×
29.05.2018
218.016.57c3

Результат интеллектуальной деятельности: СПОСОБ ИЗМЕРЕНИЯ ВЕКТОРА ПУТЕВОЙ СКОРОСТИ ТРАНСПОРТНОГО СРЕДСТВА

Вид РИД

Изобретение

№ охранного документа
0002654931
Дата охранного документа
23.05.2018
Аннотация: Изобретение относится к измерительной технике, в частности к способам измерения путевой скорости транспортных средств с использованием эффекта Доплера для электромагнитных волн. Технический результат - повышение точности измерения путевой скорости достигается тем, что в способе измерения путевой скорости, при котором СВЧ волны с длиной волны λ излучают с двух сторон транспортного средства под углом β к его оси и углом α между направлением движения и подстилающей поверхностью, принимают отраженные волны, выделяют сигналы с доплеровскими частотами на смесителях между излучаемыми и принимаемыми волнами, измеряют эти частоты и , определяют модуль средней скорости V за время Δt по формуле . Дополнительно к этому определяют угол поворота транспортного средства ϕ за то же время по формуле при ширине транспортного средства, равной r. 3 ил.

Изобретение относится к измерительной технике, в частности к способам измерения путевой скорости транспортных средств с использованием эффекта Доплера для электромагнитных волн.

В настоящее время известны и применяются радиоволновые способы измерения путевой скорости, основанные на эффекте Доплера (Викторов В.А., Лункин Б.В., Совлуков А.С. Радиоволновые измерения параметров технологических процессов. М.: Энергоатомиздат, 1989. 124-132 с.). Обычно они применяются в радиолокации для определения скорости и координат движущихся объектов. Также они находят применение для измерения путевой скорости автомобилей и железнодорожных составов. Доплеровский способ измерения заключается в зондировании движущихся объектов электромагнитными волнами СВЧ диапазона и выделении частоты смещения рассеянной волны. Если источник излучения с фиксированной частотой расположен спереди транспортного средства, движущегося со скоростью V, и его антенна направлена под углом α между направлением движения и подстилающей поверхностью, то доплеровская частота определится по формуле:

где - длина волны в среде измерения, а ε - ее диэлектрическая проницаемость, которая для воздуха равна единице, c - скорость света в воздухе. Таким образом, измеряя доплеровскую частоту, можно вычислять скорость по формуле:

Важным достоинством доплеровского способа измерения скорости перед измерением с использованием одометра для колесных видов транспорта является тот факт, что результат измерения не зависит от диаметра колес и давления в шинах, также на нее не влияет движение во внештатных режимах (занос, юз, скольжение, буксование). Поэтому применение этого способа для измерения путевой скорости является более точным, хотя он также как и одометр представляет скорость в одномерном виде. В то же время в автоблокировочных системах и системах распределения тормозных усилий в современных автомобилях предпочтительно получение информации о двухкоординатном векторе скорости перемещения. Это также важно и для использования в автономных навигационных системах (например, инерционных), которые в настоящее время предпочтитают применять совместно с системами глобального позиционирования (GPS, ГЛОНАСС и др.). Применение для измерения вектора путевой скорости собственно инерционных систем на основе гироскопов затруднено из-за необходимости их размещения точно в центре тяжести транспортного средства, защиты хрупких механических деталей от вибраций и повреждений, необходимости проведения частых коррекций ошибок, высокой стоимости.

Наиболее близким по технической сущности является способ измерения путевой скорости (Ch. Xu, L. Daniel, E. Hoare, V. Sizov, M. Cherniakov "Comparison of Speed over Ground Estimation Using Acoustic and Radar Doppler Sensors", Proceedings of the 11th European Radar Conference 8-10 Oct 2014, Rome, Italy, pp. 189-192), принятый за прототип. При осуществлении этого способа доплеровские СВЧ датчики располагаются по сторонам транспортного средства и их показания обрабатываются совместно. Это дает возможность повысить точность измерения скорости за счет учета вибраций, крена и тангажа. Однако измерение собственно вектора путевой скорости не производится, поскольку измеряется лишь средняя скорость при движении транспортного средства по направлению его оси. Для измерения же вектора путевой скорости за время Δt необходимо произвести измерение модуля вектора скорости и угла его отклонения относительно первоначального положения оси.

Техническим результатом настоящего изобретения является повышение точности измерения путевой скорости транспортного средства.

Технический результат достигается тем, что в способе измерения путевой скорости, при котором СВЧ волны с длиной волны λ0 излучают с двух сторон транспортного средства под углом β к его оси и углом α между направлением движения и подстилающей поверхностью, принимают отраженные волны, выделяют сигналы с доплеровскими частотами на смесителях между излучаемыми и принимаемыми волнами, измеряют эти частоты и , определяют модуль средней скорости V за время Δt по формуле . Дополнительно к этому определяют угол поворота транспортного средства ϕ за то же время по формуле при ширине транспортного средства, равной r.

На Фиг. 1 представлено расположение сбоку на транспортном средстве 3 одного из двух одинаковых доплеровских датчиков путевой скорости - 1, 2, реализующих способ.

На Фиг. 2 показано расположение доплеровских датчиков 1 и 2 на транспортном средстве 3 сверху при его движении.

На Фиг. 3 поясняется процесс определения вектора путевой скорости при движении транспортного средства.

Антенна каждого доплеровского датчика скорости расположена на боковой стороне транспортного средства и направлена под углом α к направлению движения, как показано на Фиг. 1, и повернута на угол β от его оси, как показано на Фиг. 2. При этом расстояние между ними равно r. Каждый датчик выделяет доплеровскую частоту, пропорциональную радиальной скорости взаимного перемещения датчиков и подстилающей отражающей поверхности и . В результате, скорости перемещения точек расположения датчиков V1 и V2 можно определить по формулам:

Если транспортное средство движется по прямой, совпадающей с его осью, то эти скорости будут равны. Допустим, происходит поворот направо, как показано на Фиг. 2. Тогда скорость V1 будет больше V2, а движение будет происходить по окружности с радиусом R, проходящей через центр транспортного средства. Его левая и правая стороны будут перемещаться по радиусам R+r/2 и R-r/2, соответственно. Если это состояние сохраняется в течение времени Δt, то радиус можно определить по формуле:

При подстановке в формулу (4) значения скоростей из (3) получим:

Теперь допустим, что перемещение транспортного средства разделено на i=1, 2 …N отрезков времени с дискретностью Δt, где N - общее число таких отрезков. Тогда, если поместить в начале движения (i=1) транспортное средство в центр прямоугольных координат с осью Yi-1, совпадающей с его собственной осью, то за первое время Δt при скоростях и можно вычислить Ri, лежащий на оси Xi-1 по формуле (5) (см. Фиг. 3). Затем можно определить угол дуги его перемещения wi за время Δt из точки P0 в точку P1 по формуле:

Как видно из Фиг. 3, угол отклонения транспортного средства от первоначального направления ϕi при этом равен половине этого угла, тогда с учетом (6) получим:

Поскольку , то с учетом (3) получим:

Подставив в выражение (7) значения Ri и Vi из (5) и (8), получим выражение для угла вектора скорости в каждый дискретный отрезок времени Δt:

Таким образом, получив выражение для вектора скорости при перемещении от первоначальной точки P0 к точке P1 и так далее к точкам Pi-1, перемещая систему текущих координат и измеряя соответствующие текущие значения доплеровских частот и , появляется возможность его непрерывного измерения на всем маршруте транспортного средства с дискретностью Δt.

Благодаря измерению вектора путевой скорости увеличивается точность измерения пути транспортного средства с возможностью построения маршрута его перемещения. Зная его значение на каждом отрезке маршрута, можно рассчитать путь перемещения при первоначальной системе координат (см. Фиг. 3) по формулам:

При этом длина каждой хорды Li определяется по известной формуле:

.

Способ измерения путевой скорости, при котором СВЧ волны с длиной волны λ излучают с двух сторон транспортного средства под углом β к его оси и углом α между направлением движения и подстилающей поверхностью, принимают отраженные волны, выделяют сигналы с доплеровскими частотами на смесителях между излучаемыми и принимаемыми волнами, измеряют эти частоты ƒ и ƒ, определяют модуль средней скорости V за время Δt по формуле V=λ(ƒ+ƒ)/4cos(α)cos(β), отличающийся тем, что определяют угол поворота транспортного средства ϕ за то же время по формуле ϕ=λ(ƒ-ƒ)/4πrcos(α)cos(β) при ширине транспортного средства, равной r.
СПОСОБ ИЗМЕРЕНИЯ ВЕКТОРА ПУТЕВОЙ СКОРОСТИ ТРАНСПОРТНОГО СРЕДСТВА
СПОСОБ ИЗМЕРЕНИЯ ВЕКТОРА ПУТЕВОЙ СКОРОСТИ ТРАНСПОРТНОГО СРЕДСТВА
СПОСОБ ИЗМЕРЕНИЯ ВЕКТОРА ПУТЕВОЙ СКОРОСТИ ТРАНСПОРТНОГО СРЕДСТВА
СПОСОБ ИЗМЕРЕНИЯ ВЕКТОРА ПУТЕВОЙ СКОРОСТИ ТРАНСПОРТНОГО СРЕДСТВА
СПОСОБ ИЗМЕРЕНИЯ ВЕКТОРА ПУТЕВОЙ СКОРОСТИ ТРАНСПОРТНОГО СРЕДСТВА
СПОСОБ ИЗМЕРЕНИЯ ВЕКТОРА ПУТЕВОЙ СКОРОСТИ ТРАНСПОРТНОГО СРЕДСТВА
СПОСОБ ИЗМЕРЕНИЯ ВЕКТОРА ПУТЕВОЙ СКОРОСТИ ТРАНСПОРТНОГО СРЕДСТВА
СПОСОБ ИЗМЕРЕНИЯ ВЕКТОРА ПУТЕВОЙ СКОРОСТИ ТРАНСПОРТНОГО СРЕДСТВА
Источник поступления информации: Роспатент

Showing 251-260 of 276 items.
18.12.2019
№219.017.ee63

Привязной коптер

Изобретение относится к области авиации, в частности к авиационным системам передачи информации с помощью летательных аппаратов. Привязной коптер содержит каркас с размещенными на нем электродвигателями с автоматами перекоса винтов, системой управления с гироскопом и радиоэлектронной...
Тип: Изобретение
Номер охранного документа: 0002709083
Дата охранного документа: 13.12.2019
21.01.2020
№220.017.f789

Устройство для электропитания привязного летательного аппарата

Устройство для электропитания привязного летательного аппарата содержит источник электроэнергии и наземный преобразователь, размещенные на наземном объекте, размещенные на борту летательного аппарата бортовой преобразователь и резервную аккумуляторную батарею, кабель-трос. Наземный...
Тип: Изобретение
Номер охранного документа: 0002711325
Дата охранного документа: 16.01.2020
08.02.2020
№220.018.006c

Автономный необитаемый подводный аппарат-амфибия

Изобретение относится к области подводной робототехники, в частности к автономным необитаемым подводным аппаратам (АНПА), и может быть применено в разного рода операциях и исследованиях под водой, на водной поверхности и на суше. Автономный необитаемый подводный аппарат-амфибия содержит корпус...
Тип: Изобретение
Номер охранного документа: 0002713494
Дата охранного документа: 06.02.2020
02.03.2020
№220.018.07b7

Способ непрерывной высотной телекоммутационной связи

Изобретение относится к области передачи информации с помощью высотной телекоммутационной связи. Технический результат состоит в обеспечении непрерывной высотной телекоммутационной связи без ограничения высоты подъема воздушной высотной платформы. Для этого способ формирования беспроводных...
Тип: Изобретение
Номер охранного документа: 0002715420
Дата охранного документа: 28.02.2020
02.03.2020
№220.018.07d1

Свч - мостовой измеритель температуры

Изобретение относится к устройствам для измерения температуры и может применяться в различных областях техники. Заявлен СВЧ - мостовой измеритель температуры, содержащий термопреобразователь, усилитель и первый источник питания, введены первый СВЧ-генератор с варакторной перестройкой частоты,...
Тип: Изобретение
Номер охранного документа: 0002715496
Дата охранного документа: 28.02.2020
02.03.2020
№220.018.0827

Инвертирующий масштабный усилитель с регулируемой степенью

Изобретение относится к области электронных устройств для усиления непрерывных сигналов с заданным масштабным коэффициентом. Технический результат заключается в повышении точности масштабирования инвертирующего усилителя на операционных усилителях с ограниченными частотными свойствами за счет...
Тип: Изобретение
Номер охранного документа: 0002715471
Дата охранного документа: 28.02.2020
04.03.2020
№220.018.085f

Устройство для внутрипластового горения

Изобретение относится к устройствам для извлечения смеси углеводородов, в частности смеси тяжелых углеводородов, из подземного пласта путем внутрипластового горения. Устройство для внутрипластового горения содержит измельчитель алюминиевой стружки, сепаратор и датчик температуры, размещенный в...
Тип: Изобретение
Номер охранного документа: 0002715572
Дата охранного документа: 02.03.2020
14.05.2020
№220.018.1c54

Способ организации системной сети в виде отказоустойчивого неблокируемого трехмерного разреженного р-ичного гиперкуба

Изобретение относится к способу организации системной сети в виде отказоустойчивого неблокируемого трехмерного разреженного p-ичного гиперкуба для многопроцессорных систем с сотнями абонентов-процессоров. Техническим результатом изобретения является повышение отказоустойчивости системной сети,...
Тип: Изобретение
Номер охранного документа: 0002720553
Дата охранного документа: 12.05.2020
15.07.2020
№220.018.3249

Способ определения покомпонентного расхода газожидкостной среды

Изобретение относится к измерительной технике и может использоваться для контроля расхода и определения массы компонента газожидкостной среды (ГЖС), извлекаемой, например, из буровой скважины. Способ определения покомпонентного расхода газожидкостной среды характеризуется тем, что периодически...
Тип: Изобретение
Номер охранного документа: 0002726304
Дата охранного документа: 13.07.2020
15.07.2020
№220.018.3295

Устройство для диагностики состояния высоковольтных изоляторов

Изобретение относится к области электроизмерительной техники и может быть использовано для дистанционного контроля рабочего состояния высоковольтных изоляторов. Технический результат: упрощение процесса диагностики. Сущность: устройство для диагностики состояния высоковольтных изоляторов...
Тип: Изобретение
Номер охранного документа: 0002726305
Дата охранного документа: 13.07.2020
Showing 41-41 of 41 items.
18.10.2019
№219.017.d7e6

Измеритель вектора перемещения транспортного средства

Изобретение относится к измерительной технике, в частности к радиоволновым способам измерения перемещения транспортных средств с использованием эффекта Доплера для электромагнитных волн. Технический результат - увеличение точности измерения достигается тем, что устройство измерения перемещения...
Тип: Изобретение
Номер охранного документа: 0002703281
Дата охранного документа: 16.10.2019
+ добавить свой РИД