2019
09.02.2019
№219.016.b8df

Мобильное устройство для снижения теплового излучения выхлопных газов

Изобретение относится к области военной техники. Мобильное устройство для снижения теплового излучения выхлопных газов включает камеру смешения и диффузор. Диффузор соосно соединен с трубой распределителя, заглушенной с тыльного торца, боковая поверхность которой снабжена расположенными...
Тип: Изобретение
Номер охранного документа: 0002679274
Дата охранного документа: 06.02.2019
16.03.2019
№219.016.e1c1

Высокочувствительный ионизационный вакуумметрический преобразователь

Изобретение относится к технике измерения высокого вакуума. Высокочувствительный ионизационный вакуумметрический преобразователь содержит концентрически расположенные штыревой анод, полый цилиндрический холодный катод, одновременно являющийся постоянным магнитом, намагниченным в осевом...
Тип: Изобретение
Номер охранного документа: 0002682067
Дата охранного документа: 14.03.2019
20.05.2019
№219.017.5cf6

Автономный газовый водонагреватель

Изобретение относится к теплотехнике, в частности к устройствам для нагрева воды для бытовых и производственных нужд. Технический результат достигается автономным газовым водонагревателем, содержащим цилиндрический корпус с крышкой, снабженной выхлопным патрубком и днищем с центральным...
Тип: Изобретение
Номер охранного документа: 0002688047
Дата охранного документа: 17.05.2019
02.10.2019
№219.017.cae0

Способ и устройство для обезвреживания и утилизации массива коммунальных отходов

Предлагаемое изобретение относится к охране окружающей среды и может быть использовано для обезвреживания и утилизации городских (коммунальных) твердых отходов органического происхождения. Способ для обезвреживания и утилизации массива коммунальных отходов включает бурение скважин в толще...
Тип: Изобретение
Номер охранного документа: 0002701678
Дата охранного документа: 30.09.2019
Showing 81-90 of 221 items.
25.08.2017
№217.015.bd08

Универсальный регенеративный роторный воздухоподогреватель

Изобретение относится к теплоэнергетике и может быть использовано в процессах очистки дымовых газов от вредных примесей. Универсальный регенеративный роторный воздухоподогреватель содержит короб, снабженный с верхней горячей стороны газового отсека патрубком входа дымовых газов, с холодной...
Тип: Изобретение
Номер охранного документа: 0002616430
Дата охранного документа: 14.04.2017
25.08.2017
№217.015.c5fb

Электрический ракетный двигатель

Изобретение относится к области создания электрических реактивных двигателей. Для обеспечения надежной подачи твердого топлива в источник плазмообразующего вещества при длительной эксплуатации электрического ракетного двигателя в условиях низких отрицательных температур предложено поверхность...
Тип: Изобретение
Номер охранного документа: 0002618636
Дата охранного документа: 05.05.2017
25.08.2017
№217.015.ce34

Смеситель-эмульсатор

Изобретение относится к смесителям и может быть использовано для приготовления эмульсий и суспензий для сжигания в топках энергетических установок, а также в химической технологии. Смеситель-эмульсатор содержит цилиндрический корпус, вал, установленный по оси корпуса, многолопастный ротор,...
Тип: Изобретение
Номер охранного документа: 0002620791
Дата охранного документа: 29.05.2017
25.08.2017
№217.015.ce5d

Воздухоподогреватель-газоход

Изобретение относится к теплоэнергетике, а именно к вспомогательному оборудованию котлов, работающих на серосодержащих топливах, и может быть использовано для создания комплексного оборудования, совмещающего функции газохода и воздухоподогревателя. Воздухоподогреватель-газоход содержит корпус,...
Тип: Изобретение
Номер охранного документа: 0002620738
Дата охранного документа: 29.05.2017
25.08.2017
№217.015.ce96

Устройство для очистки и комплексной утилизации сбросных газов

Предлагаемое изобретение относится к теплоэнергетике и сельскому хозяйству и может быть использовано в процессах очистки и утилизации сбросных газов теплоэнергетических установок и двигателей внутреннего сгорания для снижения загрязнений, выбросов парниковых газов в атмосферу и повышения...
Тип: Изобретение
Номер охранного документа: 0002620798
Дата охранного документа: 29.05.2017
25.08.2017
№217.015.cec0

Гидроклассификатор

Изобретение относится к переработке волокнистых материалов и может быть использовано в асбестовой и целлюлозно-бумажной промышленности. Гидроклассификатор включает корпус, расположенное вдоль корпуса просеивающее приспособление, установленные у противоположных по диагонали углов корпуса в его...
Тип: Изобретение
Номер охранного документа: 0002620819
Дата охранного документа: 30.05.2017
25.08.2017
№217.015.ced9

Вихревой классификатор порошковых материалов

Изобретение относится к аппаратам для классификации дисперсных материалов и может быть использовано в строительной, химической и других отраслях промышленности. Вихревой классификатор порошковых материалов включает цилиндрическую прямоточную вихревую камеру с каналами вывода классифицируемого...
Тип: Изобретение
Номер охранного документа: 0002620821
Дата охранного документа: 30.05.2017
25.08.2017
№217.015.d09f

Трехслойная ресурсосберегающая железобетонная панель

Изобретение относится к строительству, в частности к ограждающим конструкциям промышленных зданий. Технический результат: поддержание заданной надежной эксплуатации трехслойной ресурсосберегающей железобетонной панели при землетрясениях за счет резонансных всплесков сейсмических волн в...
Тип: Изобретение
Номер охранного документа: 0002621240
Дата охранного документа: 01.06.2017
26.08.2017
№217.015.d457

Вихревой теплообменный элемент

Изобретение относится к теплотехнике и может быть использовано в теплообменниках, применяемых в различных отраслях техники, в частности в регенеративных теплообменниках газотурбинных установок. Изобретение заключается в том, что в вихревом теплообменном элементе, содержащем пакеты ребер,...
Тип: Изобретение
Номер охранного документа: 0002622340
Дата охранного документа: 14.06.2017
26.08.2017
№217.015.d4b8

Система гелиотеплохладоснабжения

Изобретение относится к теплоэнергетике и предназначено для поддержания комфортных параметров воздуха в малоэтажных зданиях, преимущественно на животноводческих фермах. Система гелиотеплохладоснабжения содержит южный и северный воздухопроводы, расположенные на соответствующих сторонах здания,...
Тип: Изобретение
Номер охранного документа: 0002622449
Дата охранного документа: 15.06.2017
+ добавить свой РИД