×
09.06.2018
218.016.5a22

Результат интеллектуальной деятельности: ГИДРОСАМОЛЁТ

Вид РИД

Изобретение

Аннотация: Изобретение относится к авиации и касается гидросамолетов с подрессоренными поплавками. Гидросамолет содержит фюзеляж, поплавки, соединенные с ним носовой и основной стойками, оснащенными упругодемпфирующими элементами и системой управления ими. Система управления содержит пульт управления, датчики вертикальных и продольно-угловых перегрузок фюзеляжа и поплавков, датчики скорости обжатия и линейного обжатия стоек, датчики упругой и демпфирующей составляющей силы в стойках. Система также содержит преобразовательно-усилительный блок, бортовую вычислительную машину, формирующую управляющий сигнал для исполнительного блока, блок корректировки управляющего сигнала и исполнительный механизм по управлению жесткостью и демпфированием. Достигается уменьшение действующих на фюзеляж перегрузок и амплитуд колебаний в широком диапазоне волнения и скоростей движения по воде. 2 з.п. ф-лы, 3 ил.

Изобретение относится к авиации, а именно к гидросамолетам с подрессоренными поплавками.

Из уровня техники известны гидросамолеты с подрессоренными поплавками.

Так, в изобретении СССР №5139, МПК В64С 35/00, дата публикации 30.04.1928 г., автор Г. Юнкерс [1], представлен гидросамолет, содержащий фюзеляж, соединенный посредством стоек, по меньшей мере, с одним поплавком, стойки имеют носовую и основную опоры, носовые стойки оснащены упругодемпфирующим элементом, выполненным, например, в виде амортизаторов, а основные опоры соединены с поплавком посредством одностепенного шарнира. Упругодемпфирующие элементы, выполненные, например, в виде амортизаторов, могут не обеспечить эффективного демпфирования при колебании поплавков на всех скоростях движения на воде в связи с изменением частоты ударных нагрузок на поплавок, что является недостатком такого гидросамолета с подрессоренными поплавками.

В изобретении США №4685641, МПК B60V 1/08; В64С 25/52; В64С 25/54; В64С 35/00, дата публикации 11.08.1987 [2], представлен летательный аппарат, контактирующий при движении с поверхностью воды, содержащий фюзеляж, соединенный посредством стоек, по меньшей мере, с одной гидролыжей, соединенной с фюзеляжем посредством основной стойки, оснащенной упругодемпфирующим элементом, и шарнира в носовой части, при этом летательный аппарат оснащен системой управления упругодемпфирующими элементами. Недостатком изобретения [2] является отсутствие водоизмещающих поплавков, что ограничивает его возможности базирования на воде.

В патентном документе Японии JP5659370, МПК В63В 1/22; В63В 39/00; В64С 25/54; В64С 35/00, дата публикации 28.01.2015 [3], представлен гидросамолет, содержащий фюзеляж, соединенный посредством стоек, по меньшей мере, с одним поплавком, стойки имеют носовую и основную опоры, соединенные с поплавком посредством одностепенного шарнира, по меньшей мере, одна из стоек оснащена упругодемпфирующим элементом. В гидросамолете [3] поплавки оснащены упругими соединениями центральной части с носовой и кормовой частями поплавка, что обеспечивает изменение формы поплавка при волнении и снижение перегрузок, действующих на поплавки и фюзеляж гидросамолета. Однако отсутствие системы управления упругодемпфирующими элементами (подрессориванием) ограничивает эффективность демпфирования при колебании поплавков на всех скоростях движения на воде вследствие изменения частоты ударных нагрузок на поплавок. Это является недостатком гидросамолета с подрессоренными поплавками, представленного в [3].

Гидросамолет с подрессоренными поплавками, представленный в патентном документе [3], принят за наиболее близкий аналог.

Технический результат состоит в уменьшении действующих на фюзеляж перегрузок и амплитуд колебаний в широком диапазоне волнения и скоростей движения по воде.

Сущность изобретения состоит в следующем.

Гидросамолет, как и в наиболее близком аналоге [3], содержит фюзеляж, соединенный посредством стоек, по меньшей мере, с одним поплавком, стойки имеют носовую и основную опоры, соединенные с поплавком посредством одностепенного шарнира, по меньшей мере, одна из стоек оснащена упругодемпфирующим элементом, но в отличие от наиболее близкого аналога [3] гидросамолет оснащен системой управления упругодемпфирующими элементами, содержащей пульт управления, датчики вертикальных и продольно-угловых перегрузок фюзеляжа и, по меньшей мере, одного из поплавков гидросамолета, датчики скорости обжатия, по меньшей мере, одной из стоек, датчики упругой и демпфирующей составляющей силы, возникающей, по меньшей мере, в одной из стоек, преобразовательно-усилительный блок, бортовую вычислительную машину, формирующую управляющий сигнал для исполнительного блока, блок корректировки управляющего сигнала с пульта управления и исполнительный механизм по управлению жесткостью и демпфированием, по меньшей мере, одного упругодемпфирующего элемента стойки.

Гидросамолет характеризуется тем, что каждая из стоек оснащена датчиками вертикальных и продольно-угловых перегрузок каждого из поплавков гидросамолета, датчиками скорости обжатия, датчиками упругой и демпфирующей составляющей силы, возникающей в каждой из стоек.

Гидросамолет характеризуется тем, что одна из стоек каждого из поплавков оснащена датчиками вертикальных и продольно-угловых перегрузок каждого из поплавков гидросамолета, датчиками скорости обжатия, датчиками упругой и демпфирующей составляющей силы, возникающей в указанной стойке, а другая стойка соединена с поплавком посредством одностепенного шарнира, установленного на пневмоамортизаторе с малым ходом обжатия.

Признаки, характеризующие сущность изобретения, образуют совокупность и являются существенными для достижения технического результата.

Выполнение гидросамолета содержащим фюзеляж, соединенный посредством стоек, по меньшей мере, с одним поплавком, оснащение стоек носовой и основной опорами, соединенными с поплавком посредством одностепенного шарнира, оснащение, по меньшей мере, одной из стоек упругодемпфирующим элементом обеспечивает, как и в наиболее близком аналоге [3], снижение действующих на фюзеляж перегрузок вследствие обжатия упругодемпфирующего элемента стоек. Оснащение, по меньшей мере, одного упругодемпфирующего элемента системой управления, содержащей пульт управления, датчики вертикальных и продольно-угловых перегрузок фюзеляжа и, по меньшей мере, одного из поплавков гидросамолета, датчики линейного обжатия и скорости обжатия, по меньшей мере, одной из стоек, датчики упругой и демпфирующей составляющей силы, возникающей, по меньшей мере, в одной из стоек, преобразовательно-усилительный блок, бортовую вычислительную машину, формирующую управляющий сигнал для исполнительного блока, блок корректировки управляющего сигнала с пульта управления и исполнительный механизм по управлению жесткостью и демпфированием, по меньшей мере, одного упругодемпфирующего элемента стойки, приводит при встрече поплавков с волнами к возможности прогнозировать силу удара и регулированию характеристик упругости и демпфирования. Это позволяет уменьшить передаваемую на фюзеляж энергию удара при обжатии амортизаторов упругодемпфирующих элементов. Это обеспечивает уменьшение действующих на фюзеляж перегрузок и амплитуд колебаний в широком диапазоне волнения и скоростей движения по воде.

Оснащение каждой из стоек датчиками вертикальных и продольно-угловых перегрузок каждого из поплавков гидросамолета, датчиками линейного обжатия и скорости обжатия, датчиками упругой и демпфирующей составляющей силы, возникающей в каждой из стоек, и возможность управления характеристиками упругости и демпфирования приводит к увеличению поглощаемой энергии ударов поплавков при встрече с волнами, что обеспечивает уменьшение действующих на фюзеляж перегрузок и амплитуд его колебаний в широком диапазоне волнения и скоростей движения по воде.

Выполнение одной из стоек каждого из поплавков датчиками вертикальных и продольно-угловых перегрузок каждого из поплавков гидросамолета, датчиками величины и скорости обжатия, датчиками упругой и демпфирующей составляющей силы, возникающей в указанной стойке, и соединение другой стойки с поплавком посредством одностепенного шарнира, установленного на пневмоамортизаторе с малым ходом обжатия, обеспечивает поглощение энергии удара такой стойкой поплавка, что способствует уменьшению действующих на фюзеляж перегрузок и амплитуд колебаний в широком диапазоне волнения и скоростей движения по воде.

Изобретение поясняется чертежами.

На фиг. 1 представлен гидросамолет с системой управления упругодемпфирующими характеристиками подрессоренных поплавков.

На фиг. 2 представлен гидросамолет с носовыми и основной стойками, оснащенными упругодемпфирующими элементами.

На фиг. 3 представлена структурная схема упругодемпфирующего элемента.

Гидросамолет с подрессоренными поплавками устроен следующим образом.

Гидросамолет содержит фюзеляж 1, по меньшей мере, один поплавок 2, соединенный с фюзеляжем 1 носовой 3 и основной 4 стойками. Носовая стойка 3 и/или основная стойка 4 (фиг. 1) оснащены упругодемпфирующим элементом 5 (фиг. 2).

Гидросамолет оснащен системой управления упругодемпфирующими элементами 5, содержащей пульт управления 6 оператором, датчик 7 вертикальных и продольно-угловых перегрузок фюзеляжа 1, датчик 8 вертикальных и продольно-угловых перегрузок, по меньшей мере, одного из поплавков 2 гидросамолета, датчик 9 скорости обжатия и датчик 10 линейного обжатия основной стойки 4, датчик 11 скорости обжатия и датчик 12 линейного обжатия носовой стойки 3, датчики упругой 13 и демпфирующей 14 составляющей силы, возникающей в основной стойке 4, датчики упругой 15 и демпфирующей 16(15) составляющей силы, возникающей в носовой стойке 3, преобразовательно-усилительный блок 17, бортовую вычислительную машину 18, формирующую управляющий сигнал для исполнительного блока (не показан), блок 19 корректировки управляющего сигнала с пульта управления 6 оператором и исполнительный механизм 20 по управлению жесткостью и демпфированием, по меньшей мере, одного упругодемпфирующего элемента 5 носовой 3 и/или основной 4 стоек (фиг. 1).

Гидросамолет может выполняться с оснащением каждого из поплавков 2 одной из стоек, например, носовой стойки 3, упругодемпфирующим элементом 5. При этом другая, например, основная стойка 4 соединена с поплавком 2 посредством одностепенного шарнира 21, установленного на пневмоамортизаторе 22 с малым ходом обжатия (фиг. 2).

Упругодемпфирующий элемент 5 содержит гидропневмоамортизатор 23, гидроцилиндр 24 и управляемый дроссельный узел 25. Гидропневмоамортизатор 23 разделен поршнем 26 на пневмокамеру 27 и гидравлическую полость 28. Гидроцилиндр 24 содержит гидравлическую полость 29, поршень 30 и шток 31, соединенный посредством одностепенного шарнира 21 с поплавком 2. Гидравлическая полость 28 гидропневмоамортизатора 23 через управляющий дроссельный узел 25 гидравлически связана с гидравлической полостью 29 гидроцилиндра 28 (фиг. 3).

Управление жесткостью и демпфированием упругодемпфирующих элементов 5 рассмотрено на примере основной стойки 4.

Исполнительный механизм 20 по управлению жесткостью и демпфированием упругодемпфирующих элементов 5 основной стойки 4 содержит компрессорную станцию (не показано), пневматически связанную с пневмокамерой 27 гидропневмоамортизатора 23. Датчик 13 упругой составляющей силы, возникающей в основной стойке 4, измеряет давление в пневмокамере 27 гидропневмоамортизатора 23. Скорость перемещения и положение поршня 30 гидроцилиндра 24 фиксируется соответственно датчиком 9 скорости обжатия основной стойки 4 и датчиком 10 линейного обжатия основной стойки 4. Перепад (разность) давления в гидравлической полости 28 гидропневмоамортизатора 23 и в гидравлической полости 29 гидроцилиндра 24 формирует сигнал на датчик 14(13) демпфирующей составляющей силы, возникающей в основной стойке 4. Сигнал датчика 13(12) упругой составляющей силы, возникающей в пневмокамере 27 гидропневмоамортизатора 23 в основной стойке 4, поступает на исполнительный механизм 20 по управлению жесткостью и демпфированием основной стойки 4 (фиг. 3).

Аналогично выполняется управление жесткостью и демпфированием упругодемпфирующих элементов 5 носовой стойки 3.

Компрессорная станция (не показано) пневматически связана с пневмокамерой 27 гидропневмоамортизатора 23 носовой стойки 3. Датчики 15 упругой составляющей силы, возникающей в носовой стойке 3, измеряют давление в пневмокамере 27 гидропневмоамортизатора 23. Скорость перемещения и положение поршня 30 гидроцилиндра 24 фиксируется соответственно датчиками 12 линейного обжатия и датчиками 11 скорости обжатия носовой стойки 3. Перепад (разность) давления в гидравлической полости 28 гидропневмоамортизатора 23 и в гидравлической полости 29 гидроцилиндра 24 формирует сигнал на датчик 16 демпфирующей составляющей силы, возникающей в носовой стойке 3. Сигнал датчиков 15 упругой составляющей силы, возникающей в пневмокамере 27 гидропневмоамортизатора 23 в носовой стойке 3, поступает на исполнительный механизм 20 по управлению жесткостью и демпфированием носовой стойки 3 (фиг. 3).

Исполнительный механизм 20 упругодемпфирующего элемента 5 генерирует управляющий сигнал на управляемый дроссельный узел 24 и на изменение давления в пневмокамере 27 гидропневмоамортизатора 23 основной 4 и носовой 3 стоек.

Гидросамолет с подрессоренными поплавками функционирует следующим образом.

При движении гидросамолета по взволнованной поверхности на поплавки 2 действуют гидродинамические силы и перегрузки, возникающие при встрече с волнами, которые посредством носовой 3 и основной 4 стоек передаются на фюзеляж 1. При этом при разных скоростях движения и высотах (балльности) волн меняются частоты действующих на поплавки 2 гидродинамических сил и перегрузок. Оснащение носовой 3 и/или основной 4 стоек упругодемпфирующими элементами 5 приводит к уменьшению перегрузок на фюзеляже 1. Оснащение гидросамолета системой управления упругодемпфирующими элементами 5 позволяет снизить перегрузки, действующие на фюзеляж 1, в широком диапазоне волнения и скоростей движения по воде благодаря изменению характеристик упругости и демпфирования упругодемпфирующих элементов 5.

Система управления подрессориванием, включающая упругодемпфирующие элементы 5, работает следующим образом.

Сигналы с датчиков 7 и 8 вертикальных и продольно-угловых перегрузок фюзеляжа 1 и поплавков 2, с датчиков упругой 13 и демпфирующей 14 составляющей силы в основной стойке 4, с датчиков упругой 15 и демпфирующей 16 составляющей силы в носовой стойке 3, а также с датчиков линейного обжатия 9 и скорости линейного обжатия 10 основной стойки 4, датчиков линейного обжатия 11 и скорости линейного обжатия 12 носовой стойки 3 поступают в преобразовательно-усилительный блок 17.

Сигнал из преобразовательно-усилительного блока 17 поступает в бортовую вычислительную машину 18, которая по данным датчиков линейного обжатия 9 и скорости линейного обжатия 10 основной стойки 4 с датчиков линейного обжатия 11 и скорости линейного обжатия 12 носовой стойки 3 вычисляет относительные величины кинематических параметров, а также по данным с датчиков 7 и 8 вертикальных и продольно-угловых перегрузок фюзеляжа 1 и поплавков 2 методом интегрирования получает абсолютные значения кинематических параметров линейного обжатия и скорости линейного обжатия (их разность дает относительные величины). Пользоваться абсолютными величинами не рекомендуется, так как они получены в инерциальной системе отсчета и в длительном временном интервале погрешность будет возрастать непредсказуемым образом. Поэтому при помощи сигналов с датчиков упругой 13 и демпфирующей 14 составляющей силы в основной стойке 4 и датчиков упругой 15 и демпфирующей 16 составляющей силы в носовой стойке 3 также вычисляются относительные кинематические параметры линейного обжатия и скорости линейного обжатия основной стойки 4 и носовой стойки 3.

К указанным кинематическим параметрам относятся угловое и линейное перемещения, угловая и линейная скорость, а также угловое и линейное ускорение фюзеляжа 1 и поплавка 2 .

Далее бортовая вычислительная машина 18 усредняет относительные величины кинематических параметров, получая массив значений Δϑ, Δу, по которым формируются законы управления вида

где

, - угловое ускорение фюзеляжа 1 и поплавка 2 соответственно;

, - вертикальное ускорение фюзеляжа 1 и поплавка 2 соответственно;

РУ1,2, РД1,2 - упругая и демпфирующая силы носовой 3 и основной 4 стоек системы подрессоривания соответственно;

у1,2, - обжатие и скорость обжатия носовой 3 и основной 4 стоек системы подрессоривания соответственно;

kДϑ; kУ - коэффициенты демпфирования и упругих сил.

Наиболее значимыми являются следующие составляющие коэффициенты демпфирования и упругих сил:

Величины входящих в эти выражения коэффициентов могут определяться в бортовой вычислительной машине 18 и/или в блоке корректировки 19.

При определении коэффициентов в бортовой вычислительной машине 18 и блоке корректировки по набору статистических данных о внешней среде, в которой предполагается осуществлять движение, указанные коэффициенты получаются методом последовательного приближения при математическом моделировании движения гидросамолета при конкретной реализации стохастического описания внешней среды (при этом важно оценивать корреляционную функцию полученной реализации).

При определении коэффициентов в блоке корректировки 19 используются экспертные оценки и опыт оператора.

Такое дублирование позволяет минимизировать ошибки, связанные с работой системы автоматики.

Представленные в описании изобретения сведения достаточны для разработки и изготовления гидросамолетов с подрессоренными поплавками на специализированном предприятии. Изобретение соответствует условию патентоспособности «промышленная применимость».

ПЕРЕЧЕНЬ ПОЗИЦИЙ И ОБОЗНАЧЕНИЙ К ИЗОБРЕТЕНИЮ «ГИДРОСАМОЛЕТ»

1 фюзеляж гидросамолета;

2 поплавок;

3 носовая стойка;

4 основная стойка;

5 упругодемпфирующий элемент

6 пульт управления

7 датчик вертикальных и продольно-угловых перегрузок фюзеляжа 1;

8 датчик вертикальных и продольно-угловых перегрузок поплавка 2;

9 датчик скорости обжатия основной стойки 4;

10 датчик линейного обжатия основной стойки 4;

11 датчик скорости обжатия носовой стойки 3;

12 датчик линейного обжатия носовой стойки 3;

13 датчик упругой составляющей силы, возникающей в основной стойке 4;

14 датчик демпфирующей составляющей силы, возникающей в основной стойке 4;

15 датчик упругой составляющей силы, возникающей в носовой стойке 3;

16 датчик демпфирующей составляющей силы, возникающей в носовой стойке 3;

17 преобразовательно-усилительный блок;

18 бортовая вычислительная машина;

19 блок корректировки управляющего сигнала с пульта управления 6(5);

20 исполнительный механизм по управлению жесткостью и демпфированием носовой 3 и основной 4 стоек;

21 одностепенной шарнир носовой 3 и основной 4 стоек;

22 пневмоамортизатор;

23 гидропневмоамортизатор упругодемпфирующего элемента 5;

24 гидроцилиндр упругодемпфирующего элемента 5;

25 управляемый дроссельный узел;

26 поршень гидропневмоамортизатора 23;

27 пневмокамера гидропневмоамортизатора 23;

28 гидравлическая полость гидропневмоамортизатора 23;

29 гидравлическая полость гидроцилиндра 24 упругодемпфирующего элемента 5;

30 поршень гидроцилиндра 24 упругодемпфирующего элемента 5;

31 шток поршня 30 гидроцилиндра 24 упругодемпфирующего элемента 5.


ГИДРОСАМОЛЁТ
ГИДРОСАМОЛЁТ
ГИДРОСАМОЛЁТ
Источник поступления информации: Роспатент

Showing 111-120 of 255 items.
13.01.2017
№217.015.878c

Лопасть несущего винта вертолёта с отклоняемой задней кромкой

Изобретение относится к области авиации, в частности к конструкциям устройств изменения циклического шага несущих винтов вертолетов. Лопасть несущего винта вертолета с отклоняемой задней кромкой включает закрылок, привод и встроенную в корпус лопасти систему передачи движения, содержащую тяги....
Тип: Изобретение
Номер охранного документа: 0002603707
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.87b7

Устройство для измерения давления и температуры

Изобретение относится к измерительной технике и может быть использовано для одновременного измерения давления, температуры и теплового потока с компенсацией влияния температуры на результаты измерения давления. Чувствительным элементом (ЧЭ) для измерения давления выбран «кремний на сапфире»,...
Тип: Изобретение
Номер охранного документа: 0002603446
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.880a

Способ торможения сверхзвукового потока

Изобретение относится к аэродинамике летательных аппаратов сверхзвуковых и околозвуковых скоростей. Способ торможения сверхзвукового потока заключается в создании скачков уплотнения, движущихся относительно обтекаемой поверхности в направлении течения, со значениями скоростей меньшими разницы...
Тип: Изобретение
Номер охранного документа: 0002603705
Дата охранного документа: 27.11.2016
25.08.2017
№217.015.9c51

Устройство для измерения интегральной полусферической излучательной способности частично прозрачных материалов

Изобретение относится к измерительной технике. Устройство содержит вакуумную камеру, исследуемый образец, механизм вращения образца, два плоских омических нагревателя с расположенными в них датчиками температуры и тепловых потоков. Определение интегральной полусферической излучательной...
Тип: Изобретение
Номер охранного документа: 0002610552
Дата охранного документа: 13.02.2017
25.08.2017
№217.015.a4c1

Сопло газоструйной системы управления вертолета

Изобретение относится к области авиации и может быть использовано для вертолетов со струйной системой управления. Механизм управления створками трехстворчатого сопла с управляемым вектором тяги состоит из зубчатого сектора управления положением средней створки, рычагов управления боковыми...
Тип: Изобретение
Номер охранного документа: 0002607687
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a50e

Крупноразмерная аэродинамическая модель

Изобретение относится к конструкции крупноразмерных аэродинамических моделей летательных аппаратов, применяющихся для испытаний в аэродинамических трубах. Устройство состоит из соединенных между собой сердечников фюзеляжа, крыла с подвижной механизацией, подвижного хвостового оперения с...
Тип: Изобретение
Номер охранного документа: 0002607675
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a5d4

Способ повышения прочности болтового металлокомпозиционного соединения

Изобретение относится к области машиностроения и может применяться в авиастроении, транспорте, строительстве, энергетике для повышения прочности и ресурса конструкций из металлических, композиционных и металлокомпозиционных материалов. Способ заключается в использовании наномодифицированной...
Тип: Изобретение
Номер охранного документа: 0002607888
Дата охранного документа: 11.01.2017
25.08.2017
№217.015.acd8

Устройство для измерения давления в аэродинамических трубах

Изобретение относится к измерительной технике и может быть использовано для измерения полного и статическое давления, их пульсаций в аэродинамических трубах и стендах. Для измерения указанных давлений предложен датчик давления, содержащий тензометрические и емкостные чувствительные элементы....
Тип: Изобретение
Номер охранного документа: 0002612733
Дата охранного документа: 13.03.2017
25.08.2017
№217.015.ae50

Гидродинамический интерцептор

Изобретение относится к области судостроения и, в частности, касается усовершенствования быстроходных судов, обеспечивает ускоренный выход судна на режим глиссирования и повышает устойчивость при движении на скорости. Предложен гидродинамический интерцептор, содержащий устройство управления,...
Тип: Изобретение
Номер охранного документа: 0002612941
Дата охранного документа: 14.03.2017
25.08.2017
№217.015.b614

Магистральный пассажирский самолет на криогенном топливе

Изобретение относится к авиационной технике. Магистральный пассажирский самолет на криогенном топливе состоит из фюзеляжа, стреловидного крыла большого удлинения, хвостового оперения, двигателей, расположенных на фюзеляже. Фюзеляж имеет две параллельные пассажирские кабины, между которыми...
Тип: Изобретение
Номер охранного документа: 0002614443
Дата охранного документа: 28.03.2017
Showing 11-13 of 13 items.
24.07.2020
№220.018.3785

Гибридная силовая установка

Гибридная силовая установка для самолетов с двумя или более винтовыми движителями содержит двигатель внутреннего сгорания с системой его автоматического управления, систему подачи топлива, электродвигатели, общее число которых соответствует количеству винтовых движителей, систему управления...
Тип: Изобретение
Номер охранного документа: 0002727287
Дата охранного документа: 21.07.2020
20.04.2023
№223.018.4cb4

Способ работы криогенной емкости для хранения жидкого водорода

Изобретение относится к криогенной технике и может быть использовано для хранения жидкого водорода. В процессе хранения жидкого водорода без газовой подушки поддерживают значение его давления в криогенной емкости выше величины давления насыщенного пара в допустимом диапазоне значений от 1,4 МПа...
Тип: Изобретение
Номер охранного документа: 0002757341
Дата охранного документа: 13.10.2021
20.04.2023
№223.018.4de2

Ротор магнитоэлектрической машины и способы его изготовления (варианты)

Изобретение относится к области электротехники, а именно к высокооборотным электрическим машинам с постоянными магнитами на внутреннем роторе. Технический результат – повышение предельно допустимой окружной скорости ротора электрической машины с магнитоэлектрическим возбуждением, улучшение...
Тип: Изобретение
Номер охранного документа: 0002793195
Дата охранного документа: 29.03.2023
+ добавить свой РИД