×
09.06.2018
218.016.5d6b

Результат интеллектуальной деятельности: СПОСОБ ПРИМЕНЕНИЯ РОЯ БЕСПИЛОТНЫХ ЛЕТАТЕЛЬНЫХ АППАРАТОВ ДЛЯ ДИСТАНЦИОННОГО ОПРЕДЕЛЕНИЯ МЕСТОПОЛОЖЕНИЯ ПОДЗЕМНЫХ КОММУНИКАЦИЙ, ИХ ПОПЕРЕЧНОГО РАЗМЕРА И ГЛУБИНЫ ЗАЛЕГАНИЯ В ГРУНТЕ

Вид РИД

Изобретение

Аннотация: Изобретение относится к измерительной технике и может быть использовано для дистанционного определения местоположения подземных коммуникаций (трубопроводов, кабелей и т.п.), их поперечного размера и глубины залегания в грунте. Способ применения роя беспилотных летательных аппаратов для дистанционного определения местоположения подземных коммуникаций, их поперечного размера и глубины залегания в грунте заключается в том, что на одном конце подземной коммуникации к ее цепи «проводник-земля» подключают генератор низких частот, устройство с датчиками компонент магнитного поля перемещают над поверхностью земли над участком, в пределах которого предположительно проложена подземная коммуникация. Затем определяют координаты устройства с датчиками компонент магнитного поля и при данных координатах измеряют уровни компонент магнитного поля, по результатам измерений строят двумерные функции распределений уровней компонент магнитного поля над поверхностью над подземной коммуникацией. При этом используют N устройств с датчиками компонент магнитного поля при N≥4, каждое из которых устанавливают на один из N беспилотных летательных аппаратов (БПЛА), образующих рой БПЛА, управляют этим роем БПЛА с центральной станции, под управлением которой перемещают рой БПЛА по заданной траектории с заданным взаимным расположением БПЛА по вертикали и горизонтали над поверхностью земли над участком, в пределах которого предположительно проложена подземная коммуникация. Во время полета роя БПЛА фиксируют координаты каждого БПЛА, при которых по каналам связи с каждого БПЛА передают на центральную станцию данные измерений уровней компонент магнитного поля, по результатам измерений уровней компонент магнитного поля и данных о координатах БПЛА строят двумерные функции распределений уровней компонент магнитного поля над поверхностью над подземной коммуникацией для более чем двух значений высоты над поверхностью земли, по результатам обработки которых определяют местоположения подземных коммуникаций, их поперечный размер и глубину залегания в грунте. Техническим результатом заявленного изобретения является расширение области применения БПЛА. 1 ил.

Изобретение относится к измерительной технике и может быть использовано для дистанционного определения местоположения подземных коммуникаций (трубопроводов, кабелей и т.п.), их поперечного размера и глубины залегания в грунте.

Известны способы [1-7] применения и управления роем беспилотных летательных аппаратов (БПЛА), обеспечивающие безопасный полет по заданной траектории, на заданной высоте. Однако данные способы не применяются для определения местоположения подземных коммуникаций, их поперечного размера и глубины залегания в грунте.

Известны радиолокационные способы дистанционного поиска местоположения подземных коммуникаций и определения их поперечного размера и глубины залегания в грунте [8-9], заключающиеся в том, что на борту летательного аппарата помещают высокочастотный генератор импульсов и передающую антенну, приемник и принимающую антенну, блок управления антеннами, процессор с программным обеспечением и монитор, в процессе полета летательного аппарата осуществляют зондирование подповерхностного слоя земли зондирующими сигналами, принимают сигналы, отраженные от подповерхностных структур, обрабатывают и анализируют принятые сигналы и по результатам обработки определяют местоположение подземных коммуникаций, их поперечный размер и глубину залегания. Радиолокационные способы позволяют получить картину распределения подземных кабелей и труб в большом числе различных видов грунта. Однако даже в благоприятных условиях их применения необходимо иметь соответствующее представление о том, что находиться под землей, затруднительно получить требуемую интерпретацию этой картины. Сложность, высокая стоимость и зависимость от условий применения отличают реализации данных способов по сравнению с методами электромагнитной локации [10]. Необходимо отметить, что для уверенного приема отраженного сигнала требуется достаточно большая мощность передатчика, что обусловливает его значительные массогабаритные характеристики и большое энергопотребление. А это, в свою очередь, ведет к росту требований к грузоподъемности летательного аппарата и, соответственно, увеличению его стоимости и затрат на его эксплуатацию.

Известны способы электромагнитной локации для поиска трасс подземных кабелей, трубопроводов и определения глубины их залегания в грунте [10-13], заключающиеся в том, что к цепи «проводник-земля» подземного металлического сооружения подключают генератор и передают по этой цепи низкочастотный сигнал. На поверхности земли над подземным сооружением перемещают приемник с приемной антенной, измеряют уровни компонент магнитного поля и по результатам анализа изменений этих уровней определяют местоположение подземного сооружения на трассе и глубину его залегания. Используют два алгоритма поиска - по «максимуму» или по «минимуму». Для улучшения отношения сигнал/помеха и разрешающей способности применяют сдвоенные антенны. Реализация указанных способов требует определенной ориентации приемной магнитной антенны относительно подземного сооружения, что существенно ограничивает возможности размещения приемника с приемной антенной на транспортном средстве.

От этого недостатка свободен способ определения трассы прокладки и локализации места повреждения кабеля, согласно которому по кабелю передают низкочастотный электромагнитный сигнал и перемещают датчики магнитного поля по поверхности над кабелем, измеряют распределения уровней излучаемого сигнала по поверхности как двумерные функции координат на этой поверхности и определяют трассу прокладки и место повреждения кабеля по местоположению локальных экстремумов этих функций, при этом на устройстве, способном перемещаться по поверхности только по прямой и в одном направлении, закрепляют датчики компонент магнитного поля и курвиметр, на поверхности над кабелем выделяют прямоугольную область, предварительно обнуляют показания курвиметра и перемещают устройство параллельно одной из сторон этой прямоугольной области вдоль всей длины этой стороны, с помощью датчиков магнитного поля измеряют уровни компонент магнитного поля, а с помощью курвиметра – расстояние, которое прошло устройство по поверхности, запоминают результаты измерений как функции уровней компонент магнитного поля от расстояния, повторяют эту операцию многократно, каждый раз смещая устройство с известным шагом вдоль другой стороны выделенной прямоугольной области, по результатам измерений строят двумерные функции распределений уровней компонент магнитного поля на поверхности над кабелем в выделенной прямоугольной области, по местоположению локальных экстремумов которых определяют трассу и место повреждения кабеля. Реализация данного способа требует значительных трудозатрат и времени выполнения, а также относительно ровной поверхности над трассой прокладки подземного сооружения. На пересеченной местности поиск данным способом осуществить сложно. Способ не предназначен для определения глубины залегания подземного сооружения. Все это ограничивает область применения данного способа.

Сущностью предлагаемого изобретения является расширение области применения.

Эта сущность достигается тем, что согласно способу применения роя беспилотных летательных аппаратов для дистанционного определения местоположения подземных коммуникаций, их поперечного размера и глубины залегания в грунте на одном конце подземной коммуникации к ее цепи «проводник-земля» подключают генератор низких частот, устройство с датчиками компонент магнитного поля перемещают над поверхностью земли над участком, в пределах которого предположительно проложенаподземная коммуникация, определяют координаты устройства с датчиками компонент магнитного поля и при данных координатах измеряют уровни компонент магнитного поля, по результатам измерений строят двумерные функции распределений уровней компонент магнитного поля над поверхностью над подземной коммуникацией, при этом используют N устройств с датчиками компонент магнитного поля при N≥4, каждое из которых устанавливают на один из N беспилотных летательных аппаратов (БПЛА), образующих рой БПЛА, управляют этим роем БПЛА с центральной станции, под управлением которой перемещают рой БПЛА по заданной траектории с заданным взаимным расположением БПЛА по вертикали и горизонтали над поверхностью земли над участком, в пределах которого предположительно проложена подземная коммуникация, во время полета роя БПЛА фиксируют координаты каждого БПЛА, при которых по каналам связи с каждого БПЛА передают на центральную станцию данные измерений уровней компонент магнитного поля, по результатам измерений уровней компонент магнитного поля и данных о координатах БПЛА строят двумерные функции распределений уровней компонент магнитного поля над поверхностью над подземной коммуникацией для более чем двух значений высоты над поверхностью земли, по результатам обработки которых определяют местоположения подземных коммуникаций, их поперечного размера и глубины залегания в грунте.

На чертеже представлена структурная схема устройства для реализации заявляемого способа.

Устройство включает проложенное ниже поверхности земли 1 подземное протяженное металлическое сооружение 2, генератор низких частот 3, рой БПЛА 4 из N≥4 БПЛА с блоком навигации и устройством с датчиками компонент магнитного поля 5, центральную станцию 6, каналы связи 7. Центральная станция включает блок обработки 8, блок управления 9 и блок отображения 10. Генератор низких частот подключен к цепи «провод-земля» подземного сооружения 2, которое проложено ниже поверхности земли 1. Центральная станция через каналы связи 7 связана с каждым из БПЛА с блоком навигации и устройством с датчиками компонент магнитного поля 5, которые объединены в рой БПЛА 4 из не менее чем четырех БПЛА с блоком навигации и устройством с датчиками компонент магнитного поля 5. К выходу центральной станции подключен выход блока управления 9 и вход блока обработки 8, выход которого соединен со входом блока отображения.

Устройство работает следующим образом. Поступающий от генератора низких частот 3 в цепь «провод-земля» подземного протяженного металлического сооружения 2 сигнал создает внешнее магнитное поле. Под управлением блока управления 9 центральной станции 6 через каналы связи 7 рой БПЛА 4 перемещается над поверхностью земли 1 на участке, на котором предположительно проложено подземное протяженное металлическое сооружение 2 по заданным траекториям, на заданных высотах при заданном взаимном расположении БПЛА с блоком навигации и устройством с датчиками компонент магнитного поля 5. Данные о координатах БПЛА с блоком навигации и устройством с датчиками компонент магнитного поля 5 и данные измерений уровней компонент магнитного поля по каналам связи 7 передаются в блок обработки 8 центральной станции 6. Полученные данные обрабатываются и по результатам обработки формируются поправки к маршруту роя БПЛА 4, которые передаются из блока обработки 8 в блок управления 9, который через каналы связи 7 корректирует траектории, высоты и взаимное расположение в рое БПЛА с блоком навигации и устройством с датчиками компонент магнитного поля 5. По результатам обработки в блоке обработки данных о координатах БПЛА с блоком навигации и устройством с датчиками компонент магнитного поля 5 и данных измерений уровней компонент магнитного поля строятся двумерные функции распределений уровней компонент магнитного поля над поверхностью над подземным сооружением для более чем двух значений высоты над поверхностью земли, по результатам обработки которых определяют местоположения подземных коммуникаций, их поперечного размера и глубины залегания в грунте. Результаты обработки передаются в блок отображения 10, на дисплее которого и отображаются.

В отличие от известного способа, которым является прототип, устройство с датчиками компонент магнитного поля перемещается с помощью БПЛА, что существенно сокращает время выполнения работ и трудоемкость по сравнению с прототипом. Особенно при выполнении работ на пересеченной местности. В отличие от известного способа, которым является прототип устройства с датчиками компонент магнитного поля располагаются над поверхностью земли как на горизонтальной плоскости, параллельно поверхности земли, так и по вертикали, и при этом траектория роя БПЛА, высота его полета над поверхностью земли и взаимное расположение БПЛА в рое могут быть изменены в зависимости от типа и параметров подземного сооружения и условий поиска, что позволяет улучшить разрешающую способность и снизить погрешности определения местоположения подземных коммуникаций, их поперечного размера и глубины залегания в грунте. В отличие от известного способа, которым является прототип, применение роя БПЛА позволяет увеличить число точек, в которых одновременно выполняются измерения уровней компонент магнитного поля и при этом снизить погрешность определения координат, что в совокупности также обеспечивает снижение погрешности определения местоположения подземных коммуникаций, их поперечного размера и глубины залегания в грунте в целом.

ЛИТЕРАТУРА

1. RU 2008/140595.

2. RU 2457531.

3. US 2014/249693.

4. US 4997144.

5. US 5340056.

6. US 5521817.

7. US 9104201.

8. RU 2256941.

9. RU 2451954.

10. От А до Я локации и поиск повреждений подземных кабелей и труб для начинающих и специалистов. Авторизованный перевод ЗАО "ПЕРГАМ" // Radiodetection, 1999, 163 с.

11. RU 2319179.

12. US 3471772.

13. US 2006/036376.

14. RU 2007/118602.

Способ применения роя беспилотных летательных аппаратов для дистанционного определения местоположения подземных коммуникаций, их поперечного размера и глубины залегания в грунте, заключающийся в том, что на одном конце подземной коммуникации к ее цепи «проводник-земля» подключают генератор низких частот, устройство с датчиками компонент магнитного поля перемещают над поверхностью земли над участком, в пределах которого предположительно проложена подземная коммуникация, определяют координаты устройства с датчиками компонент магнитного поля и при данных координатах измеряют уровни компонент магнитного поля, по результатам измерений строят двумерные функции распределений уровней компонент магнитного поля над поверхностью над подземной коммуникацией, отличающийся тем, что при этом используют N устройств с датчиками компонент магнитного поля при N≥4, каждое из которых устанавливают на один из N беспилотных летательных аппаратов (БПЛА), образующих рой БПЛА, управляют этим роем БПЛА с центральной станции, под управлением которой перемещают рой БПЛА по заданной траектории с заданным взаимным расположением БПЛА по вертикали и горизонтали над поверхностью земли над участком, в пределах которого предположительно проложена подземная коммуникация, во время полета роя БПЛА фиксируют координаты каждого БПЛА, при которых по каналам связи с каждого БПЛА передают на центральную станцию данные измерений уровней компонент магнитного поля, по результатам измерений уровней компонент магнитного поля и данных о координатах БПЛА строят двумерные функции распределений уровней компонент магнитного поля над поверхностью над подземной коммуникацией для более чем двух значений высоты над поверхностью земли, по результатам обработки которых определяют местоположения подземных коммуникаций, их поперечный размер и глубину залегания в грунте.
СПОСОБ ПРИМЕНЕНИЯ РОЯ БЕСПИЛОТНЫХ ЛЕТАТЕЛЬНЫХ АППАРАТОВ ДЛЯ ДИСТАНЦИОННОГО ОПРЕДЕЛЕНИЯ МЕСТОПОЛОЖЕНИЯ ПОДЗЕМНЫХ КОММУНИКАЦИЙ, ИХ ПОПЕРЕЧНОГО РАЗМЕРА И ГЛУБИНЫ ЗАЛЕГАНИЯ В ГРУНТЕ
СПОСОБ ПРИМЕНЕНИЯ РОЯ БЕСПИЛОТНЫХ ЛЕТАТЕЛЬНЫХ АППАРАТОВ ДЛЯ ДИСТАНЦИОННОГО ОПРЕДЕЛЕНИЯ МЕСТОПОЛОЖЕНИЯ ПОДЗЕМНЫХ КОММУНИКАЦИЙ, ИХ ПОПЕРЕЧНОГО РАЗМЕРА И ГЛУБИНЫ ЗАЛЕГАНИЯ В ГРУНТЕ
Источник поступления информации: Роспатент

Showing 1-10 of 29 items.
25.08.2017
№217.015.b6a3

Волоконно-оптический кабель для измерения температурного распределения в паронагнетательных скважинах

Изобретение относится к области нефтедобычи и может быть использовано при добыче вязкой нефти, при воздействии на призабойную зону скважин паром при высоких температуре и давлении в устройствах для проведения измерений температурного распределения по скважине. Волоконно-оптический кабель для...
Тип: Изобретение
Номер охранного документа: 0002614662
Дата охранного документа: 28.03.2017
25.08.2017
№217.015.b746

Способ уменьшения дифференциальной модовой задержки волоконно-оптической линии передачи

Изобретение относится к технике связи и может быть использовано для волоконно-оптической связи. Технический результат состоит в уменьшении дифференциальной модовой задержки многомодовой волоконно-оптической линии в маломодовом режиме передачи. Для этого последовательно многомодовому оптическому...
Тип: Изобретение
Номер охранного документа: 0002614535
Дата охранного документа: 28.03.2017
25.08.2017
№217.015.c45f

Способ стеганографического внедрения дополнительной информации в семплы цифровых звуковых сигналов

Изобретение относится к области телекоммуникаций и предназначено для скрытой передачи или хранения секретной информации и может быть использовано для защиты авторских прав (внедрение водяных знаков, логотипов), скрытой передачи паролей, ключей и т.п. Технический результат - повышение...
Тип: Изобретение
Номер охранного документа: 0002618379
Дата охранного документа: 03.05.2017
26.08.2017
№217.015.ddc6

Способ измерения сдвига частоты рассеяния мандельштама-бриллюэна на длине оптического волокна

Изобретение относится к области измерительной техники, в частности к способам измерения сдвига частоты рассеяния Мандельштама-Бриллюэна. При реализации способа измерения сдвига частоты рассеяния Мандельштама-Бриллюэна на длине оптического волокна непрерывное оптическое излучение задающего...
Тип: Изобретение
Номер охранного документа: 0002624801
Дата охранного документа: 06.07.2017
26.08.2017
№217.015.de0f

Способ измерения распределения избыточной длины оптического волокна в модуле оптического кабеля

Изобретение относится к измерительной технике и может быть использовано для измерения избыточной длины оптического волокна в модуле оптического кабеля вдоль длины кабеля. В заявленном способе измерения распределения избыточной длины оптического волокна в модуле оптического кабеля предварительно...
Тип: Изобретение
Номер охранного документа: 0002624796
Дата охранного документа: 06.07.2017
26.08.2017
№217.015.de11

Способ измерения сдвига частоты рассеяния мандельштама-бриллюэна на длине оптического волокна

Изобретение относится к области измерительной техники, в частности к способам измерения сдвига частоты рассеяния Мандельштама-Бриллюэна. При реализации способа измерения сдвига частоты рассеяния Мандельштама-Бриллюэна на длине оптического волокна непрерывное оптическое излучение задающего...
Тип: Изобретение
Номер охранного документа: 0002624827
Дата охранного документа: 07.07.2017
26.08.2017
№217.015.de6e

Способ построения базовой станции волоконно-эфирной телекоммуникационной системы сети мобильной радиосвязи

Изобретение относится к области электросвязи и может использоваться в комбинированных системах волоконно-эфирной структуры сетей мобильной радиосвязи. Технический результат состоит в расширении области применения. Для этого центральную станцию соединяют через оптический разветвитель оптическим...
Тип: Изобретение
Номер охранного документа: 0002624771
Дата охранного документа: 06.07.2017
26.08.2017
№217.015.de74

Способ выравнивания связи мод в оптических волокнах на строительной длине оптического кабеля модульной конструкции с многомодовыми или маломодовыми оптическими волокнами

Изобретение относится к области электротехники и может быть использовано для выравнивания связи мод в оптических волокнах на строительной длине оптического кабеля модульной конструкции с многомодовыми или маломодовыми оптическими волокнами. Согласно способу выравнивания связи мод в оптических...
Тип: Изобретение
Номер охранного документа: 0002624770
Дата охранного документа: 06.07.2017
20.01.2018
№218.016.1c2a

Способ маршрутизации в беспроводных сетях zigbee

Изобретение относится к области беспроводной связи и может быть использовано в беспроводных сенсорных сетях ZigBee.Технический результат состоит в повышении точности маршрутизации при двухадресных пакетах, содержащих адрес начального отправителя и конечного получателя. Для этого функции портов,...
Тип: Изобретение
Номер охранного документа: 0002640349
Дата охранного документа: 28.12.2017
13.02.2018
№218.016.1fd7

Способ увеличения срока службы оптического кабеля

Изобретение относится к области электротехники. Согласно способу увеличения срока службы оптического кабеля строительную длину оптического кабеля подвергают воздействию температурных циклов, для чего барабан со строительной длиной оптического кабеля помещают в климатическую камеру, в которой...
Тип: Изобретение
Номер охранного документа: 0002641298
Дата охранного документа: 17.01.2018
Showing 1-10 of 38 items.
10.01.2014
№216.012.9565

Способ определения места повреждения оптического волокна

Изобретение относится к измерительной технике и может быть использовано для локализации места повреждения оптического волокна. Согласно способу измеряют контрольную и текущую поляризационные характеристики обратного рассеяния оптического волокна. При измерении текущей характеристики с помощью...
Тип: Изобретение
Номер охранного документа: 0002503939
Дата охранного документа: 10.01.2014
10.01.2014
№216.012.95f4

Способ оценивания пропускной способности многомодовой волоконно-оптической линии передачи по диаграмме дифференциальной модовой задержки

Изобретение относится к области волоконно-оптической техники связи и может быть использовано для оценивания пропускной способности многомодовой волоконно-оптической линии передачи с одномодовым источником оптического излучения. Согласно способу многомодовую волоконно-оптическую линию передачи...
Тип: Изобретение
Номер охранного документа: 0002504082
Дата охранного документа: 10.01.2014
10.02.2014
№216.012.9f93

Способ измерения жесткости оптического кабеля при низких температурах

Изобретение относится к технике измерений параметров кабелей и может быть использовано для измерения жесткости оптических кабелей с высокой прочностью на разрыв при низких температурах. Сущность: один конец образца оптического кабеля закрепляют на платформе с помощью первого зажима, а второй...
Тип: Изобретение
Номер охранного документа: 0002506559
Дата охранного документа: 10.02.2014
20.04.2015
№216.013.41f5

Способ отбора многомодовых оптических волокон волоконно-оптической линии передачи для работы с одномодовым источником оптического излучения

Изобретение относится к области волоконно-оптической техники связи и может быть использовано для отбора многомодовых оптических волокон волоконно-оптической линии передачи для работы с одномодовым источником оптического излучения. Многомодовую волоконно-оптическую линию передачи зондируют...
Тип: Изобретение
Номер охранного документа: 0002548383
Дата охранного документа: 20.04.2015
20.07.2015
№216.013.64c2

Способ испытания стойкости оптического кабеля действию замерзающей воды в защитном полимерном трубопроводе

Изобретение относится к технике волоконно-оптической связи и может быть использовано для испытания стойкости оптического кабеля (ОК), предназначенного для прокладки в защитном полимерном трубопроводе (ЗПТ), к действию замерзающей воды в ЗПТ. Отличительная особенность заявленного способа...
Тип: Изобретение
Номер охранного документа: 0002557341
Дата охранного документа: 20.07.2015
10.09.2015
№216.013.7758

Способ измерения избыточной длины оптического волокна в оптическом модуле оптического кабеля в процессе климатических испытаний

Изобретение относится к измерительной технике и применяется для измерения избыточной длины оптического волокна. В указанном способе используют климатическую камеру, в которой устанавливают отрицательную температуру и выдерживают при этой температуре испытуемую длину оптического кабеля в течение...
Тип: Изобретение
Номер охранного документа: 0002562141
Дата охранного документа: 10.09.2015
25.08.2017
№217.015.b6a3

Волоконно-оптический кабель для измерения температурного распределения в паронагнетательных скважинах

Изобретение относится к области нефтедобычи и может быть использовано при добыче вязкой нефти, при воздействии на призабойную зону скважин паром при высоких температуре и давлении в устройствах для проведения измерений температурного распределения по скважине. Волоконно-оптический кабель для...
Тип: Изобретение
Номер охранного документа: 0002614662
Дата охранного документа: 28.03.2017
25.08.2017
№217.015.b746

Способ уменьшения дифференциальной модовой задержки волоконно-оптической линии передачи

Изобретение относится к технике связи и может быть использовано для волоконно-оптической связи. Технический результат состоит в уменьшении дифференциальной модовой задержки многомодовой волоконно-оптической линии в маломодовом режиме передачи. Для этого последовательно многомодовому оптическому...
Тип: Изобретение
Номер охранного документа: 0002614535
Дата охранного документа: 28.03.2017
26.08.2017
№217.015.ddc6

Способ измерения сдвига частоты рассеяния мандельштама-бриллюэна на длине оптического волокна

Изобретение относится к области измерительной техники, в частности к способам измерения сдвига частоты рассеяния Мандельштама-Бриллюэна. При реализации способа измерения сдвига частоты рассеяния Мандельштама-Бриллюэна на длине оптического волокна непрерывное оптическое излучение задающего...
Тип: Изобретение
Номер охранного документа: 0002624801
Дата охранного документа: 06.07.2017
26.08.2017
№217.015.de0f

Способ измерения распределения избыточной длины оптического волокна в модуле оптического кабеля

Изобретение относится к измерительной технике и может быть использовано для измерения избыточной длины оптического волокна в модуле оптического кабеля вдоль длины кабеля. В заявленном способе измерения распределения избыточной длины оптического волокна в модуле оптического кабеля предварительно...
Тип: Изобретение
Номер охранного документа: 0002624796
Дата охранного документа: 06.07.2017
+ добавить свой РИД