×
09.06.2018
218.016.5c0f

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ СКОРОСТИ ЭРОЗИИ И ОСАЖДЕНИЯ ТОНКИХ СЛОЕВ НА ОБРАЩЕННЫХ К ПЛАЗМЕ ЭЛЕМЕНТАХ ПЛАЗМЕННЫХ УСТАНОВОК (ВАРИАНТЫ)

Вид РИД

Изобретение

Аннотация: Изобретение относится к способу определения толщины и контроля скорости эрозии и осаждения тонких слоев на обращенных к плазме элементах плазменных установок. В изобретении предусмотрено изготовление и помещение в плазменную установку мишеней из легкого и/или тяжелого элемента (например, вольфрам на боре или углерод на вольфраме) с заданной толщиной поверхностного слоя в те места установки, в которых предполагается исследовать скорость эрозии и/или осаждения, с последующим анализом энергетических спектров отраженных на угол 30-90° от экспонированных мишеней ионов водорода с начальной энергией в диапазоне 1-20 кэВ. Толщина тяжелого поверхностного слоя определяется по полуширине высокоэнергетичного пика на энергетическом спектре, а толщина легкого поверхностного слоя - по положению пика на энергетическом спектре. Скорость эрозии/осаждения при этом, как и при использовании СРОР, определяется как отношение изменения толщины поверхностного слоя мишени к количеству импульсов или времени существования плазменного разряда в плазменной установке. Техническим результатом является увеличение чувствительности, уменьшение времени анализа при определении скорости эрозии и осаждения тонких поверхностных слоев на обращенных к плазме элементах плазменных установок. 2 н. и 4 з.п. ф-лы, 3 ил.

Изобретение относится к экспериментальной физике и может быть использовано как способ определения толщины и контроля скорости эрозии и осаждения тонких слоев на обращенных к плазме элементах плазменных установок.

Известен метод анализа тонких поверхностных слоев, образующихся в результате эрозии и переосаждения материалов стенок плазменных установок, с помощью вторично-ионной масс-спектроскопии [L. Feldman, J. Mayer Fundamentals of surface and thin film analysis, Cornell University, 1986]. Этот метод является разрушающим - в процессе анализа исследуемый образец распыляется пучком тяжелых ионов - и не обладает достаточным разрешением по глубине.

Другим применяемым и принятым за прототип способом является использование спектроскопия резерфордовского обратного рассеяния (СРОР) [Krat S. et al. Erosion at the inner wall of JET during the discharge campaign 2011-2012 in comparison with previous campaigns // J. Nucl. Mater. Elsevier, 2015. Vol. 456. P. 106-110]. В этом способе для определения скорости эрозии и осаждения тонких слоев в плазменную камеру помещаются специальные многослойные мишени с известной толщиной слоев, а после экспозиции в плазменной установке толщина поверхностного слоя определяется по энергетическим спектрам обратно рассеянных от мишени протонов или ионов гелия с начальной энергией в диапазоне 1-3 МэВ. Скорость эрозии или осаждения определяется как изменение толщины поверхностного слоя за суммарное время существования плазменного разряда в установке. Однако данный способ имеет несколько существенных недостатков - требуется применение дорогостоящих ускорителей ионов, при этом чувствительность метода недостаточна для анализа слоев толщиной менее 40 нм. К тому же из-за недостаточного разрешения по глубине для определения скорости эрозии и осаждения тонких слоев требуется длительная экспозиция мишени в плазменной установке.

Техническим результатом изобретения является увеличение чувствительности, уменьшение времени анализа и сокращение материальных затрат при реализации способа определения скорости эрозии и осаждения тонких поверхностных слоев на обращенных к плазме элементах плазменных установок.

Технический результат по первому варианту достигается тем, что определяют изменение толщины поверхностного слоя анализируемой мишени с поверхностным слоем заданной толщины при экспозиции в установке с плазменным разрядом путем измерения энергетических спектров ионов водорода, отраженных от мишени, и определяют скорость эрозии и/или осаждения тонкого слоя по отношению изменения толщины этого слоя к времени существованию плазменного разряда в установке, при этом измеряют энергетические спектры отраженных от мишени с тяжелым поверхностным слоем на угол 30-90° относительно первоначального направления пучка ионов водорода с начальной энергией в диапазоне 1-20 кэВ и по изменению толщины поверхностного слоя мишени, которую определяют по полуширине высокоэнергетичного пика на энергетическом спектре, судят о скорости эрозии и/или осаждения тонкого слоя.

Технический результат по второму варианту достигается тем, что определяют изменение толщины поверхностного слоя анализируемой мишени с поверхностным слоем заданной толщины при экспозиции в установке с плазменным разрядом путем измерения энергетических спектров ионов водорода, отраженных от мишени, и определяют скорость эрозии и/или осаждения тонкого слоя по отношению изменения толщины этого слоя к времени существованию плазменного разряда в установке, при этом измеряют энергетические спектры отраженных от мишени с легким поверхностным слоем на угол 30-90° относительно первоначального направления пучка ионов водорода с начальной энергией в диапазоне 1-20 кэВ и по изменению толщины поверхностного слоя мишени, которую определяют по положению пика на энергетическом спектре, судят о скорости эрозии и/или осаждения тонкого слоя.

Для анализа скорости эрозии и осаждения тонких слоев используется моноэнергетический пучок ионов Н+ или D+, так как водород и дейтерий обладают необходимой глубиной пробега в мишени и практически не распыляют ее, с такой энергией в диапазоне 1-20 кэВ, при которой энергетический спектр отраженных частиц при их рассеянии на углы 30-90° формируется тонкими поверхностными слоями исследуемого образца. В данном энергетическом диапазоне рассеяние на другие углы не позволяет получить достаточное разрешение по массам, а использование других энергий не позволяет получить нужно глубину пробега частиц в анализируемой мишени. Глубиной пробега определяется и чувствительность метода к самым поверхностным слоям исследуемой мишени, и, соответственно, время анализа, необходимое для определения скорости эрозии и осаждения тонких поверхностных слоев на обращенных к плазме элементах плазменных установок.

При наличии слоя тяжелого элемента на поверхности легкого поверхностный слой формирует острый высокоэнергетичный пик на энергетическом спектре, амплитуда и ширина которого зависят от энергии частиц и угла их рассеяния, при этом эрозия тяжелого поверхностного слоя приводит к уменьшению ширины и амплитуды этого пика, а осаждение, наоборот, приводит к возникновению, росту и увеличению ширины пика.

При наличии слоя легкого элемента на поверхности тяжелого толщина слоя легкого вещества определяется по положению пика, формируемого частицами, прошедшими через слой более легкого вещества и отраженного находящимся под ним слоем более тяжелого. Осаждение легкого вещества приводит к сдвигу пика в область более низких энергий, а эрозия, наоборот, к сдвигу к область более высоких энергий.

Суть способа заключается в изготовлении и помещении в плазменную установку специальных мишеней из легкого и/или тяжелого элемента (например, вольфрам на боре или углерод на вольфраме) с заданной толщиной поверхностного слоя в те места установки, в которых предполагается исследовать скорость эрозии и/или осаждения, с последующим анализом энергетических спектров отраженных на угол 30-90° от экспонированных мишеней ионов водорода с начальной энергией в диапазоне 1-20 кэВ. Скорость эрозии/осаждения при этом, как и при использовании СРОР, определяется как отношение изменения толщины поверхностного слоя мишени к количеству импульсов или времени существования плазменного разряда в плазменной установке.

Предлагаемый способ был проверен на экспериментальной установке «Большой масс-монохроматор МИФИ» [Bulgadaryan D. et al. Facility and the method for MEIS analysis of layers redeposited in plasma devices // J. Phys. Conf. Ser. 2016. Vol. 748, №1]. Схема установки и возможного варианта реализации эксперимента представлена на фиг. 1, где 1 - источник ионов, 2 - сепарирующий электромагнит, 3 - камера взаимодействия, 4 - исследуемая мишень, 5 - энергоанализатор, 6 - детектор, штриховая линия - траектория первичного пучка ионов, штрихпунктирная линия - траектория отраженных от мишени ионов, попадающих в энергоанализатор, θ - угол рассеяния. Пучок ионов водорода, в котором присутствуют как атомарная (Н+), так и молекулярные (Н2+, Н3+) компоненты, формируется ионным источником типа «дуоплазматрон», сепарируется по отношению массы к заряду с помощью электромагнита, при этом выполняется соотношение , где U0 - ускоряющее напряжение, М - масса ионов, Z - заряд, В - магнитное поле. Нужная компонента пучка выделяется изменением тока электромагнита, сепарированный пучок попадает на мишень в камере взаимодействия, после чего при помощи системы энергоанализа, состоящей из электростатического анализатора и вторично-электронного умножителя, измеряется энергетический спектр отраженных от мишени частиц, рассеянных под углом θ. Для расчетов использовался компьютерный код SCATTER [В.А. Курнаев, Н.Н. Трифонов. Программа моделирования взаимодействия ионов с твердым телом с учетом микротопографии поверхности // ВАНТ, Сер. Термояд. синтез 3-4, 76 (2002)], позволяющий моделировать энергетические распределения частиц, отраженных от мишени с заданным составом, в приближении парных соударений с помощью численного метода Монте-Карло.

Пример 1. При определении толщины тяжелого слоя на поверхности легкой мишени использовалось напыление тонкого слоя золота на кремниевую мишень с помощью ионного распыления на установке «Большой массмонохроматор МИФИ». Экспериментальные и расчетные спектры отраженных от кремниевой подложки до и после осаждения на нее в этой же установке тонкого слоя золота методом реактивного распыления ионами аргона мишени из золота чистотой 99,999 на угол θ=38° ионов водорода с начальной энергией E0=9000 эВ показаны на фиг. 2. Видно, что осаждение поверхностного слоя золота приводит к образованию высокоэнергетичного пика. Сравнение экспериментальных и расчетных спектров с учетом того, что при реактивном напылении в поверхностном слое подложки происходит перемешивание напыляемого золота с кремнием, позволяет определить толщину тяжелого поверхностного слоя золота на легкой кремниевой мишени как 3.8±0.3 нм. Скорость напыления золота при этом определена как 1 нм/ч.

Пример 2. Для определения толщины легкого слоя на поверхности тяжелой мишени использовались расчеты энергетических спектров ионов водорода, отраженных от мишени, состоящей из вольфрама с тонким поверхностным слоем бора разной толщины. На фиг. 3 показаны спектры, полученные при использовании пучка ионов водорода с начальной энергией E0=4000 эВ, рассеянных на угол θ=38°. Видно, что различным толщинам легкого поверхностного слоя соответствует разное положение пика на энергетическом спектре, что при данных энергии и угле рассеяния позволяет определить толщину слоя с погрешностью 0.3 нм.

Таким образом, из вышесказанного следует, что предлагаемый способ позволяет определять толщину и, соответственно, скорость эрозии и осаждения тонких слоев в плазменных и, в частности, термоядерных установках с большей чувствительностью, за меньшее и время и с меньшими затратами.


СПОСОБ ОПРЕДЕЛЕНИЯ СКОРОСТИ ЭРОЗИИ И ОСАЖДЕНИЯ ТОНКИХ СЛОЕВ НА ОБРАЩЕННЫХ К ПЛАЗМЕ ЭЛЕМЕНТАХ ПЛАЗМЕННЫХ УСТАНОВОК (ВАРИАНТЫ)
СПОСОБ ОПРЕДЕЛЕНИЯ СКОРОСТИ ЭРОЗИИ И ОСАЖДЕНИЯ ТОНКИХ СЛОЕВ НА ОБРАЩЕННЫХ К ПЛАЗМЕ ЭЛЕМЕНТАХ ПЛАЗМЕННЫХ УСТАНОВОК (ВАРИАНТЫ)
СПОСОБ ОПРЕДЕЛЕНИЯ СКОРОСТИ ЭРОЗИИ И ОСАЖДЕНИЯ ТОНКИХ СЛОЕВ НА ОБРАЩЕННЫХ К ПЛАЗМЕ ЭЛЕМЕНТАХ ПЛАЗМЕННЫХ УСТАНОВОК (ВАРИАНТЫ)
Источник поступления информации: Роспатент

Showing 431-440 of 554 items.
13.11.2018
№218.016.9c9a

Электроизоляционный заливочно-пропиточный компаунд

Изобретение относится к области электротехники, в частности к эпоксидным низковязким заливочно-пропиточным компаундам, используемым для электроизолирования и упрочнения путем заливки высоковольтных блоков питания, трансформаторов, для герметизации и защиты элементов радиоэлектронной аппаратуры...
Тип: Изобретение
Номер охранного документа: 0002672094
Дата охранного документа: 12.11.2018
21.11.2018
№218.016.9f03

Дифференциальный измерительный преобразователь

Изобретение относится к области измерительной техники, а именно к измерительным преобразователям с частотной формой выходных сигналов. Дифференциальный измерительный преобразователь содержит два генератора частотных сигналов с частотозадаюшими элементами, выходы которых соединены со входами...
Тип: Изобретение
Номер охранного документа: 0002672793
Дата охранного документа: 19.11.2018
15.12.2018
№218.016.a792

Высокотемпературный гафнийсодержащий сплав на основе титана

Изобретение относится к области металлургии титановых сплавов и может быть использовано для деталей и узлов ракетных и авиационных двигателей, работающих под высокими нагрузками при температурах до 1000°С, в частности для высокотемпературных изделий газотурбинных двигателей (ГТД)....
Тип: Изобретение
Номер охранного документа: 0002675063
Дата охранного документа: 14.12.2018
15.12.2018
№218.016.a798

Способ изготовления плоских изделий из гафнийсодержащего сплава на основе титана

Изобретение относится к металлургии, в частности к способу изготовления плоских изделий из сплава на основе титана, и может быть использовано при производстве комплектующих изделий, предназначенных для работы в высокотемпературной зоне тракта газотурбинных двигателей и других изделий,...
Тип: Изобретение
Номер охранного документа: 0002675011
Дата охранного документа: 14.12.2018
15.12.2018
№218.016.a7ad

Способ получения слитков сплава на основе титана

Изобретение относится к области металлургии, в частности к способам выплавки слитков сплава на основе титана, легированного танталом, гафнием и хромом, с целью получения из него высокопрочных, жаропрочных и жаростойких изделий, в основном используемых в аэрокосмической технике. Способ получения...
Тип: Изобретение
Номер охранного документа: 0002675010
Дата охранного документа: 14.12.2018
15.12.2018
№218.016.a81e

Способ удаления углеродсодержащих слоев и пыли из вакуумных камер плазменных установок

Изобретение относится к cпособу удаления углеродсодержащих слоев и пыли из вакуумных камер плазменных установок. При взаимодействии с плазмой в процессе работы установки боро-углеродные покрытия эродируют. Продукты эрозии осаждаются на контактирующих с плазмой поверхностях и образуют...
Тип: Изобретение
Номер охранного документа: 0002674997
Дата охранного документа: 14.12.2018
16.01.2019
№219.016.b056

Полностью оптический логический базис на основе микрокольцевого резонатора

Изобретение относится к полностью оптическим логическим элементам (ОЛЭ) на основе микрокольцевых резонаторов и может быть использовано в качестве логического базиса в оптических вычислительных устройствах. Полностью оптический логический базис на основе микрокольцевого резонатора содержит...
Тип: Изобретение
Номер охранного документа: 0002677119
Дата охранного документа: 15.01.2019
13.02.2019
№219.016.b96f

Устройство для определения объёмов замкнутых полостей

Устройство относится к измерительной технике, в частности к измерениям вместимостей замкнутых герметизированных объемов в различных сложных системах и установках, имеющих отношение к вакуумной технике, с возможностью размещения внутри их объемов пористых материалов и/или элементов конструкций...
Тип: Изобретение
Номер охранного документа: 0002679476
Дата охранного документа: 11.02.2019
14.02.2019
№219.016.ba0f

Способ динамического управления техническими средствами

Изобретение относится к способу динамического управления техническими средствами. Осуществляют прием первой неформализованной входной последовательности символов, включающей идентификационный признак, вводят код размещения для проверки принятых последовательностей, аналогичным образом принимают...
Тип: Изобретение
Номер охранного документа: 0002679749
Дата охранного документа: 12.02.2019
20.02.2019
№219.016.bc2a

Способ определения объёмов замкнутых полостей

Изобретение относится к измерительной технике, в частности к измерениям вместимостей замкнутых герметизированных объемов в различных сложных системах и установках, имеющих отношение к вакуумной технике, с возможностью размещения внутри их объемов пористых материалов и/или элементов конструкций...
Тип: Изобретение
Номер охранного документа: 0002680159
Дата охранного документа: 18.02.2019
Showing 1-1 of 1 item.
20.07.2014
№216.012.de31

Способ определения элементного состава и толщины поверхностной пленки твердого тела при внешнем воздействии на поверхность

Использование: для определения элементного состава и толщины поверхностной пленки твердого тела. Сущность: заключается в том, что выполняют измерение энергетических спектров ионов, отраженных и выбитых из поверхности твердого тела, при этом измеряют энергетические спектры непосредственно в...
Тип: Изобретение
Номер охранного документа: 0002522667
Дата охранного документа: 20.07.2014
+ добавить свой РИД