×
09.06.2018
218.016.5c72

Результат интеллектуальной деятельности: Способ ультразвукового эхо-импульсного неразрушающего контроля трубопроводов и аппаратура для его осуществления

Вид РИД

Изобретение

Аннотация: Использование: для обнаружения различных дефектов в трубопроводах и других объектах методом направленных акустических волн. Сущность изобретения заключается в том, что при дефектоскопии последовательно используется два типа зондирующих акустических волн: продольные, распространяющиеся вдоль окружности трубопровода, и поперечные, распространяющиеся вдоль образующих трубопровода, при этом акустический прибор обеспечивает сухой точечный акустический контакт с поверхностью трубопровода высокого качества и генерацию двух видов ультразвуковых волн, распространяющихся вдоль образующей и окружности трубопровода. Технический результат: обеспечение возможности исследования части трубопровода, расположенной под местом закрепления кольцевой решетки, посредством более компактной аппаратуры, а также обеспечение высококачественного акустического контакта пьезоэлектрических преобразователей со стенкой трубопровода при возможности быстрого перемещения преобразователей вдоль трубопровода с помощью устройства позиционирования. 2 н. и 6 з.п. ф-лы, 6 ил.

Изобретения относятся к области неразрушающего контроля трубопроводов и других объектов и могут быть использованы для обнаружения различных дефектов в контролируемых изделиях методом направленных акустических волн.

Известен способ того же назначения, заключающийся в закреплении на известной измерительной базе друг от друга передающей и приемной кольцевых акустических систем и обработке результатов измерений, в результате которой обнаруживается наличие дефекта, расположенного на измерительной базе /US 2014202249, кл. G01H 5/00, G01N 29/22, 2014/.

Недостатком аналога является низкое пространственное разрешение дефектов в трубопроводе, ограничиваемое длиной базы измерения. С помощью известного аналога можно только проконтролировать, что дефект находится внутри базы измерения без точного определения продольной координаты расположения дефекта.

Известен ультразвуковой эхо-импульсный способ неразрушающего контроля трубопроводов, заключающийся в закреплении на внешней поверхности контролируемого трубопровода кольцевых акустических систем, генерации в стенке трубопровода поперечных ультразвуковых волн, распространяющихся вдоль трубопровода, параллельно его оси, генерации в стенке трубопровода продольных ультразвуковых волн, приеме рассеянных на дефектах трубопровода ультразвуковых волн кольцевой решеткой пьезоэлектрических преобразователей, обработке принятого сигнала и определении по нему наличия, местоположения, формы и характера дефекта в трубопроводе /CN 101666783, кл. G01N 29/14, 2010/.

Данное техническое решение принято за прототип способа.

В прототипе для увеличения зоны прозвучивания трубопровода (зоны зондирования) ультразвуковые волны (продольные и волны кручения) направляют вдоль трубопровода с помощью электромагнитно-акустических преобразователей, а прием рассеянных от дефекта волн осуществляют с помощью кольцевой акустической системы с пьезоэлектрическими преобразователями.

Поскольку генерируемая волна кручения является чисто поперечной волной, то кольцевая акустическая система пьезоэлектрических преобразователей принимает как продольные, так и поперечные волны, отраженные от дефекта трубопровода.

Недостатком прототипа в части способа является невозможность исследования части трубопровода, расположенной под местом закрепления акустической системы.

Известна аппаратура аналогичного назначения, содержащая кольцевые передающую и кольцевую приемную акустические системы, расположенные на заданной измерительной базе вдоль трубопровода /US 2014202249, кл. G01H 5/00, G01N 29/22, 2014/.

Акустические кольцевые передающая и приемная системы выполнены в виде колец с преобразователями, прикрепленных к открытому участку трубопровода и электрически соединенных с блоком обработки.

Кольцевые передающая и приемная акустические системы выполнены с возможностью перемещения вдоль трубопровода.

Недостатком аналога аппаратуры является низкое пространственное разрешение месторасположения дефектов трубопровода, ограниченное длиной измерительной базы.

Известна аппаратура для реализации способа, содержащая кольцевую акустическую систему, выполненную в виде антенной решетки пьезоэлектрических преобразователей, прикрепляемую к открытому участку трубопровода с помощью прижимного устройства для обеспечения сухого акустического контакта пьезоэлектрических преобразователей с наружной поверхностью трубопровода, и программно-аппаратный комплекс для коммутации и интерпретации данных /CN 101666783, кл. G01N 29/14, 2010/. Данная аппаратура принята за прототип.

В прототипе кольцевая акустическая система в виде антенной решетки пьезоэлектрических преобразователей используется как приемная решетка акустических волн.

В качестве передающей кольцевой акустической системы используется электромагнито-акустическая, позволяющая возбудить в трубопроводе более интенсивные продольные волны и волны кручения (волны кручения можно рассматривать как чисто поперечные волны).

Для получения акустического контакта высокого качества приемо-передающих элементов кольцевых акустических систем с трубопроводом преобразователи акустических систем приклеиваются к внешней поверхности трубопровода.

Недостатком прототипа в части аппаратуры является невозможность исследования части трубопровода, расположенной под местом закрепления кольцевой решетки.

Другим недостатком прототипа в части аппаратуры является громоздкость передающей кольцевой акустической системы, состоящей из электромагнито-акустических преобразователей.

Третьим недостатком известной аппаратуры является отсутствие в ней устройства позиционирования для ее быстрого перемещения вдоль трубопровода при обеспечении высококачественного акустического контакта с трубопроводом возбуждающей и приемной систем.

Техническим результатом, получаемым от внедрения способа и аппаратуры, является устранение перечисленных выше недостатков известных технических решений, т.е. получение возможности исследования части трубопровода, расположенной под местом закрепления кольцевой решетки.

Получение более компактной аппаратуры за счет замены электромагнито-акустических преобразователей на пьезоэлектрические.

Обеспечение высококачественного акустического контакта пьезоэлектрических преобразователей со стенкой трубопровода при возможности быстрого перемещения преобразователей вдоль трубопровода с помощью устройства позиционирования.

Технический результат достигается тем, что в способе ультразвукового эхо-импульсного неразрушающего контроля трубопроводов, заключающемся в закреплении на внешней поверхности контролируемого трубопровода набора модулей антенных решеток пьезоэлектрических преобразователей, генерации в стенке трубопровода поперечных ультразвуковых волн, распространяющихся вдоль трубопровода, параллельно его оси, генерации в стенке трубопровода продольных ультразвуковых волн, приеме рассеянных на дефектах трубопровода ультразвуковых волн модулями антенных решеток пьезоэлектрических преобразователей, обработке принятого сигнала и определении по нему наличия, местоположения, формы и характера дефекта в трубопроводе, продольные ультразвуковые волны генерируют вдоль окружности трубопровода с помощью модулей антенных решеток пьезоэлектрических преобразователей под местом их закрепления на трубопроводе, при этом поперечные ультразвуковые волны генерируют с помощью тех же модулей антенных решеток пьезоэлектрических преобразователей.

В стенке трубопровода генерируют горизонтально или вертикально поляризованные поперечные волны.

Технический результат также достигается тем, что аппаратура для реализации вышеуказанного способа, содержащая кольцевую акустическую систему, выполненную в виде съемных модулей антенных решеток пьезоэлектрических преобразователей, закрепляемых на открытом участке трубопровода с помощью прижимного устройства, и программно-аппаратный комплекс для коммутации и интерпретации данных, дополнительно содержит устройство позиционирования, выполненное в виде пояса с пазами, направленными вдоль образующих трубопровода, а акустическая система выполнена в виде съемных модулей антенных решеток пьезоэлектрических приемо-передающих преобразователей, устанавливаемых в пазы устройства позиционирования, при этом прижимное устройство выполнено в виде магнитопроводов, установленных в съемных модулях антенных решеток, а пьезоэлектрические приемо-передающие преобразователи - с возможностью переключения направления вектора колебательных смещений генерируемых и принимаемых ультразвуковых волн.

Пьезоэлектрические преобразователи в съемных модулях установлены в шахматном порядке.

Магнитопроводы установлены в съемных модулях между преобразователями в шахматном порядке.

Вокруг каждого пьезоэлектрического преобразователя модуля антенных решеток установлены защитные манжеты.

Для обеспечения высококачественного сухого акустического контакта пьезоэлектрических преобразователей с наружной поверхностью трубопровода, каждый из пьезоэлектрических преобразователей модуля антенных решеток выполнен подпружиненным.

Пояс с продольными пазами выполнен из винипласта, закрепляемого на трубопроводе с помощью магнитов.

Изобретения поясняются чертежами.

На фиг. 1 представлена конструктивная схема аппаратуры для реализации ультразвукового эхо-импульсного способа; на фиг. 2 - общий вид аппаратуры, закрепленной на трубопроводе, на фиг. 3 - съемный модуль пьезоэлектрических преобразователей с сухим точечным контактом, вид снизу; на фиг. 4 - съемный модуль пьезоэлектрических преобразователей с сухим точечным контактом (вид сверху); на фиг. 5 - устройство ультразвуковых преобразователей с сухим точечным контактом, выполненное с возможностью переключения направления вектора колебательных смещений ультразвуковых волн; на фиг. 6 - схема реализации способа при определении дефектов трубопровода под местом закрепления кольцевой решетки пьезоэлектрических преобразователей.

Аппаратура для обнаружения дефектов трубопровода содержит приемо-передающую акустическую систему, выполненную в виде пьезоэлектрических преобразователей, объединенных в съемные модули антенных решеток 1 (фиг. 1, 2), прикрепляемых к открытому участку трубопровода 2 с помощью прижимного устройства для обеспечения сухого акустического контакта пьезоэлектрических преобразователей с наружной поверхностью трубопровода 2.

Имеется также устройство позиционирования модулей антенных решеток 1 на трубопроводе 2, выполненные в виде пояса 3 с пазами 4, направленными вдоль образующих трубопровода 2.

Антенные решетки, выполненные в виде съемных модулей (фиг. 3, 4), устанавливаемых в пазы 4 пояса 3, прижимаются к поверхности трубопровода 2 с помощью магнитопроводов 5.

Для этой же цели (обеспечение необходимого усилия прижима) внутри корпуса 6 модуля 1 каждый пьезоэлектрический приемо-передающий преобразователь 7 (фиг. 3, 4) оснащен пружинным механизмом (на чертежах не показан).

Для предотвращения попадания влаги, пыли или грязи внутрь корпуса 6 модуля 1, вокруг каждого преобразователя 7 предусмотрена защитная манжета (на чертежах не показана).

Пьезоэлектрические преобразователи в каждом съемном модуле 1 (фиг. 3, 4) установлены в шахматном порядке. Магнитопроводы 5 в съемных модулях 1 между пьезоэлектрическими преобразователями 7 также установлены в шахматном порядке.

Это позволяет усилить технический эффект за счет увеличения прижимающего усилия каждого пьезоэлектрического преобразователя в модуле к поверхности трубопровода 2.

Пояс 3 с пазами 4 может быть выполнен из винипласта, закрепляемого на трубопроводе 2 с помощью магнитов (на чертежах не приведены).

Прижимным устройством для обеспечения акустического контакта пьезоэлектрических приемо-передающих преобразователей 7 с поверхностью трубопровода 2 служат магнитопроводы 5 и не показанный на чертежах пружинный механизм внутри корпуса 6 модуля 1.

Аппаратура также содержит модуль 8 коммутации для обеспечения совместной работы модулей 1 пьезоэлектрических преобразователей (фиг. 1), который подключается к управляющему компьютеру. Совместно с компьютером модуль 8 по коммутации образуют программно-аппаратный комплекс для коммутации и интерпретации данных.

Модуль 8 коммутации соединен с пьезоэлектрическими преобразователями 7 модулей 1 проводами 9. Каждый из преобразователей 7 контактирует с протектором 10. Под позицией 11 (фиг. 4) изображены электроды пьезоэлектрических преобразователей 7.

Корпус 6 каждого модуля 1 содержит цилиндрические углубления, в которые размещают преобразователи 7.

Пьезоэлектрические приемо-передающие преобразователи 7 выполнены с возможностью переключения направления вектора колебательных смещений ультразвуковых волн.

Такой преобразователь, например, представлен в патенте /RU 2082163, G01N 29/24, 1997/.

Корпус 11, заполненный жидким демпфером 12, имеет крышку 13 (фиг. 5).

В корпусе 11 установлено два одинаковых пьезоэлектрических преобразователя 7. Корпус 11 также снабжен протектором 10, имеющим, например, форму конуса или пирамиды для контактирования с наружной поверхностью трубопровода 2.

Выводы пьезоэлектрических преобразователей 7 соединены с модулем 8 коммутации.

Модуль 8 коммутации помимо обеспечения совместной работы модулей пьезоэлектрических преобразователей (фиг. 1) позволяет соединять преобразователи 7 синфазно или противофазно. В первом случае излучаются продольные волны, распространяющиеся по окружности трубопровода 2, а во втором - поперечные, распространяющиеся вдоль образующих трубопровода 2.

На фиг. 5 горизонтальной и вертикальной стрелками представлены колебательные движения протектора 10 в направлениях x, у, а точкой - в направлении z. При таких колебаниях в различных направлениях будут генерироваться продольные и одна из поляризаций поперечных ультразвуковых волн.

Допустим, сначала аппаратура, реализующая способ, работает в режиме генерации продольных зондирующих акустических волн 14 (фиг. 6), распространяющихся вдоль окружности трубопровода 2, под местом расположения съемных модулей антенных решеток 1.

Если на пути зондирующих волн 14 встретится дефект 15 трубопровода 2, то он будет обнаружен с помощью акустической аппаратуры или теневым способом (используется рассеяние ультразвука вперед на неоднородностях) или эхо-импульсным способом (используется рассеяние ультразвука назад).

Затем аппаратура, реализующая способ, работает в режиме генерации и приема поперечных зондирующих волн, распространяющихся вдоль образующих трубопровода 2 параллельно его оси. Используя эхо-импульсный способ контроля дефектов в трубопроводе 2, определяют местоположение дефекта (по временным характеристикам эхо-импульса) и форму и размеры дефекта (по амплитуде и форме эхо-импульса).

Программно-аппаратный комплекс в виде модуля 8 коммутации позволяет обрабатывать сигналы одновременно от продольных и поперечных волн.

Использование двух поляризаций поперечных волн позволяет повысить точность способа.

Устройство позиционирования позволяет в случае необходимости устанавливать аппаратуру на другой участок трубопровода.

При этом магнитопроводы, установленные в поясе с пазами, позволяют легко снимать и сдвигать аппаратуру на другой участок трубопровода при обеспечении высококачественного сухого акустического контакта пьезоэлектрических преобразователей с трубопроводом, позволяя осуществлять реализацию способа на новом месте контролируемого трубопровода путем излучения и приема продольных и поперечных ультразвуковых волн предложенным способом.

Этим достигается поставленный технический результат.


Способ ультразвукового эхо-импульсного неразрушающего контроля трубопроводов и аппаратура для его осуществления
Способ ультразвукового эхо-импульсного неразрушающего контроля трубопроводов и аппаратура для его осуществления
Способ ультразвукового эхо-импульсного неразрушающего контроля трубопроводов и аппаратура для его осуществления
Способ ультразвукового эхо-импульсного неразрушающего контроля трубопроводов и аппаратура для его осуществления
Способ ультразвукового эхо-импульсного неразрушающего контроля трубопроводов и аппаратура для его осуществления
Источник поступления информации: Роспатент

Showing 31-40 of 100 items.
26.08.2017
№217.015.dbb6

Комплексная аппаратура для исследования нефтегазовых скважин и способ регистрации полученных данных

Использование: для исследования нефтегазовых скважин. Сущность изобретения заключается в том, что комплексная аппаратура для исследования нефтегазовых скважин включает модуль ядерного каротажа, содержащий спектрометрические зонды с детекторами гамма-излучения радиационного захвата – СНГК, зонды...
Тип: Изобретение
Номер охранного документа: 0002624144
Дата охранного документа: 30.06.2017
26.08.2017
№217.015.e498

Комплекс дистанционного коррозионного мониторинга подводных трубопроводов

Изобретение относится к электрохимической защите сооружений от коррозии. Комплекс содержит блок измерений, контактное устройство, ретранслятор, автоматизированное рабочее место (АРМ) оператора и монтажную площадку, на которой закреплены модуль питания, гидроакустическая антенна и приборный...
Тип: Изобретение
Номер охранного документа: 0002625696
Дата охранного документа: 18.07.2017
26.08.2017
№217.015.e4c0

Блочный нанопористый углеродный материал для аккумулирования природного газа, метана и способ его получения

Изобретение относится к активированному углеродному материалу для хранения, распределения и транспортировки природного газа или метана. Нанопористый материал получают из дробленого карбонизованного и активированного природного сырья органического происхождения путем его смешения с полимерным...
Тип: Изобретение
Номер охранного документа: 0002625671
Дата охранного документа: 18.07.2017
19.01.2018
№218.016.00c3

Автоматизированная установка ультразвукового контроля

Использование: для дефектоскопии магистральных газопроводов. Сущность изобретения заключается в том, что автоматизированная установка ультразвукового контроля содержит блок перемещения, акустический блок, электронный блок, блок питания и баки контактной жидкости. Блок перемещения включает в...
Тип: Изобретение
Номер охранного документа: 0002629687
Дата охранного документа: 31.08.2017
19.01.2018
№218.016.025d

Способ извлечения фракции с из сырого газа и установка для его осуществления

Группа изобретений относится к газохимической промышленности. Техническим результатом является повышение эффективности предлагаемой технологии за счет упрощения схемы переработки газа и снижения капитальных и энергетических затрат без ухудшения качества получаемой продукции. Предлагаемый способ...
Тип: Изобретение
Номер охранного документа: 0002630202
Дата охранного документа: 05.09.2017
19.01.2018
№218.016.027d

Способ очистки почвы от загрязнений нефтепродуктами

Изобретение относится к биотехнологии и может применяться для очистки загрязненных углеводородами и экотоксикантами земель с использованием биопрепарата. Техническим результатом является повышение эффективности очистки загрязненных углеводородами земель, а также расширение функциональных...
Тип: Изобретение
Номер охранного документа: 0002630246
Дата охранного документа: 06.09.2017
19.01.2018
№218.016.02cb

Способ рекультивации нарушенных земель

Изобретение относится к биотехнологии и может применяться для очистки загрязненных углеводородами и экотоксикантами земель с использованием биопрепарата. Техническим результатом является упрощение технологии и повышение качества рекультивации при одновременном сокращении затрат на ее...
Тип: Изобретение
Номер охранного документа: 0002630237
Дата охранного документа: 06.09.2017
19.01.2018
№218.016.0371

Способ и установка для получения высокооктановой синтетической бензиновой фракции из углеводородсодержащего газа

Настоящее изобретение относится к способу получения высокооктановой синтетической бензиновой фракции из углеводородного газа и к установке для его осуществления. Способ включает подачу углеводородного газа на установку, его разделение на два потока - технологический и энергетический,...
Тип: Изобретение
Номер охранного документа: 0002630308
Дата охранного документа: 07.09.2017
19.01.2018
№218.016.0384

Способ и установка для получения высокооктановой синтетической бензиновой фракции из природного или попутного газов

Изобретение относится к нефте- и газохимии, а именно к способам получения углеводородов путем каталитической конверсии смеси, преимущественно содержащий СО, Н. Получаемые при этом жидкие углеводородные фракции могут быть использованы в качестве топлив, в том числе автомобильных,...
Тип: Изобретение
Номер охранного документа: 0002630307
Дата охранного документа: 07.09.2017
20.01.2018
№218.016.1d9d

Способ извлечения сжиженных углеводородных газов из природного газа магистральных газопроводов и установка для его осуществления

Группа изобретений относится к газоперерабатывающей промышленности и может использоваться при переработке газа для извлечения сжиженных углеводородных газов из природного газа магистральных газопроводов. Поток природного газа последовательно охлаждают и направляют на первую ступень...
Тип: Изобретение
Номер охранного документа: 0002640969
Дата охранного документа: 12.01.2018
Showing 31-33 of 33 items.
04.11.2019
№219.017.de6e

Способ адсорбционной осушки и очистки природного газа

Изобретение относится к переработке природного газа адсорбцией, а именно к глубокой осушке и очистке, и может быть использовано в газовой и нефтехимической промышленности. Осуществляют адсорбцию природного газа в адсорбере, содержащем защитный слой силикагеля и основной адсорбирующий слой...
Тип: Изобретение
Номер охранного документа: 0002705065
Дата охранного документа: 01.11.2019
27.12.2019
№219.017.f2e2

Метод нейтронной цементометрии для диагностики заполнения облегченным цементным камнем заколонного пространства нефтегазовых скважин (варианты)

Изобретение относится к нефтегазодобывающей промышленности, в частности к средствам контроля состояния цементного камня за обсадной колонной нефтегазовых скважин и качества цементирования. Технический результат заключается в повышении достоверности результатов исследований скважин нейтронными...
Тип: Изобретение
Номер охранного документа: 0002710225
Дата охранного документа: 25.12.2019
20.04.2023
№223.018.4b5b

Способ оценки газонасыщенности галитизированных коллекторов газовых скважин в процессе проведения нейтрон-нейтронного каротажа

Изобретение относится к области ядерно-физических методов исследований газовых скважин, к способам оценки газонасыщенности коллекторов, поровое пространство которых, наряду с газом, содержит галит (соль). Заявлен способ оценки газонасыщенности галитизированных коллекторов путем регистрации и...
Тип: Изобретение
Номер охранного документа: 0002766063
Дата охранного документа: 07.02.2022
+ добавить свой РИД