×
09.06.2018
218.016.5f2c

Результат интеллектуальной деятельности: Способ использования солнечной энергии для систем кондиционирования воздуха

Вид РИД

Изобретение

Аннотация: Изобретение относится к способам получения холода в системах кондиционирования воздуха на основе солнечной энергии в теплый период. Предполагаемая область применения способа для кондиционирования воздуха на основе солнечного коллектора, двигателя с внешним подводом теплоты, парокомпрессорной холодильной машины и термальной скважины для зданий с переменным тепловым режимом, т.е. с тепловым режимом, поддерживаемым не круглосуточно, а только в рабочее время в рыночных и торговых комплексах, санаторно-курортных комплексах; административных зданиях. В нерабочее время температура в помещениях такого назначения может поддерживаться на более высоком уровне в теплый период от температуры, установленной нормативными документами. Теплоту солнечного коллектора посредством теплоносителя контура солнечного коллектора используют для нагрева рабочего тела в двигателе с внешним подводом теплоты; двигатель с внешним подводом теплоты вырабатывает механическую энергию, которая используется для непосредственного привода парокомпрессорной холодильной машины, вырабатывающей холод для системы кондиционирования воздуха помещения. Теплоноситель, отдавший свое тепло в двигателе, возвращается на нагрев в солнечный коллектор. Отводимую низкопотенциальную теплоту от двигателя передают посредством теплосъемных труб в теплоаккумулирующую термальную скважину глубиной 15-25 м, что будет обеспечивать максимальный КПД двигателя. 1 ил.

Изобретение относится к способам получения холода в системах кондиционирования воздуха на основе использования солнечной энергии в теплый период.

Известны способы получения холода в системах кондиционирования воздуха помещений [Плотников К.В., Алифанова А.И., Семиненко А.С. Кондиционирование зданий посредством солнечной энергии. Современные наукоемкие технологии. №7, 2014. С. 59-61. Плешка М.С. Система кондиционирования микроклимата здания с использованием солнечной энергии. Дисс. на соискание ученой степени канд. техн. наук. - М., 2005. - 288 с.].

Недостатками известных способов является то, что для этой цели используется абсорбционный тепловой насос, коэффициент трансформации тепла у которого не превышает 0,6.

Известен также способ получения холода в системах кондиционирования воздуха помещений с помощью парокомпрессорной холодильной машины [Свистунов В.М., Пушняков Н.К. Отопление, вентиляция и кондиционирование воздуха объектов агропромышленного комплекса и жилищно-коммунального хозяйства. Учебник для вузов. СПб: Политехника, 2006. - 423 с. Ананьев В.А., Балуева Л.П., Гальперин А.Д. и др. Системы вентиляции и кондиционирования. Теория и практика. Уч. пособие - М.: «Евроклимат», издательство «Арина», 2000. - 416 с.].

Недостатком известного способа является то, что используется электрический привод и необходимо двойное преобразование энергии (тепловой в электрическую, а затем - электрической в холод, для чего используется электродвигатель).

Наиболее близким к предложенному способу является способ использования солнечной энергии двигателем с внешним подводом теплоты (двигателем Стерлинга) [«Двигатель с внешним подводом теплоты». Патент №2105156 от 23 июня 1995 г., РФ], в результате осуществления которого получается механическая работа. Двигатель Стерлинга более эффективен в преобразовании солнечного излучения в электроэнергию (КПД 31%), чем большинство современных фотоэлектрических элементов (в продаже элементы с КПД 14-18%, в стадии испытаний с КПД в 24-41%) и солнечных электростанций концентрационного типа (параболические желоба, башенные конструкции - КПД 16%).

Недостатками известного способа являются:

- недоиспользование теплового потенциала солнечного коллектора в летнее время;

- используется только для выработки электроэнергии (необходим электрогенератор).

Технический результат заявляемого способа заключается в увеличении коэффициента использования солнечной энергии и уменьшении арсенала технических средств для осуществления способа (отсутствие более дорогостоящих фотоэлектрических элементов, электрического преобразователя, электрического аккумулятора и электродвигателя для привода компрессора парокомпрессорной холодильной машины). Таким образом, использование солнечной энергии по предлагаемому способу эффективнее ее использования путем получения электрической энергии на фотоэлектрических панелях, а затем использования ее для привода парокомпрессорной холодильной машины, т.к. их КПД, как отмечалось ранее, ниже КПД двигателя Стерлинга.

Указанный технический результат заявляемого способа достигается за счет реализации совокупности признаков, при которых достигается новый эффект - увеличение коэффициента использования солнечной энергии в 1,2÷2,1 раза (с учетом того, что КПД двигателя Стерлинга - более 30% (а большинство современных фотоэлектрических элементов имеют КПД 14-18%), коэффициент трансформации тепла парокомпрессорной холодильной машины в зависимости от температуры сред (наружного воздуха и воздуха в помещении) - 4÷7 (при использовании абсорбционного теплового насоса, коэффициент трансформации тепла не превышает 0,6) и отсутствует двойное преобразование энергии (тепловой в электрическую с помощью электрогенератора, а затем - электрической в холод, с помощью электродвигателя, обеспечивающего работу парокомпрессорной холодильной машины) и, соответственно, уменьшается арсенал технических средств (отсутствие электрогенератора и электродвигателя).

Технический результат достигается за счет того, что в способе использования солнечной энергии для систем кондиционирования воздуха на основе солнечного коллектора, двигателя с внешним подводом теплоты, термальной скважины с теплосъемными трубами, парокомпрессорной холодильной машины, вырабатываемая солнечным коллектором тепловая энергия посредством промежуточного теплоносителя солнечного коллектора передается в двигатель с внешним подводом теплоты для выработки механической энергии, которую используют для привода парокомпрессорной холодильной машины для выработки холода для системы кондиционирования воздуха помещений, а отработанное тепло от двигателя с внешним подводом теплоты посредством теплосъемных труб отводят в термальную скважину.

В теплый период тепловую энергию, вырабатываемую солнечным коллектором, используют в двигателе с внешним подводом теплоты для выработки механической энергии, которую используют для привода парокомпрессорной холодильной машины для выработки холода для системы кондиционирования воздуха помещений. Отводимую (низкопотенциальную) теплоту от двигателя с внешним подводом теплоты отводят посредством теплосъемных труб в термальную скважину глубиной 15-25 м, имеющую высокую теплоаккумулирующую способность и относительно постоянную температуру, что будет обеспечивать максимальный КПД двигателя (на глубине 15-25 м температура грунта практически не зависит от колебаний температуры наружного воздуха).

Конкурентоспособность предложенного способа определяется целым рядом технических, экономических и социально-экологических факторов.

Технические факторы

Отличительной особенностью предлагаемого способа на основе солнечного коллектора является:

а) применение двигателя с внешним подводом теплоты, с помощью которого обеспечивают использование получаемой от солнечного коллектора механической работы для привода парокомпрессорной холодильной машины;

б) применение парокомпрессорной холодильной машины (ПКХМ), с помощью которой обеспечивают использование получаемой от двигателя с внешним подводом теплоты работы для кондиционирования помещений в теплый период.

Экономические факторы определяются единовременными капитальными затратами и снижением эксплуатационных затрат, за счет которых окупаемость капитальных затрат не более 15 лет.

Социально-экологические факторы характеризуются возможностью обеспечения более дешевым холодом систем кондиционирования воздуха, а также снижением уровня загрязнения атмосферы.

На фиг. 1 показана принципиальная схема энергетической установки для осуществления способа использования солнечной энергии для систем кондиционирования воздуха.

Схема включает в себя следующие элементы: 1 - солнечный коллектор с контуром промежуточного теплоносителя (антифриза); 2 - двигатель с внешним подводом теплоты; 3 - парокомпрессорную холодильную машину; 4 - теплосъемные трубы (с антифризом) двигателя с внешним подводом теплоты; 5 - термальную скважину, а также показаны тепловые потоки: 6 - солнечной энергии; 7 - теплоносителя контура солнечного коллектора; 8 - хладоносителя системы кондиционирования воздуха помещения.

Способ осуществляется следующим образом.

Теплоту солнечного коллектора 1 посредством теплоносителя (антифриза) контура солнечного коллектора используют для нагрева рабочего тела в двигателе с внешним подводом теплоты 2; двигатель с внешним подводом теплоты вырабатывает механическую энергию, которая используется непосредственно для привода парокомпрессорной холодильной машины 3, вырабатывающей холод для системы кондиционирования воздуха помещения (в теплый период года). Отработанную теплоту от двигателя с внешним подводом теплоты с помощью теплосъемных труб, заполненных антифризом, отводят в термальную скважину 5 глубиной 15-25 м, имеющую высокую теплоаккумулирующую способность и относительно постоянную температуру, что будет обеспечивать максимальный КПД двигателя (на глубине 15-25 м температура грунта практически не зависит от колебаний температуры наружного воздуха). Теплоноситель, отдавший свое тепло в двигателе с внешним подводом тепла, возвращается на нагрев в солнечный коллектор.

Технические характеристики эффективности предлагаемого способа, в качестве примера, определены для солнечного коллектора площадью 100 м2.

Максимальную удельную мощность солнечного коллектора при температуре наружного воздуха 20°С можно принять qmax=550 Вт/м2. Технические характеристики модуля, площадью 100 м2, используемого по предлагаемому способу: максимальная тепловая мощность солнечного коллектора - 55 кВт; среднесуточная тепловая мощность солнечного коллектора летняя (май - сентябрь) - 28,7 кВт. Тепловая мощность установки, работающей по предлагаемому способу, для системы кондиционирования воздуха в теплый период увеличивается в 1,2-2,1 раза.

Исходя из среднего потребления холода для кондиционирования офисных помещений 44 Вт/м2 [Системы вентиляции и кондиционирования. Теория и практика. Уч. Пособие. / Ананьев В.А., Балуева Л.П., Гальперин А.Д., Городов А.К., Еремин М.Ю., Звягинцева С.М., Мурашко В.П., Седых И.В.: М.: «Евроклимат», издательство «Арина», 2000. - 416 с.], возможно кондиционирование помещений площадью 720-1370 м2.

Предполагаемая область применения способа для кондиционирования воздуха на основе солнечного коллектора, двигателя с внешним подводом теплоты, парокомпрессорной холодильной машины и термальной скважины: для зданий с переменным тепловым режимом, т.е. с тепловым режимом, поддерживаемым не круглосуточно, а только в рабочее время (рыночные и торговые комплексы; санаторно-курортные комплексы; административные здания). В нерабочее время температура в помещениях такого назначения может поддерживаться на более высоком уровне от температуры, установленной нормативными документами (строительными нормами и правилами). При этом одновременно с увеличением теплопритоков в помещение в течение дня в связи с увеличением солнечной радиации, увеличивается мощность системы кондиционирования.

Вырабатываемая солнечным коллектором в холодный период года тепловая энергия может использоваться для нагрева воды в системе горячего водоснабжения.

Способ использования солнечной энергии для систем кондиционирования воздуха на основе солнечного коллектора, двигателя с внешним подводом теплоты, термальной скважины с теплосъемными трубами, парокомпрессорной холодильной машины, отличающийся тем, что вырабатываемая солнечным коллектором тепловая энергия посредством промежуточного теплоносителя солнечного коллектора передается в двигатель с внешним подводом теплоты для выработки механической энергии, которую используют для привода парокомпрессорной холодильной машины для выработки холода для системы кондиционирования воздуха помещений, а отработанное тепло от двигателя с внешним подводом теплоты посредством теплосъемных труб отводят в термальную скважину.
Способ использования солнечной энергии для систем кондиционирования воздуха
Способ использования солнечной энергии для систем кондиционирования воздуха
Источник поступления информации: Роспатент

Showing 51-60 of 89 items.
20.06.2019
№219.017.8dbc

Способ обеспечения энергетической скрытности

Изобретение относится к области спутниковой связи. Технический результат состоит в повышении помехозащищенности системы спутниковой связи (ССС) за счет увеличения ее энергетической скрытности при близком размещении приемника радиоперехвата от наземного приемника ССС. Для этого излучаемые с...
Тип: Изобретение
Номер охранного документа: 0002691957
Дата охранного документа: 19.06.2019
11.07.2019
№219.017.b2c8

Способ восстановления пружин из упрочненной проволоки

Изобретение относится к области обработки металлов давлением и может быть использовано для восстановления пружин на предприятиях по ремонту транспорта, сельхозмашин, грузоподъёмной или другой техники. Способ включает растяжение пружины на оправке с шагом витков, превышающим шаг витков готовой...
Тип: Изобретение
Номер охранного документа: 0002694091
Дата охранного документа: 09.07.2019
03.08.2019
№219.017.bca8

Арифметико-логическое устройство для формирования остатка по произвольному модулю от числа

Изобретение относится в вычислительной технике. Технический результат заключается в уменьшении энергопотребления. Устройство содержит три n-разрядных регистра, где n – разрядность входных чисел, инвертор, (n+1)-разрядный сумматор, мультиплексор, электронный ключ, входную и выходную n-разрядные...
Тип: Изобретение
Номер охранного документа: 0002696223
Дата охранного документа: 31.07.2019
02.10.2019
№219.017.cd05

Способ извлечения петротермального тепла

Изобретение относится к способам извлечения петротермальной энергии с последующим применением в системах теплоснабжения и хладоснабжения. Из скважины с температурным градиентом по обсадной трубе теплоноситель подается в подземный котел-теплообменник, нагревается, поднимается по концентрично...
Тип: Изобретение
Номер охранного документа: 0002701029
Дата охранного документа: 24.09.2019
02.10.2019
№219.017.ce4a

Способ уменьшения размеров частиц и степени агломерации на стадии синтеза исходных прекурсоров при получении алюмоиттриевого граната

Изобретение относится к технологии получения соединений сложных оксидов со структурой граната, солегированных редкоземельными элементами, которые могут быть применены в технологии синтеза оптических керамических материалов лазерного качества при создании активных тел твердотельных лазеров...
Тип: Изобретение
Номер охранного документа: 0002700074
Дата охранного документа: 12.09.2019
02.10.2019
№219.017.cf4f

Способ определения мест неконтролируемого потребления электроэнергии в электрической сети 0,4 кв

Изобретение относится к измерительной технике. Технический результат – снижение потерь электрической энергии. Для определения мест неконтролируемого потребления электроэнергии в электрической сети после отключения нагрузки всех коммерческих потребителей от контролируемого участка...
Тип: Изобретение
Номер охранного документа: 0002700289
Дата охранного документа: 16.09.2019
02.10.2019
№219.017.cf65

Способ косвенного измерения углов поворота в суставах руки оператора

Изобретение относится к системам управления и может быть использовано при создании задающих устройств для систем копирующего управления, реализованных в виде экзоскелета с нежесткими креплениями к телу оператора. Предложен способ косвенного измерения углов поворота в суставах руки оператора,...
Тип: Изобретение
Номер охранного документа: 0002700118
Дата охранного документа: 12.09.2019
22.10.2019
№219.017.d8b2

Способ гидроразрыва нефтяного или газового пласта

Изобретение относится к горному делу и может быть применено для гидроразрыва продуктивного пласта. Способ включает добавление в жидкость гидроразрыва расклинивающего агента частиц керамического проппанта и его доставку на первом этапе в удаленную часть трещины гидроразрыва, с сохранением частиц...
Тип: Изобретение
Номер охранного документа: 0002703572
Дата охранного документа: 21.10.2019
30.10.2019
№219.017.db8f

Гипсовая смесь для изготовления гипсокартонных плит

Настоящее изобретение относится к гипсовым составам для производства гипсокартонных плит. Сырьевая смесь для производства гипсокартонных плит, включающая гипс, воду, технический лигносульфонат при водогипсовом отношении 0,5-0,6, дополнительно содержит синтетический латекс, серу, оксид цинка,...
Тип: Изобретение
Номер охранного документа: 0002704406
Дата охранного документа: 28.10.2019
27.12.2019
№219.017.f28d

Комплекс управления антропоморфным манипулятором

Изобретение относится к робототехнике и может быть использовано в системах копирующего управления антропоморфными манипуляторами. Комплекс содержит блок механической системы задающего устройства, блок датчиков задающего устройства, блок управления приводами антропоморфного манипулятора, блок...
Тип: Изобретение
Номер охранного документа: 0002710290
Дата охранного документа: 25.12.2019
Showing 1-2 of 2 items.
10.08.2015
№216.013.6b99

Топка с неподвижной колосниковой решеткой

Изобретение относится к области энергетики. Топка с неподвижной колосниковой решеткой и подвижным слоем топлива с наклонным зеркалом горения для сжигания агропеллет, включающая топку водотрубного или жаротрубного котла и чугунную колосниковую решетку, при этом 1/3 колосников, расположенных в...
Тип: Изобретение
Номер охранного документа: 0002559103
Дата охранного документа: 10.08.2015
26.08.2017
№217.015.d644

Способ комбинированного использования альтернативных источников энергии

Изобретение относится к способам совместного использования солнечной энергии для системы горячего водоснабжения, солнечной и петротермальной энергии с помощью абсорбционного теплового насоса и инверторного парокомпрессорного теплового насоса для систем кондиционирования воздуха в теплый период...
Тип: Изобретение
Номер охранного документа: 0002622779
Дата охранного документа: 20.06.2017
+ добавить свой РИД