×
09.06.2018
218.016.5c91

Результат интеллектуальной деятельности: Способ изготовления бескорпусного диода для солнечных батарей космических аппаратов

Вид РИД

Изобретение

Аннотация: Изобретение относится к области технологии дискретных полупроводниковых приборов и может быть использовано при изготовлении бескорпусных диодов для солнечных батарей космических аппаратов. Способ изготовления бескорпусного диода для солнечных батарей космических аппаратов согласно изобретению включает формирование структуры планарного диода, проведение термических операций, металлизации лицевой и тыльной сторон кремниевой монокристаллической подложки, разделение подложки на кристаллы, присоединение электропроводящих шин, формирование защитного покрытия на металлизированных поверхностях бескорпусного диода в сборе и на электропроводящих шинах, при этом защитное покрытие на металлизированных поверхностях бескорпусного диода в сборе и на электропроводящих шинах формируют на основе никель-золота последовательно в несколько этапов: удаление органических загрязнений жидкостными методами, нанесение химического никеля, промывка никелированного диода в сборе, нанесение иммерсионного золота, промывка позолоченного диода в сборе, сушка в вакууме. Изобретение позволит повысить качество бескорпусных диодов и обеспечит возможность изготавливать бескорпусные диоды, сформированные в едином технологическом цикле на одной подложке, с идентичными характеристиками. 1 з.п. ф-лы, 2 ил.

Область техники

Изобретение относится к области технологии дискретных полупроводниковых приборов и может быть использовано при изготовлении бескорпусных диодов для солнечных батарей космических аппаратов.

Уровень техники

Для обеспечения надежной работы солнечных батарей космических аппаратов применяется диодная защита, которая обеспечивается блокирующими и шунтирующими (байпасными) диодами. Солнечная батарея состоит из отдельных генераторов, включающих цепочки фотопреобразователей, внутри генераторов встречно-параллельно с фотопреобразователями устанавливают шунтирующие диоды.

Из уровня техники известен способ изготовления бескорпусного диода для солнечных батарей космических аппаратов, включающий создание на рабочей стороне в эпитаксиальном слое кремниевой монокристаллической подложки диэлектрической изоляции, формирование p-n-перехода загонкой с последующей разгонкой, формирование металлизации рабочей стороны кремниевой монокристаллической подложки, утонение кремниевой монокристаллической подложки с обратной нерабочей стороны, металлизацию нерабочей стороны и присоединение электропроводящих шин, утонение кремниевой монокристаллической подложки с обратной нерабочей стороны проводят после формирования на рабочей стороне кремниевой монокристаллической подложки облученного УФ-лучом фоточувствительного слоя последовательно абразивной обработкой и плазмохимическим травлением нерабочей стороны, после чего фоточувствительный слой удаляют в проявителе, при этом плазмохимическое травление проводят на глубину не менее 10 мкм при температуре не более 120°С, а толщину фоточувствительного слоя выбирают в зависимости от толщины металлизации на рабочей стороне [см. патент РФ 2411607].

К недостаткам известного способа изготовления относится низкое качество процесса изготовления из-за высокой вероятности отслаивания (потери адгезии) металлизации при формировании металлизации, а также низкое качество в связи с окислением металлизации готовых диодов после сборки и, как следствие, невозможность дальнейшей установки бескорпусных диодов в солнечные батареи из-за окисленных контактов.

Наиболее близким по технической сущности и достигаемому эффекту техническим решением (прототипом) является способ изготовления бескорпусного диода для солнечных батарей космических аппаратов, включающий формирование структуры планарного диода на кремниевой монокристаллической подложке, формирование металлизации рабочей стороны кремниевой монокристаллической подложки, покрытие полученной структуры полностью фоточувствительным слоем, сушка и облучение УФ-лучом, утонение нерабочей стороны кремниевой монокристаллической подложки жидкостным травлением, удаление облученного фоторезиста в проявителе, формирование металлизации нерабочей стороны кремниевой монокристаллической подложки, отжиг полученной структуры, разделение кремниевой монокристаллической подложки на кристаллы, присоединение электропроводящих шин к металлизации рабочей и нерабочей сторонам кристалла, при этом формирование металлизации рабочей стороны кремниевой монокристаллической подложки осуществляют в два этапа: формируют омический контакт из алюминия к p+ области, а затем осуществляют металлизацию магнетронным напылением алюминия, никеля и серебра, а металлизацию нерабочей стороны кремниевой монокристаллической подложки выполняют последовательным магнетронным напылением вентильного металла, никеля и серебра; омический контакт к p+ области формируют магнетронным напылением алюминия при температуре кремниевой монокристаллической подложки 110÷130°С с последующей фотолитографией и вжиганием алюминия; металлизацию магнетронным напылением алюминия, никеля и серебра проводят при температуре кремниевой монокристаллической подложки 170÷190°С с предварительной ионной бомбардировкой; металлизацию нерабочей стороны кремниевой монокристаллической подложки проводят при температуре кремниевой монокристаллической подложки 110÷130°С [см. патент РФ 2479888].

К недостаткам известного способа изготовления относится низкое качество диодов в связи с окислением серебряных поверхностей, что приводит к невозможности дальнейшей установки бескорпусного диода в состав солнечных батарей и/или выходу из строя уже установленных диодов в составе солнечных батарей.

Раскрытие изобретения

Техническим результатом заявленного изобретения является повышение качества бескорпусных диодов для солнечных батарей космических аппаратов.

Предложенный способ изготовления бескорпусного диода для солнечных батарей космических аппаратов включает формирование структуры планарного диода, проведение всех термических операций, металлизации лицевой и тыльной сторон кремниевой монокристаллической подложки, разделение подложки на кристаллы, присоединение электропроводящих шин и последующее формирование на металлизированных поверхностях бескорпусного диода в сборе и на электропроводящих шинах защитного покрытия на основе никель-золота последовательно в несколько этапов: удаление органических загрязнений жидкостными методами, нанесение химического никеля, промывка никелированного диода в сборе, нанесение иммерсионного золота, промывка позолоченного диода в сборе, сушка в вакууме при 3⋅10-3 ÷10-4 Па при температуре 120±1°С в течение не менее 30 минут.

Краткое описание чертежей

Признаки и сущность заявленного изобретения поясняются в последующем детальном описании, иллюстрируемом фиг.1 и 2.

На фиг. 1 представлена блок-схема технологии изготовления бескорпусных диодов для солнечных батарей космических аппаратов, содержащая следующие блоки:

1 – подготовка бескорпусных диодов для солнечных батарей космических аппаратов, включающая:

формирование структуры планарного диода,

проведение всех термических операций,

формирование металлизации лицевой и тыльной сторон кремниевой монокристаллической подложки,

разделение подложки на кристаллы,

присоединение электропроводящих шин;

2 – удаление органических загрязнений жидкостными методами;

3 – нанесение химического никеля;

4 – промывка никелированного диода в сборе;

5 – нанесение иммерсионного золота;

6 – промывка позолоченного диода в сборе;

7 – сушка в вакууме при 3⋅10-3 ÷10-4 Па при температуре 120±1°С не менее 30 минут;

8 – выходной контроль диодов;

На фиг. 2 представлены фотографии бескорпусных диодов с различными типами покрытий до и после выдержки в течение не менее 96 часов при температуре 125±5°С.

На фиг. 2а представлена фотография диода с серебряным покрытием до выдержки при температуре 125±5°С.

На фиг. 2б представлена фотография диода с серебряным покрытием после выдержки при температуре 125±5°С в течение 96 часов.

На фиг. 2в представлена фотография диода с покрытием на основе иммерсионного никель-золота до выдержки при температуре 125±5°С.

На фиг. 2г представлена фотография диода с покрытием на основе иммерсионного никель-золота после выдержки при температуре 125±5°С в течение не менее 96 часов.

Исходя из анализа результатов выдержки при температуре 125±5°С в течение не менее 96 часов выявлено, что покрытие на основе серебра темнеет и образуется окисел серебра, что подтверждается анализом состава поверхности на РЭМ. Покрытие на основе иммерсионного никель-золота после выдержки при температуре 125±5°С в течение не менее 96 часов визуально не изменилось, а анализ поверхности на РЭМ показал отсутствие изменения состава поверхности.

Осуществление и пример реализации изобретения

Заявленный способ был использован при реализации групповой технологии изготовления бескорпусных диодов для солнечных батарей космических аппаратов и состоит из следующей последовательности технологических операций (см. фиг. 1):

подготовка бескорпусных диодов для солнечных батарей космических аппаратов, включающая формирование структуры планарного диода, проведение всех термических операций, металлизацию лицевой и тыльной сторон кремниевой монокристаллической подложки, разделяют подложки на кристаллы, присоединяют электропроводящие шины,

формирование защитного покрытия на металлизированных поверхностях бескорпусного диода в сборе и на электропроводящих шинах, выполняемое последовательно в несколько этапов, включающих: удаление органических загрязнений жидкостными методами, нанесение иммерсионного золота, промывка позолоченного диода в сборе, сушка в вакууме при 3⋅10-3 ÷10-4 Па при температуре 120±1°С в течение не менее 30 минут.

При этом удаление органических загрязнений жидкостными методами заключается в обработке в растворе очистителя при температуре раствора от 40 до 45°С; промывке диода в проточной деионизованной воде при температуре воды от 15 до 25°С в течение 2 минут; обработке диода в растворе травителя при температуре раствора от 20 до 25°С в течение 90 с; промывке диода в проточной деионизованной воде при температуре воды от 15 до 25°С в течение не менее 2 минут.

Нанесение химического никеля, толщиной 0,5±0,05 мкм на бескорпусной диод осуществляют в растворе химического никелирования при рН = 4,6-5,2 при температуре раствора от 85 до 90°С в течение 1,5-2 минуты.

Промывка никелированного диода в сборе заключается в обработке диода в проточной воде при температуре воды от 15 до 25°С в течение не менее 1 минуты; промывке диода в дистиллированной воде при температуре воды от 15 до 25°С в течение не менее 1 минуты.

Нанесение иммерсионного золота, толщиной 0,1±0,05 мкм заключается в обработке диода в растворе иммерсионного золочения при pH=5,5-6,5 при температуре раствора от 80 до 90°С в течение 10-15 минут.

Промывка позолоченного диода в сборе заключается в обработке диода в проточной деионизованной воде при температуре воды от 15 до 25°С в течение не менее 1 минуты; промывке диода в дистиллированной воде при температуре воды от 55 до 65°С в течение 2-3 минут; сушки диода при температуре 70±5°С в течение 15-20 минут.

Сушка в вакууме позолоченного диода в сборе заключается в прогреве в вакууме при остаточном давлении 3⋅10-3÷10-4 Па при температуре 120±1°С в течение не менее 30 минут и дальнейшем охлаждении в вакууме до комнатной температуры.

Остаточное давление 3⋅10-3 ÷10-4 Па, при котором проводят сушку в вакууме, определяли исходя из закона Пашена [F. Paschen, Annalender Physik und Chemie (Wiedemanns Annalen) 37, Ser. 3, 69 (1889)] и необходимости удаления адсорбированной влаги. Так как сушка в вакууме осуществляется за счёт прогрева галогенными лампами в вакуумной камере, то на рабочие характеристики прогрева действуют ограничения, связанные с возможным образованием пробоя между потенциалом ламп и корпусом за счёт уменьшения длины свободного пробега частиц и ионизации атомов при откачке. Зависимость пробивного напряжения газа при различном вакууме в однородном электрическом поле, при котором происходит зажигание тлеющего разряда, описывает закон Пашена. Исходя из зависимости для воздуха низкого давления по закону Пашена и ограничения минимального остаточного давления в камере установки, обеспечиваемого установкой сушки в вакууме, определён диапазон 3⋅10-3÷10-4 Па, при котором проводят сушку в вакууме.

Температура сушки в вакууме 120±1°С в течение не менее 30 минут определялась исходя из необходимости удаления влаги (в условиях вакуума температура кипения жидкости снижается).

Сформированное защитное покрытие на металлизированных поверхностях бескорпусного диода в сборе и на электропроводящих шинах на основе никель-золота обладает существенно более высокой коррозионной стойкостью по сравнению с известными аналогами на основе серебра (фиг.2).

Предложенный способ изготовления бескорпусного диода для солнечных батарей космических аппаратов позволяет повысить качество бескорпусных диодов и получать бескорпусные диоды, сформированные в едином технологическом цикле на одной подложке с идентичными характеристиками.


Способ изготовления бескорпусного диода для солнечных батарей космических аппаратов
Способ изготовления бескорпусного диода для солнечных батарей космических аппаратов
Источник поступления информации: Роспатент

Showing 91-99 of 99 items.
13.02.2020
№220.018.0235

Свч коммутационная плата из высокоомного кремния на металлическом основании

Заявленное изобретение относится к конструкции СВЧ коммутационной платы из высокоомного кремния на металлическом основании. Техническим результатом заявленного изобретения является уменьшение омических потерь при распространении энергии СВЧ, обеспечение возможности варьировать в более широких...
Тип: Изобретение
Номер охранного документа: 0002713917
Дата охранного документа: 11.02.2020
15.02.2020
№220.018.02ee

Способ маршрутизации в сетях подвижной персональной спутниковой связи на низкоорбитальных спутниках-ретрансляторах с зональной регистрацией абонентов и маршрутизатор низкоорбитального спутника ретранслятора с интегрированными службами для осуществления указанного способа

Изобретение относится к области беспроводной связи. Технический результат заключается в повышении эффективности работы алгоритмов маршрутизации в сетях подвижной персональной спутниковой связи (СППСС) на низкоорбитальных спутниках ретрансляторах (НСР) за счет снижения вычислительной нагрузки на...
Тип: Изобретение
Номер охранного документа: 0002714220
Дата охранного документа: 13.02.2020
27.02.2020
№220.018.0684

Космическая система траекторных измерений

Изобретение относится к средствам определения орбит космических аппаратов (КА). Система траекторных измерений включает один или более КА на солнечно-синхронной орбите, средства контроля бортовой аппаратуры дальномерно-доплеровской системы (ДДС) КА, связанные с одним или более...
Тип: Изобретение
Номер охранного документа: 0002715069
Дата охранного документа: 25.02.2020
05.04.2020
№220.018.135a

Интеллектуальная космическая система для мониторинга участков недропользования открытого типа

Изобретение относится к вычислительной технике и может быть использовано для мониторинга участков недропользования открытого типа. Техническим результатом является повышение быстродействия обработки данных и снижение количества вычислительных ресурсов. Система содержит совокупность компьютерных...
Тип: Изобретение
Номер охранного документа: 0002718419
Дата охранного документа: 02.04.2020
06.07.2020
№220.018.300c

Перестраиваемый диодный лазер с внешним резонатором

Изобретение относится к лазерной технике. Перестраиваемый диодный лазер с внешним резонатором содержит последовательно установленные на единой оптической оси лазерный диод, коллимирующий объектив, интерференционный фильтр, фокусирующий объектив, отражающее зеркало, установленное на единой...
Тип: Изобретение
Номер охранного документа: 0002725639
Дата охранного документа: 03.07.2020
21.05.2023
№223.018.6898

Способ формирования объемных элементов в кремнии для устройств микросистемной техники и производственная линия для осуществления способа

Способ формирования объемного элемента для устройств микросистемной техники предусматривает формирование маски для анизотропного травления с лицевой стороны и с обратной стороны из двух слоев; обработку кремния в водном растворе, содержащем окислительный компонент для кремния и травящий...
Тип: Изобретение
Номер охранного документа: 0002794560
Дата охранного документа: 21.04.2023
17.06.2023
№223.018.7e01

Микромодуль космического назначения

Изобретение относится к микроэлектронным приборам космического назначения и может быть использовано в составе бортовой и наземной аппаратуры космических аппаратов с высокоплотным монтажом. Предложен микромодуль, включающий в свой состав корпус с крышкой, основание, N чередующихся коммутационных...
Тип: Изобретение
Номер охранного документа: 0002778034
Дата охранного документа: 12.08.2022
17.06.2023
№223.018.7f2d

Способ изготовления микромодуля

Изобретение относится к технологии микроэлектронных приборов, состоящих из нескольких полупроводниковых компонентов на твердом теле, и может быть использовано при производстве аппаратуры с высокоплотным монтажом. Cпособ изготовления микромодуля включает формирование на коммутационной плате...
Тип: Изобретение
Номер охранного документа: 0002773807
Дата охранного документа: 09.06.2022
17.06.2023
№223.018.8039

Многоцелевая модульная платформа для создания космических аппаратов нанокласса

Изобретение относится к области космической техники, а более конкретно к космическим аппаратам с общей массой до 10 кг. Многоцелевая модульная платформа космического аппарата нанокласса выполнена в форме шестиугольной призмы и состоит из набора унифицированных масштабируемых модулей. Модули...
Тип: Изобретение
Номер охранного документа: 0002762452
Дата охранного документа: 21.12.2021
Showing 41-42 of 42 items.
17.06.2023
№223.018.7e01

Микромодуль космического назначения

Изобретение относится к микроэлектронным приборам космического назначения и может быть использовано в составе бортовой и наземной аппаратуры космических аппаратов с высокоплотным монтажом. Предложен микромодуль, включающий в свой состав корпус с крышкой, основание, N чередующихся коммутационных...
Тип: Изобретение
Номер охранного документа: 0002778034
Дата охранного документа: 12.08.2022
17.06.2023
№223.018.7f2d

Способ изготовления микромодуля

Изобретение относится к технологии микроэлектронных приборов, состоящих из нескольких полупроводниковых компонентов на твердом теле, и может быть использовано при производстве аппаратуры с высокоплотным монтажом. Cпособ изготовления микромодуля включает формирование на коммутационной плате...
Тип: Изобретение
Номер охранного документа: 0002773807
Дата охранного документа: 09.06.2022
+ добавить свой РИД