×
09.06.2018
218.016.5d06

Результат интеллектуальной деятельности: Способ изготовления чувствительного элемента акселерометра

Вид РИД

Изобретение

Аннотация: Изобретение может быть использовано при создании и изготовлении микромеханических устройств, содержащих упругие гибкие деформируемые исполнительные элементы методом химического травления с использованием масок. Способ изготовления чувствительного элемента акселерометра основан на формировании групповым методом объемных структур чувствительных элементов методом поэтапного травления пластин монокристаллического кремния ориентации (100) или кварцевого стекла диаметром не менее 100 мм, включающим жидкостное и ионно-плазменное травление. Обеспечиваются увеличение производительности за счёт использования группового техпроцесса и повышение качества получаемых деталей. 6 з.п. ф-лы, 6 ил.

Изобретение может быть использовано при создании и изготовлении микромеханических устройств, содержащих упругие деформируемые исполнительные элементы методом химического травления с использованием масок.

Из уровня техники известны способы изготовления маятникового чувствительного элемента акселерометра (RU 2333137C1, 10.08.2008) (1), в которых формируют объемную структуру чувствительного элемента методом поэтапного травления пластины n-типа с ориентацией (100), включающий первичную химическую обработку пластины, нанесение на пластину маски, устойчивой к анизотропному травлению, последующее анизотропное травление пластины и разделение на отдельные элементы.

Недостатком указанного способа (1) является то, что при анизотропном травлении на получаемом чувствительном элементе образуются острые кромки, которые являются концентраторами механических напряжений.

Наиболее близким аналогом заявленного способа может быть выбран способ изготовления маятникового чувствительного элемента для акселерометра (RU 2539767C1, 27.01.2015) (2) методом поэтапного травления кремниевой пластины n-типа с ориентацией (100), включающий первичную химическую обработку пластины, многократное, последовательное нанесение на пластину маски, устойчивой к травлению, последующее травление пластины и разделение на отдельные элементы.

Наиболее близкий аналог (2) также основан на применении многократного анизотропного травления, который приводит к образованию острых кромок на получаемом чувствительном элементе, являющихся концентраторами механических напряжений.

Техническим результатом заявленного способа является увеличение производительности за счёт использования группового техпроцесса и повышение качества получаемых деталей за счет получения закругленных, неострых кромок чувствительного элемента, в частности кромок торсиона.

Указанный технический результат достигается за счет создания способа изготовления чувствительного элемента акселерометра, который основан на формировании групповым методом объемных структур чувствительных элементов методом поэтапного травления пластин монокристаллического кремния (ориентации (100)) или кварцевого стекла диаметром не менее 100 мм, включающим:

жидкостное травление, которое заключается в первичной химической обработке пластины, последовательном нанесении на пластину однослойной или двухслойной маски с двух сторон пластины, устойчивой к травлению в жидкостных анизотропных или изотропных растворах травления, формировании методами двусторонней фотолитографии химического травления рисунка, травлении на глубину, равную половине толщины пластины за вычетом половины толщины упругих элементов, и удалении маски, используемой при глубинном жидкостном травлении, и

ионно-плазменное травление, которое заключается в отмывке пластины, нанесении маски, стойкой к ионно-плазменному травлению, формировании элементов упругих и технологических перемычек в новой маске на одной стороне пластины, травлении ионно-плазменным методом на глубину, равную толщине упругих и технологических перемычек до образования сквозных отверстий, и снятии маски.

В частном варианте выполнения при ионно-плазменном травлении упругих элементов место их закрепления с неподвижной рамкой выполняют закругленным.

В еще одном частном варианте выполнения для последовательного нанесения на пластину кремния одно- или двухслойной маски, устойчивой к химическому травлению, последующее химическое травление пластины осуществляют на глубину Y=[(t/2-Z/2)], где t - толщина пластины, Z - толщина упругого элемента.

В другом частном случае выполнения для однослойной маски проводят жидкостное травление последней в травящем растворе, не вступающем в реакцию с материалом пластины на глубину ½ толщины маски.

В частном случае выполнения для двухслойной маски проводят жидкостное травление нижнего слоя на всю его толщину в травящем растворе, не вступающем в реакцию с материалом пластины и верхним слоем маски, а затем стравливают верхний слой маски ионно-плазменным методом.

В частном случае выполнения при изготовлении маятникового чувствительного элемента из монокристаллического кремния после ионно-плазменного травления выполняют: разделение пластины на отдельные элементы, их отмывку, нанесение на элементы слоя проводников и контактных площадок из электропроводящего материала через маску, сформированную в пластине монокристаллического кремния.

В еще одном частном случае выполнения способа при изготовлении маятникового чувствительного элемента из кварцевого стекла ионно-плазменное травление включает: отмывку пластины, нанесении с одной из сторон пластины маски, стойкой к ионно-плазменному травлению, с адгезионным подслоем, нанесение с другой стороны пластины электропроводящего слоя, стойкого к жидкостному травителю материала маски, с тем же адгезионным подслоем, как и у маски, формирование рисунков элементов упругих и технологических перемычек в маске на одной стороне пластины и слоя проводников и контактных площадок на другой стороне пластины, жидкостное травление маски, слоя проводников и адгезионного подслоя, травление ионно-плазменным методом на глубину, равную толщине упругих и технологических перемычек до образования сквозных отверстий, снятие маски и адгезионного подслоя.

Заявленное изобретение проиллюстрировано следующими чертежами:

На фиг.1 приведен кремниевый чувствительный элемент акселерометра с торсионами крестообразного типа: а) внешний вид; б) вид на пластине;

на фиг.2 - кварцевый чувствительный элемент акселерометра с торсионами мостикового типа: а) внешний вид; б) вид на пластине;

на фиг.3 - ориентация маски на пластине с ориентацией (100) для получения вертикального профиля травления;

на фиг. 4 – последовательность технологических операций маятниковых чувствительных элементов из кремния;

на фиг. 5 – последовательность технологических операций маятниковых чувствительных элементов из кварцевого стекла;

на фиг. 6 – последовательность технологических операций маятниковых чувствительных элементов из кварцевого стекла с «подвешенным» проводниковым слоем.

На фиг. 1-6 обозначено:

1 - маска;

2 - базовый срез пластины;

3 - пластина с нанесенной маской для жидкостного травления;

4 - пластина после жидкостного травления;

5 - пластина с нанесенной маской для ионно-плазменного травления;

6 - пластина после ионно-плазменного травления.

Заявленный способ изготовления чувствительного элемента акселерометра может быть осуществлен для получения кремниевых или кварцевых чувствительных элементов акселерометра различных конструкций. Данный способ основан на формировании групповым методом объемных структур чувствительных элементов методом поэтапного травления пластин монокристаллического кремния (ориентации (100)) или кварцевого стекла диаметром не менее 100 мм и включает жидкостное и ионно-плазменное травление. Жидкостное травление заключается в первичной химической обработке пластины, последовательном нанесении на пластину однослойной или двухслойной маски с двух сторон пластины, устойчивой к травлению в жидкостных анизотропных или изотропных растворах травления, формировании методами двусторонней фотолитографии, химического травления рисунка, травлении на глубину, равную половине толщины пластины за вычетом половины толщины упругих элементов, и удалении маски, используемой при глубинном жидкостном травлении.

Ионно-плазменное травление, заключается в отмывке пластины, нанесении маски, стойкой к ионно-плазменному травлению, формировании элементов упругих и технологических перемычек в новой маске на одной стороне пластины и травлении ионно-плазменным методом на глубину, равную толщине упругих и технологических перемычек, до образования сквозных отверстий. При ионно-плазменном травлении упругих элементов место их закрепления с неподвижной рамкой выполняют закругленным.

При изготовлении чувствительного элемента акселерометра из пластин монокристаллического кремния (ориентации (100)) после последовательного нанесения на пластину кремния одно- или двухслойной маски, устойчивой к химическому травлению, последующее химическое травление пластины осуществляют на глубину Y=[(t/2-Z/2)], где t - толщина пластины, Z - толщина упругого элемента. Для однослойной маски проводят жидкостное травление последней в травящем растворе, невступающем в реакцию с материалом пластины на глубину ½ толщины маски. Для двухслойной маски проводят жидкостное травление нижнего слоя на всю его толщину в травящем растворе, невступающем в реакцию с материалом пластины и верхним слоем маски, а затем стравливают верхний слой маски ионно-плазменным методом. После ионно-плазменного травления выполняют разделение пластины на отдельные элементы, их отмывку, нанесение на элементы слоя проводников и контактных площадок из электропроводящего материала через маску, сформированную в пластине монокристаллического кремния.

При изготовлении маятникового чувствительного элемента из кварцевого стекла ионно-плазменное травление включает: отмывку пластины, нанесение с одной из сторон пластины маски, стойкой к ионно-плазменному травлению, с адгезионным подслоем, нанесение с другой стороны пластины электропроводящего слоя с тем же адгезионным подслоем, как и у маски, формирование элементов упругих и технологических перемычек в маске на одной стороне пластины и слоя проводников и контактных площадок на другой стороне пластины, травление ионно-плазменным методом на глубину, равную толщине упругих и технологических перемычек до образования сквозных отверстий, травление маски и адгезионного подслоя маски и слоя проводников. С целью уменьшения паразитных механических напряжений, возникающих при изменении температуры из-за разницы в температурных коэффициентах расширения материалов упругого элемента и проводникового слоя, проходящего по поверхности упругих элементов, необходимо сформированные участки проводников располагать таким образом, чтобы они «висели» в воздухе (фиг. 6).

Применение указанного способа позволяет устранить следующие недостатки применяемых раннее методов, например при анизотропном жидкостном травлении кремния (без плазмохимического), при вскрытии отверстия в анизотропном травителе на торце рисунка формируются плоскости (110). При этом в другом месте пластины отверстия еще не вскрылись. Таким образом, скорость ухода линейного размера креста 4*cos45*V(110). По результатам измерений уход размера составил от 10 до 15 мкм при разнотолщинности пластины (±2 мкм).

Согласно численному моделированию при деформации торсиона, максимальные напряжения возникают в местах соединения торсиона с неподвижной рамкой. При анизотропном травлении места соединения гранятся плоскостями (111) и (110). При этом указанные точки являются концентраторами механических напряжений и могут при нагрузке приводить к разрушению торсионов.

При плазмохимическом травлении место закрепления креста можно сделать закругленным, что позволяет снизить механические напряжения в этих точках и тем самым повысить процент выхода годных.

При травлении кварца в изотропном травителе, при групповом травлении на пластинах диаметром 100 мм за счет неоднородности толщины пластины (± 2 микрометра) уход геометрических размеров составлял от 50 до 70 микрометров. Применение ионно-плазменного травления позволило достичь точности ±10 микрометров.

В качестве неисключительного примера выполнения способа можно привести получение кремниевого маятникового чувствительного элемента для акселерометра, который состоит из двух параллельно-расположенных балок, закреплённых по центру с помощью крестообразных торсионов с рамкой, и термокомпенсационной рамки с металлическими контактными площадками, предназначенной для защиты акселерометра от напряжений. На одном из плеч каждой балки, противоположных друг другу, травлением удалена часть материала кремния, поэтому в подвешенном состоянии из-за разности масс в плечах балки располагаются под углом к горизонту. Балки размещены таким образом, чтобы выемка располагалась на диагональных плечах балок.

Результаты моделирования показывают, что с помощью варьирования геометрией торсиона можно подобрать необходимые параметры жёсткости сочленения в достаточно широком диапазоне, ограниченном лишь габаритами кремниевой пластины, на которой выполняются элементы системы. Отличительной особенностью данной конструкции будут небольшие перемещения «подвешенного» элемента и высокая жёсткость конструкции.

В качестве материала для формирования структуры были выбраны кремниевые пластины n-типа с ориентацией (100) с удельным сопротивлением 4,5 Ом·см с двусторонней полировкой. Формирование структуры осуществлялось методом поэтапного травления кремния для получения нужной объемной структуры. Травление осуществлялось раствором KOH:H2O при температуре 80°С через маску оксида кремния. Локальные отверстия в маске формировались с помощью фотолитографии.

Другая сложность формирования структуры заключалась в выполнении требования к вертикальности стенок торсиона, которая может быть обеспечена ориентацией прямолинейных сторон маски под углом 45° относительно направления [110], вдоль которого ориентирован базовый срез кремниевой пластины (см. фиг. 3-а).

Вследствие поворота маски будет происходить подтравливание кремния под маской на величину, равную глубине травления (фиг. 3-б), а также подтравливание внешних углов выпуклых структур. Подтравливание связано с образованием на углах быстротравящихся граней типа (112). Таким образом, на фотошаблоне размеры элементов, параллельных плоскости (112), необходимо уменьшать на величину, равную глубине растравливания.

В результате ряда технологических операций, включающих в себя процессы фотолитографии, химическую обработку, анизотропное жидкостное травление, была сформирована структура маятника с вертикальными торсионами заданной геометрии.

Полученные образцы выламывались из пластины и методом анодного сращивания устанавливались на статорную пластину, с помощью которой осуществляются электрический контакт и определение выходных параметров устройства.

Метод позволяет изготавливать по групповой технологии большое количество маятников с высоким процентом выхода годных по пластине, причем наибольшее влияние на выход годных оказывает равномерность исходной пластины по толщине, то есть зависит от технологических возможностей производителя.

Таким образом, предлагаемый способ изготовления чувствительного элемента акселерометра позволяет производить чувствительные элементы групповым методом таким образом, что влияние недостатков исходных пластин сводится к минимуму, а качество получаемых деталей повышается.


Способ изготовления чувствительного элемента акселерометра
Способ изготовления чувствительного элемента акселерометра
Способ изготовления чувствительного элемента акселерометра
Способ изготовления чувствительного элемента акселерометра
Способ изготовления чувствительного элемента акселерометра
Источник поступления информации: Роспатент

Showing 81-90 of 99 items.
15.10.2019
№219.017.d5fa

Способ радиометрической коррекции скановой структуры изображения от многоэлементного фотоприёмника многозонального сканирующего устройства

Изобретение относится к области дистанционного зондирования Земли и касается способа радиометрической коррекции скановой структуры изображения от многоэлементного фотоприёмника многозонального сканирующего устройства. Способ включает в себя получение с помощью аппаратуры дистанционного...
Тип: Изобретение
Номер охранного документа: 0002702849
Дата охранного документа: 11.10.2019
18.10.2019
№219.017.d7cf

Интеллектуальная космическая система для мониторинга лесного фонда

Изобретение относится к системам мониторинга лесного фонда. Технический результат заключается в обеспечении ансамблирования результатов полученных слоёв и разрешений. Система включает совокупность компьютерных средств на основе свёрточной нейронной сети, использующей данные с космических...
Тип: Изобретение
Номер охранного документа: 0002703349
Дата охранного документа: 16.10.2019
24.11.2019
№219.017.e64a

Бортовой информационно-навигационный комплекс

Изобретение относится к области бортового информационно-навигационного оборудования космических аппаратов (КА) и предназначено для формирования и излучения навигационных радиосигналов системы ГЛОНАСС. Изобретение представляет собой бортовой информационно-навигационный комплекс, состоящий из...
Тип: Изобретение
Номер охранного документа: 0002706835
Дата охранного документа: 21.11.2019
26.11.2019
№219.017.e6c9

Интеллектуальная космическая система для мониторинга зданий и сооружений

Изобретение относится к интеллектуальной космической системе мониторинга. Технический результат заключается в дистанционном зондировании Земли для мониторинга зданий и сооружений. Система включает совокупность компьютерных средств, структурированных на основе сверточной нейронной сети,...
Тип: Изобретение
Номер охранного документа: 0002707138
Дата охранного документа: 22.11.2019
27.12.2019
№219.017.f3b3

Способ измерения спектральных характеристик в видимом и инфракрасном спектральных диапазонах и установка, реализующая этот способ

Изобретение относится к области измерительной техники и касается способа измерения спектральных характеристик. Способ включает в себя два цикла, длина оптического пути которых одинакова. Первый цикл включает измерение спектральной характеристики схемы измерительного тракта, которая содержит...
Тип: Изобретение
Номер охранного документа: 0002710382
Дата охранного документа: 26.12.2019
08.02.2020
№220.018.0022

Способ изготовления свч-гибридной интегральной микросхемы космического назначения с многоуровневой коммутацией

Использование: для изготовления СВЧ–гибридных интегральных микросхем космического назначения с многоуровневой коммутацией на основе органического диэлектрика. Сущность изобретения заключается в том, что способ изготовления СВЧ–гибридной интегральной микросхемы с многоуровневой коммутацией на...
Тип: Изобретение
Номер охранного документа: 0002713572
Дата охранного документа: 05.02.2020
08.02.2020
№220.018.006b

Система управления полетом космического аппарата с применением в качестве ретрансляторов низкоорбитальных спутников, связанных между собой межспутниковыми линиями связи

Изобретение относится к области космонавтики, а именно к области управления полетом космическими аппаратами (КА). Система управления полетом представляет собой спутниковую цифровую транспортную сеть передачи информации управления от центра управления полетом до КА в прямом и обратном каналах...
Тип: Изобретение
Номер охранного документа: 0002713293
Дата охранного документа: 05.02.2020
08.02.2020
№220.018.00c3

Унифицированный командно-измерительный пункт

Изобретение относится к способу управления КА и наземному комплексу управления, в частности к способу организации управления КА и проведения измерений полетов изделий ракетно-космической техники, и унифицированному командно-измерительный пункту. Унифицированный командно-измерительный пункт...
Тип: Изобретение
Номер охранного документа: 0002713679
Дата охранного документа: 06.02.2020
08.02.2020
№220.018.00d7

Система высокоточной дифференциальной коррекции для контроля подвижных объектов

Изобретение относится к радиотехнике и может быть использовано в системах управления движением транспорта для повышения точности и непрерывности определения координат подвижных объектов. Система высокоточной дифференциальной коррекции для контроля подвижных объектов включает децентрализованную...
Тип: Изобретение
Номер охранного документа: 0002713571
Дата охранного документа: 05.02.2020
08.02.2020
№220.018.00d8

Устройство экранирования электронных узлов многослойной свч платы от электромагнитного излучения

Изобретение относится к устройствам защиты СВЧ модулей от внешнего и внутреннего паразитного электромагнитного излучения (ЭМИ) и может быть использовано для экранирования узлов СВЧ модуля от любого ЭМИ. Техническим результатом является обеспечение реализации разночастотных СВЧ каналов для...
Тип: Изобретение
Номер охранного документа: 0002713650
Дата охранного документа: 06.02.2020
Showing 41-43 of 43 items.
13.02.2020
№220.018.0235

Свч коммутационная плата из высокоомного кремния на металлическом основании

Заявленное изобретение относится к конструкции СВЧ коммутационной платы из высокоомного кремния на металлическом основании. Техническим результатом заявленного изобретения является уменьшение омических потерь при распространении энергии СВЧ, обеспечение возможности варьировать в более широких...
Тип: Изобретение
Номер охранного документа: 0002713917
Дата охранного документа: 11.02.2020
09.07.2020
№220.018.30e5

Микросистема терморегулирования малых космических аппаратов

Изобретение относится к микромеханическим устройствам преимущественно малых космических аппаратов (МКА). Микросистема содержит неподвижную кремниевую рамку (10), приклеиваемую к поверхности (1) МКА, шарнирные (6) створки жалюзи (2) с внешним высокоотражающим металлическим покрытием, а также...
Тип: Изобретение
Номер охранного документа: 0002725947
Дата охранного документа: 07.07.2020
21.05.2023
№223.018.6898

Способ формирования объемных элементов в кремнии для устройств микросистемной техники и производственная линия для осуществления способа

Способ формирования объемного элемента для устройств микросистемной техники предусматривает формирование маски для анизотропного травления с лицевой стороны и с обратной стороны из двух слоев; обработку кремния в водном растворе, содержащем окислительный компонент для кремния и травящий...
Тип: Изобретение
Номер охранного документа: 0002794560
Дата охранного документа: 21.04.2023
+ добавить свой РИД