×
29.05.2018
218.016.5927

Результат интеллектуальной деятельности: Способ определения геомеханических параметров горных пород

Вид РИД

Изобретение

№ охранного документа
0002655279
Дата охранного документа
24.05.2018
Аннотация: Изобретение относится к исследованию скважин геофизическими методами и может найти применение при определении геомеханических параметров горных пород для выбора оптимальных участков при проведении гидравлического разрыва пласта (ГРП). Техническим результатом является повышение эффективности проведения ГРП, повышение качества определения геомеханических параметров. Способ включает определение геомеханических параметров. При этом по стволу скважины проводят комплекс геофизических исследований - ГИС - методами гамма-каротажа - GK, индукционного каротажа - IK, нейтронного гамма-каротажа - NGK, кавернометрии - DS, плотностного гамма-гамма-каротажа - RHOB, определяют интервалы продуктивных пластов и выделяют значения GK, IK, NGK, DS, RHOB в каждом интервале продуктивного пласта, далее выполняют коррекцию значения RHOB и, используя значения, полученные по результатам GK, IK и NGK, рассчитывают и усредняют значения интервального времени пробега продольной DTp и поперечной DTs волн, затем находят отношение времен пробега продольной и поперечной волн и, используя полученные значения DTp и DTs, а также скорректированное значение RHOB, вычисляют геомеханические параметры: модуль Юнга, модуль сдвига и коэффициент Пуассона в интервалах продуктивных пластов, по наименьшему значению этих параметров определяют целевой интервал продуктивного пласта для проведения гидравлического разрыва пласта.

Изобретение относится к исследованию скважин геофизическими методами и может найти применение при определении геомеханических параметров горных пород для выбора оптимальных участков при проведении гидравлического разрыва пласта (ГРП).

Известен способ определения коэффициента Пуассона горных пород (патент №2447284, МПК E21C 39/00, опубл. 10.04.2012 г. в бюл. №10), включающий вдавливание в образец стальных встречно-направленных нагрузочных элементов и измерение его деформации. В образец вдавливают сферические встречно-направленные нагрузочные элементы (сферические инденторы) до его разрыва по плоскости, проходящей через ось нагружения. В образце измеряют площадь поверхностей разрыва и зон разрушенной породы в областях контакта с обоими сферическими инденторами, при этом коэффициент Пуассона μк рассчитывают по формуле:

где S - площадь поверхности разрыва;

F - площадь поверхности большей из зон разрушенной породы в областях контакта со сферическими инденторами.

Недостатки способа:

1) кроме определения коэффициента Пуассона горных пород, невозможно определение остальных геомеханических параметров горных пород, таких как модуль Юнга и модуль сдвига;

2) низкая достоверность данных, полученных расчетным путем, т.е. без применения промысловых геофизических данных;

3) коэффициент Пуассона горных пород получен только на определенном образце горной породы, т.е. образце, взятом в определенном интервале, а не по всему стволу скважины.

Наиболее близким по технической сущности является способ определения геомеханических параметров образца горной породы (заявка №2014145357, МПК G01N 3/42, решение о выдаче патента от 11.01.2017 г., опубл. 10.16.2016 г. в бюл. №16), включающий несколько этапов. Этап нанесения царапины, в ходе которого измеряют горизонтальные и вертикальные усилия, прикладываемые к резцу, перемещающемуся вдоль образца с постоянной скоростью и постоянной глубиной реза, чтобы разрушить постоянный объем на единицу длины на поверхности образца породы. Этап микровдавливания, в ходе которого определяют механические свойства образца породы. Этап определения геомеханических параметров образца, в ходе которого посредством результатов измерений, выполненных во время этапов нанесения царапин и микровдавливания, оценивают по меньшей мере один параметр из следующего списка: предел прочности при одноосном сжатии, угол трения, внутренняя когезия, твердость по Бринелю и модуль Юнга. В ходе этапа определения геомеханических параметров образца определяют предел прочности при одноосном сжатии, угол трения, внутреннюю когезию, твердость по Бринелю и модуль Юнга породы. Дополнительно включают этап измерения акустических параметров образца породы, причем в ходе этапа определения геомеханических параметров образца определяют Пуассоново отношение образца породы. Акустические параметры включают в себя скорости распространения волн сжатия и поперечных волн. Измерения при микровдавливании и/или измерения акустических параметров выполняют в канавке, полученной в ходе этапа нанесения царапины. Во время нанесения царапины и микровдавливания записывают микросейсмическую эмиссию. Образец породы имеет форму керна, и этапы измерения и определения геомеханических параметров образца повторяют по длине. Образец фотографируют в ходе этапов измерения. Способ осуществляют на компьютерном программном продукте.

Недостатки способа:

1) низкая эффективность проведения ГРП на основе исследования одного образца горной породы, полученного из целевого интервала, так как для осуществления ГРП требуется проведение дополнительных геофизических исследований скважины;

2) невозможность определения таких геомеханических параметров, как модуль сдвига и коэффициент Пуассона, которые в комплексе с модулем Юнга повышают качество исследования породы;

3) высокие затраты на реализацию способа, требующего отбор керна из скважины, доставку его на стенд, а также изготовление стенда и проведение испытаний по определению геомеханических параметров образца горной породы.

Техническими задачами изобретения являются повышение качества исследования горной породы за счет повышения достоверности и оперативности получаемых геомеханических параметров и эффективности проведения гидравлического разрыва пласта, а также снижение затрат на реализацию способа.

Поставленные технические задачи решаются способом определения геомеханических параметров горных пород, включающим определение геомеханических параметров.

Новым является то, что по стволу скважины проводят комплекс геофизических исследований - ГИС - методами гамма-каротажа - GK, индукционного каротажа - IK, нейтронного гамма-каротажа - NGK, кавернометрии - DS, плотностного гамма-гамма-каротажа - RHOB, определяют интервалы продуктивных пластов и выделяют значения GK, IK, NGK, DS, RHOB в каждом интервале продуктивного пласта, далее выполняют коррекцию значения RHOB и, используя значения, полученные по результатам GK, IK и NGK, рассчитывают и усредняют значения интервального времени пробега продольной DTp и поперечной DTs волн, затем находят отношение времен пробега продольной и поперечной волн и, используя полученные значения DTp и DTs, а также скорректированное значение RHOB, вычисляют геомеханические параметры: модуль Юнга, модуль сдвига и коэффициент Пуассона в интервалах продуктивных пластов, по наименьшему значению этих параметров определяют целевой интервал продуктивного пласта для проведения гидравлического разрыва пласта.

Предлагаемый способ реализуют следующим образом.

1. Проводят комплекс геофизических исследований - ГИС - методами гамма-каротажа - GK, индукционного каротажа - IK, нейтронного гамма-каротажа - NGK, кавернометрии - DS и плотностного гамма-гамма-каротажа - RHOB по стволу скважины. В стволе скважины определяют интервалы продуктивных пластов, потенциально предназначенных для проведения ГРП. Выделяют значения GK, IK, NGK, DS, RHOB в каждом интервале продуктивного пласта.

Производят коррекцию значения плотностного гамма-гамма-каротажа - RHOB по формуле:

где IF - оператор «если»;

RHOB - значение плотностного гамма-гамма-каротажа, г/см3;

DS - значение каверномера, мм;

2.78 - значение плотности матрицы горной породы;

0.23 - значение диаметра ствола скважины.

2. Используя значения, полученные по методам исследования GK, IK, NGK, рассчитывают интервальное время пробега продольной волны DTp и интервальное время пробега поперечной волны DTs по следующим формулам:

где DTp - интервальное время пробега продольной волны, мкс/м;

DTs - интервальное время пробега поперечной волны, мкс/м;

GK - значение гамма-каротажа, мкс/м.

где IK - значение индукционного каротажа, Омм.

где NGK - значение нейтронного гамма-каротажа, у.е.

3. Усредняют полученные по формулам (2), (4), (6) значение DTp и значение DTs по формулам (3), (5), (7).

4. Находят отношение времен пробега продольной и поперечной волн по формуле:

где R - отношение времен пробега;

DTS - интервальное время пробега поперечной волны, мкс/м;

DTp - интервальное время пробега продольной волны, мкс/м.

5. Используя скорректированное значение RHOB, а также полученные усредненные значения DTS и DTp, вычисляют геомеханические параметры: модуль Юнга, модуль сдвига и коэффициент Пуассона в интервалах продуктивных пластов.

Коэффициент Пуассона находят по формуле:

где PR - коэффициент Пуассона, м/м.

Модуль сдвига находят по формуле:

где G - модуль сдвига, МПа;

RHOB - скорректированная плотность гамма-гамма-каротажа, г/см3;

DTs - интервальное время пробега поперечной волны, мкс/м.

Модуль Юнга находят по формуле:

где E - модуль Юнга, МПа.

Далее по наименьшему значению показателей геомеханических параметров, определенных в интервалах продуктивных пластов в стволе скважины, определяют целевой интервал продуктивного пласта для проведения ГРП.

Предлагаемый способ позволяет повысить качество определения геомеханических параметров за счет повышения достоверности получаемых геомеханических параметров, так как способ основан на определении геомеханических параметров непосредственно в скважине в интервалах продуктивных пластов.

Кроме модуля Юнга, в предлагаемом способе также определяют такие параметры, как модуль сдвига и коэффициент Пуассона. Для этого проводят комплекс геофизических исследований методами GK, IK, NGK, DS, RHOB.

Предлагаемый способ позволяет повысить эффективность проведения гидроразрыва пласта, так как целевой интервал подбирается на основе определения геомеханических параметров, что повышает достоверность полученных данных.

Снижаются затраты на реализацию способа, так как они включают в себя только затраты на проведение комплекса геофизических методов, а расчет геомеханических параметров производится с помощью компьютерного программного продукта.

Пример конкретного применения способа

1. По стволу скважины провели комплекс ГИС методами гамма-каротажа - GK, индукционного каротажа - IK, нейтронного гамма-каротажа - NGK, кавернометрии - DS и плотностного гамма-гамма-каротажа - RHOB и определили значения.

По стволу скважины имеется три интервала продуктивных пластов, потенциально предназначенных для проведения ГРП:

1) 1610-1616 м;

2) 1632-1639 м;

3) 1654-1660 м.

Выделили значения для каждого интервала продуктивного пласта.

Для первого интервала: глубина - 1613 м (выбрали значение внутри интервала); GK - 1,374 мкс/м; NGK - 3,236 у.е.; DS - 219 мм; RHOB - 2,618 г/см3; IK - 24,2 Омм.

Для второго интервала: глубина - 1635 м; GK - 1,655 мкс/м; NGK - 3,627 у.е.; DS - 219 мм; RHOB - 2,754 г/см3; IK - 27,3 Омм.

Для третьего интервала: глубина - 1657 м; GK - 1,015 мкс/м; NGK - 2,973 у.е.; DS - 219 мм; RHOB - 2,243 г/см3; IK - 21,6 Омм.

Используя программы для обработки LAS-файлов (например, программу «Геомеханика» от фирмы ООО «Литосфера» или программу CurveEditor), выполнили коррекцию RHOB по формуле (1):

Здесь диаметр скважины по долоту равен 0,22 м. Выбираем граничное значение диаметра, начиная с которого будет проводиться корректировка плотности, увеличенного на 1 см и равного 0,23 м.

Эта же формула, записанная в Excel:

Здесь в ячейке Е21 записано значение RHOB, а в ячейке Е22 - значение DS.

Эта формула означает, что если на заданной глубине показания RHOB больше 2,78 г/см3, то принимают значение RHOB, равное 2,78 г/см3. Если плотность по каротажу RHOB меньше 2,78 г/см3, то проверяют значение диаметра скважины. Если показания DS больше 0,23 м, то принимают значение RHOB, равное 2,78 г/см3. Если RHOB не превышает 2,78 г/см3 и DS не превышает 0,23 м, принимают текущее показание. В данном примере на глубинах 1613 м, 1635 м, 1657 м показания RHOB равны 2,618 г/см3, 2,754 г/см3, 2,243 г/см3 соответственно. Поэтому их и принимают для дальнейшего расчета.

2. Используя значения, полученные методами каротажа, вычислили значения DTp и DTs по формулам (2-7):

Для первого интервала: DTp=9,21⋅1,374+168,5=181,1545 мкс/м.

Для второго интервала: DTp=9,21⋅1,655+168,5=183,7425 мкс/м.

Для третьего интервала: DTp=9,21⋅1,015+168,5=177,8481 мкс/м.

Для первого интервала: DTs=18,87⋅1,374+328,3=354,2273 мкс/м.

Для второго интервала: DTs=18,87⋅1,655+328,3=359,5298 мкс/м.

Для третьего интервала: DTs=18,87⋅1,015+328,3=348,1135 мкс/м.

Для первого интервала: DTp=0,38/24,2+164,6=164,6157 мкс/м.

Для второго интервала: DTp=0,38/27,3+164,6=164,6139 мкс/м.

Для третьего интервала: DTp=0,38/21,6+164,6=164,6176 мкс/м.

Для первого интервала: DTs=0,5/24,2+337,3=337,3206 мкс/м.

Для второго интервала: DTs=0,5/27,3+337,3=337,3183 мкс/м.

Для третьего интервала: DTs=0,5/21,6+337,3=337,3231 мкс/м.

Для первого интервала: DTp=-44,85⋅3,236+323,4=178,2654 мкс/м.

Для второго интервала: DTp=-44,85⋅3,627+323,4=160,7290 мкс/м.

Для третьего интервала: DTp=-44,85⋅2,973+323,4=190,0609 мкс/м.

Для первого интервала: DTs=-31,56⋅3,236+522,4=420,2718 мкс/м.

Для второго интервала: DTs=-31,56⋅3,627+522,4=407,9319 мкс/м.

Для третьего интервала: DTs=-31,56⋅2,973+522,4=428,5721 мкс/м.

3. Затем полученные значения DTp и DTs усреднили. Для этого из трех значений выбрали два наиболее близких, и между ними нашли среднее.

Для первого интервала:

Значения DTp, полученные по формулам (2), (4), (6):

(2)=181,1545 мкс/м; (4)=164,6157 мкс/м; (6)=178,2654 мкс/м.

Как видим, больше всего подходят значения, полученные по формулам (2) и (6). Берем их за основу и находим среднее значение: DTp=(181,1545 мкс/м+178,2654 мкс/м)/2=179,7099 мкс/м.

Значения DTs, полученные по формулам (3), (5), (7):

(3)=354,2273 мкс/м; (5)=337,3206 мкс/м; (7)=420,2718 мкс/м.

Как видим, больше всего подходят значения, полученные по формулам (3) и (5). Берем их за основу и находим среднее DTs=(354,2273 мкс/м+337,3206 мкс/м)/2=345,7739 мкс/м.

Для второго интервала:

Значения DTp, полученные по формулам (2), (4), (6):

(2)=183,7425 мкс/м; (4)=164,6139 мкс/м; (6)=160,7290 мкс/м.

Как видим, больше всего подходят значения, полученные по формулам (4) и (6). Берем их за основу и находим среднее значение: DTp=(164,6139 мкс/м+160,7290 мкс/м)/2=162,6714 мкс/м.

Значения DTs, полученные по формулам (3), (5), (7):

(3)=359,5298 мкс/м; (5)=337,3183 мкс/м; (7)=407,9319 мкс/м.

Как видим, больше всего подходят значения, полученные по формулам (3) и (5). Берем их за основу и находим среднее DTs=(359,5298 мкс/м+337,3183 мкс/м)/2=348,42405 мкс/м.

Для третьего интервала:

Значения DTp, полученные по формулам (2), (4), (6):

(2)=177,8481 мкс/м; (4)=164,6176 мкс/м; (6)=191,4064 мкс/м.

Как видим, больше всего подходят значения, полученные по формулам (2) и (6). Берем их за основу и находим среднее значение: DTp=(177,8481 мкс/м+191,4064 мкс/м)/2=184,6272 мкс/м.

Значения DTs, полученные по формулам (3), (5), (7):

(3)=348,1135 мкс/м; (5)=337,3231 мкс/м; (7)=428,5751 мкс/м.

Как видим, больше всего подходят значения, полученные по формулам (3) и (5). Берем их за основу и находим среднее DTs=(348,1135 мкс/м+337,3231 мкс/м)/2=342,7183 мкс/м.

4. Затем нашли отношение времен пробега продольной и поперечной волн по формуле (8):

Для первого интервала: R=345,7739 мкс/м / 179,7099 мкс/м=1,924 мкс/м.

Для второго интервала: R=348,42405 мкс/м / 162,6714 мкс/м=2,149 мкс/м.

Для третьего интервала: R=342,7183 мкс/м / 184,6272 мкс/м=1,856 мкс/м.

5. Используя полученные значения DTp и DTs, а также скорректированное значение RHOB, в интервалах продуктивных пластов вычислили геомеханические параметры.

Определили коэффициент Пуассона по формуле (9):

Для первого интервала: PR=(0,5⋅1,9242-1) / 1,9242-1=0,3148.

Для второго интервала: PR=(0,5⋅2,1492-1) / 2,1492-1=0,3618.

Для третьего интервала: PR=(0,5⋅1,8562-1) / 1.8562-1=0,2955.

Определили модуль сдвига по формуле (10):

Для первого интервала: G=(2,618 / (345,7739)2)⋅109=21897,0 МПа.

Для второго интервала: G=(2,754 / (348,42405)2)⋅109=22685,5 МПа.

Для третьего интервала: G=(2,243 / (342,7183)2)⋅109=19096,7 МПа.

Определили модуль Юнга по формуле (11):

Для первого интервала: Е=2⋅21897,0⋅(1+0,3148)=57580,35 МПа.

Для второго интервала: Е=2⋅22685,5⋅(1+0,3618)=61786,22 МПа.

Для третьего интервала: Е=2⋅19096,7⋅(1+0,3335)=50930,90 МПа.

Как видно из расчетов по формулам (6), (7), (8), наименьшими значениями геомеханических параметров: модуля Юнга, модуля сдвига и коэффициента Пуассона - обладает третий интервал. Поэтому его выбрали для проведения ГРП.

Предлагаемый способ определения геомеханических параметров горных пород позволяет:

- повысить эффективность проведения ГРП;

- повысить качество определения геомеханических параметров;

- снизить затраты на реализацию способа.

Способ определения геомеханических параметров горных пород, включающий определение геомеханических параметров, отличающийся тем, что по стволу скважины проводят комплекс геофизических исследований - ГИС - методами гамма-каротажа - GK, индукционного каротажа - IK, нейтронного гамма-каротажа - NGK, кавернометрии - DS, плотностного гамма-гамма-каротажа - RHOB, определяют интервалы продуктивных пластов и выделяют значения GK, IK, NGK, DS, RHOB в каждом интервале продуктивного пласта, далее выполняют коррекцию значения RHOB и, используя значения, полученные по результатам GK, IK и NGK, рассчитывают и усредняют значения интервального времени пробега продольной DTp и поперечной DTs волн, затем находят отношение времен пробега продольной и поперечной волн и, используя полученные значения DTp и DTs, а также скорректированное значение RHOB, вычисляют геомеханические параметры: модуль Юнга, модуль сдвига и коэффициент Пуассона в интервалах продуктивных пластов, по наименьшему значению этих параметров определяют целевой интервал продуктивного пласта для проведения гидравлического разрыва пласта.
Источник поступления информации: Роспатент

Showing 171-180 of 432 items.
09.08.2018
№218.016.7a32

Способ разработки залежи высоковязкой нефти с использованием парных горизонтальных скважин

Изобретение относится к нефтедобывающей промышленности и может найти применение при разработке залежи высоковязкой и битумной нефти. Способ разработки залежи высоковязкой нефти с использованием парных горизонтальных скважин, включающий строительство в продуктивном пласте горизонтальной...
Тип: Изобретение
Номер охранного документа: 0002663530
Дата охранного документа: 07.08.2018
09.08.2018
№218.016.7a50

Способ разработки залежи высоковязкой нефти с водонефтяными интервалами

Изобретение относится к нефтедобывающей промышленности. Технический результат - увеличение дебита не менее чем на 50% за счет увеличения площади фильтрации добывающей скважины. Способ разработки залежи высоковязкой нефти с водонефтяными интервалами включает строительство горизонтальных...
Тип: Изобретение
Номер охранного документа: 0002663529
Дата охранного документа: 07.08.2018
09.08.2018
№218.016.7a69

Способ разработки залежи высоковязкой нефти с водонасыщенными зонами

Изобретение относится к нефтедобывающей промышленности. Технический результат - расширение функциональных возможностей за счет стабильности водоизолирующего состава при температурах выше 180°С, увеличение эффективности работы погружных скважинных насосов за счет наличия отсекающего пакера,...
Тип: Изобретение
Номер охранного документа: 0002663524
Дата охранного документа: 07.08.2018
09.08.2018
№218.016.7a79

Способ разработки высоковязкой нефти

Изобретение относится к нефтедобывающей промышленности. Технический результат -увеличение добычи и охвата вытеснением за счет включения в разработку незатронутых зон, обеспечение равномерной выработки запасов нефти с поддержанием оптимальной температуры для отбора продукции в дополнительной...
Тип: Изобретение
Номер охранного документа: 0002663532
Дата охранного документа: 07.08.2018
09.08.2018
№218.016.7a8b

Способ разработки залежи высоковязкой нефти с водонасыщенными зонами

Изобретение относится к нефтедобывающей промышленности. Технический результат - расширение функциональных возможностей за счет стабильности водоизолирующего состава при воздействии на него в течение продолжительного времени высокими температурами не менее 180°С, исключение саморазрушения...
Тип: Изобретение
Номер охранного документа: 0002663521
Дата охранного документа: 07.08.2018
09.08.2018
№218.016.7a96

Способ разработки парных горизонтальных скважин, добывающих высоковязкую нефть

Изобретение относится к нефтедобывающей промышленности и может найти применение при разработке залежи высоковязкой и битумной нефти. Способ разработки парных горизонтальных скважин, добывающих высоковязкую нефть, включает строительство горизонтальных добывающей скважины и нагнетательной...
Тип: Изобретение
Номер охранного документа: 0002663527
Дата охранного документа: 07.08.2018
09.08.2018
№218.016.7aa4

Способ разработки залежи высоковязкой нефти с использованием парных горизонтальных скважин

Изобретение относится к нефтедобывающей промышленности. Технический результат - ускорение выхода на промышленную эксплуатацию залежи, сокращение энергетических затрат, эффективная добыча продукции. Способ разработки залежи высоковязкой нефти с использованием парных горизонтальных скважин...
Тип: Изобретение
Номер охранного документа: 0002663526
Дата охранного документа: 07.08.2018
09.08.2018
№218.016.7aa8

Способ разработки залежи сверхвязкой нефти

Изобретение относится к нефтедобывающей промышленности. Технический результат - повышение эффективности за счет увеличения площади охвата залежи сверхвязкой нефти. Способ разработки залежи сверхвязкой нефти включает строительство в пласте выше водонефтяного контакта или подошвы пласта...
Тип: Изобретение
Номер охранного документа: 0002663627
Дата охранного документа: 07.08.2018
10.08.2018
№218.016.7b34

Гидромеханический перфоратор

Изобретение относится к нефтедобывающей промышленности, в частности к области вторичного вскрытия созданием перфорационных каналов в эксплуатационной колонне. Гидромеханический перфоратор содержит гидропривод, состоящий из по меньшей мере двух цилиндров с поршнями, верхний из которых соединен с...
Тип: Изобретение
Номер охранного документа: 0002663760
Дата охранного документа: 09.08.2018
13.08.2018
№218.016.7ba3

Соединительный узел бурового инструмента с обсадной колонной

Изобретение относится к области бурения нефтяных и газовых скважин, а именно к способам бурения на обсадной колонне. Соединительный узел бурового инструмента с обсадной колонной включает обсадную колонну с башмаком, вставленный в обсадную колонну переходник бурового инструмента, плунжер с...
Тип: Изобретение
Номер охранного документа: 0002663856
Дата охранного документа: 10.08.2018
Showing 171-180 of 312 items.
26.08.2017
№217.015.e500

Способ эксплуатации добывающей высоковязкую нефть скважины

Изобретение относится к нефтяной промышленности и предназначено для снижения асфальтеносмолопарафиновых отложений (АСПО) на внутрискважинном оборудовании и разрушения водонефтяной эмульсии в скважине при эксплуатации скважины, добывающей высоковязкую нефть. Способ включает спуск в скважину...
Тип: Изобретение
Номер охранного документа: 0002626484
Дата охранного документа: 28.07.2017
26.08.2017
№217.015.e506

Способ удаления заглушек из перфорированных отверстий хвостовика при заканчивании горизонтальной скважины в залежи битума

Изобретение относится к нефтяной промышленности и может найти применение при строительстве нефтяных скважин с горизонтальным окончанием в залежи битума. Способ удаления заглушек из перфорированных отверстий хвостовика при заканчивании горизонтальной скважины в залежи битума включает бурение,...
Тип: Изобретение
Номер охранного документа: 0002626496
Дата охранного документа: 28.07.2017
26.08.2017
№217.015.e515

Способ промывки проппанта из колонны труб и призабойной зоны скважины после гидроразрыва пласта

Изобретение относится к нефтегазобывающей промышленности, в частности к технологиям промывки проппантовых пробок в скважинах. Способ включает спуск в скважину в интервал пласта колонны труб с пакером, установку пакера над пластом, закачку жидкости гидроразрыва в продуктивный пласт, проведение...
Тип: Изобретение
Номер охранного документа: 0002626495
Дата охранного документа: 28.07.2017
26.08.2017
№217.015.e679

Способ разработки залежи высоковязкой нефти или битума с применением трещин гидроразрыва пласта

Изобретение относится к нефтегазодобывающей промышленности. Технический результат – повышение эффективности и надежности способа разработки, увеличение охвата залежи тепловым воздействием, равномерная и полная выработка запасов высоковязкой нефти или битума из залежи с одновременным снижением...
Тип: Изобретение
Номер охранного документа: 0002626845
Дата охранного документа: 02.08.2017
26.08.2017
№217.015.e831

Способ разработки залежи высоковязкой нефти или битума с применением трещин гидроразрыва пласта

Изобретение относится к разработке залежей высоковязкой нефти или битума, содержащих непроницаемые пропластки, с применением трещин гидроразрыва пласта (ГРП). Способ разработки залежи высоковязкой нефти или битума с применением трещин гидроразрыва пласта (ГРП) включает бурение вертикальной и...
Тип: Изобретение
Номер охранного документа: 0002627345
Дата охранного документа: 07.08.2017
29.12.2017
№217.015.fbf8

Способ разбуривания скважинного оборудования с применением гибкой трубы

Изобретение относится к области ремонта скважин, в частности к способу для разбуривания скважинного оборудования. Способ включает сборку колонны труб с винтовым забойным двигателем - ВЗД и фрезой-долотом, спуск в скважину колонны труб с ВЗД и фрезой-долотом до достижения разбуриваемого...
Тип: Изобретение
Номер охранного документа: 0002638672
Дата охранного документа: 15.12.2017
29.12.2017
№217.015.feb4

Устройство для поинтервального гидроразрыва пласта

Изобретение относится к нефтегазодобывающей промышленности и может быть применено для проведения поинтервального кислотного гидроразрыва пласта. Устройство для проведения поинтервального гидроразрыва пласта содержит колонну насосно-компрессорных труб с полым цилиндрическим корпусом, снизу...
Тип: Изобретение
Номер охранного документа: 0002638673
Дата охранного документа: 15.12.2017
19.01.2018
№218.016.0478

Способ эксплуатации продуктивного и водоносного пластов, разделённых непроницаемым пропластком, скважиной с горизонтальными стволами и с трещинами гидравлического разрыва пласта

Изобретение относится к нефтедобывающей промышленности и может найти применение при совместной эксплуатации продуктивного и водоносного пластов с применением гидравлического разрыва пласта. Технический результат - повышение эффективности способа за счет исключения дополнительных энергетических...
Тип: Изобретение
Номер охранного документа: 0002630514
Дата охранного документа: 11.09.2017
19.01.2018
№218.016.0597

Способ освоения скважины после проведения гидроразрыва пласта

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано для освоения скважин после проведения гидроразрыва пласта. Способ освоения скважины включает спуск колонны насосно-компрессорных труб (НКТ) в скважину, обвязку азотного компрессора нагнетательной линией с...
Тип: Изобретение
Номер охранного документа: 0002630930
Дата охранного документа: 14.09.2017
19.01.2018
№218.016.05b7

Способ очистки и обработки призабойной зоны горизонтальной скважины в залежи битума

Изобретение относится к нефтяной промышленности и может найти применение при обработке призабойной зоны в горизонтальных стволах скважин, пробуренных в залежи битумов. Способ очистки и обработки призабойной зоны горизонтальной скважины в залежи битума включает спуск в скважину колонны гибких...
Тип: Изобретение
Номер охранного документа: 0002630938
Дата охранного документа: 14.09.2017
+ добавить свой РИД