×
29.05.2018
218.016.57c3

Результат интеллектуальной деятельности: СПОСОБ ИЗМЕРЕНИЯ ВЕКТОРА ПУТЕВОЙ СКОРОСТИ ТРАНСПОРТНОГО СРЕДСТВА

Вид РИД

Изобретение

№ охранного документа
0002654931
Дата охранного документа
23.05.2018
Аннотация: Изобретение относится к измерительной технике, в частности к способам измерения путевой скорости транспортных средств с использованием эффекта Доплера для электромагнитных волн. Технический результат - повышение точности измерения путевой скорости достигается тем, что в способе измерения путевой скорости, при котором СВЧ волны с длиной волны λ излучают с двух сторон транспортного средства под углом β к его оси и углом α между направлением движения и подстилающей поверхностью, принимают отраженные волны, выделяют сигналы с доплеровскими частотами на смесителях между излучаемыми и принимаемыми волнами, измеряют эти частоты и , определяют модуль средней скорости V за время Δt по формуле . Дополнительно к этому определяют угол поворота транспортного средства ϕ за то же время по формуле при ширине транспортного средства, равной r. 3 ил.

Изобретение относится к измерительной технике, в частности к способам измерения путевой скорости транспортных средств с использованием эффекта Доплера для электромагнитных волн.

В настоящее время известны и применяются радиоволновые способы измерения путевой скорости, основанные на эффекте Доплера (Викторов В.А., Лункин Б.В., Совлуков А.С. Радиоволновые измерения параметров технологических процессов. М.: Энергоатомиздат, 1989. 124-132 с.). Обычно они применяются в радиолокации для определения скорости и координат движущихся объектов. Также они находят применение для измерения путевой скорости автомобилей и железнодорожных составов. Доплеровский способ измерения заключается в зондировании движущихся объектов электромагнитными волнами СВЧ диапазона и выделении частоты смещения рассеянной волны. Если источник излучения с фиксированной частотой расположен спереди транспортного средства, движущегося со скоростью V, и его антенна направлена под углом α между направлением движения и подстилающей поверхностью, то доплеровская частота определится по формуле:

где - длина волны в среде измерения, а ε - ее диэлектрическая проницаемость, которая для воздуха равна единице, c - скорость света в воздухе. Таким образом, измеряя доплеровскую частоту, можно вычислять скорость по формуле:

Важным достоинством доплеровского способа измерения скорости перед измерением с использованием одометра для колесных видов транспорта является тот факт, что результат измерения не зависит от диаметра колес и давления в шинах, также на нее не влияет движение во внештатных режимах (занос, юз, скольжение, буксование). Поэтому применение этого способа для измерения путевой скорости является более точным, хотя он также как и одометр представляет скорость в одномерном виде. В то же время в автоблокировочных системах и системах распределения тормозных усилий в современных автомобилях предпочтительно получение информации о двухкоординатном векторе скорости перемещения. Это также важно и для использования в автономных навигационных системах (например, инерционных), которые в настоящее время предпочтитают применять совместно с системами глобального позиционирования (GPS, ГЛОНАСС и др.). Применение для измерения вектора путевой скорости собственно инерционных систем на основе гироскопов затруднено из-за необходимости их размещения точно в центре тяжести транспортного средства, защиты хрупких механических деталей от вибраций и повреждений, необходимости проведения частых коррекций ошибок, высокой стоимости.

Наиболее близким по технической сущности является способ измерения путевой скорости (Ch. Xu, L. Daniel, E. Hoare, V. Sizov, M. Cherniakov "Comparison of Speed over Ground Estimation Using Acoustic and Radar Doppler Sensors", Proceedings of the 11th European Radar Conference 8-10 Oct 2014, Rome, Italy, pp. 189-192), принятый за прототип. При осуществлении этого способа доплеровские СВЧ датчики располагаются по сторонам транспортного средства и их показания обрабатываются совместно. Это дает возможность повысить точность измерения скорости за счет учета вибраций, крена и тангажа. Однако измерение собственно вектора путевой скорости не производится, поскольку измеряется лишь средняя скорость при движении транспортного средства по направлению его оси. Для измерения же вектора путевой скорости за время Δt необходимо произвести измерение модуля вектора скорости и угла его отклонения относительно первоначального положения оси.

Техническим результатом настоящего изобретения является повышение точности измерения путевой скорости транспортного средства.

Технический результат достигается тем, что в способе измерения путевой скорости, при котором СВЧ волны с длиной волны λ0 излучают с двух сторон транспортного средства под углом β к его оси и углом α между направлением движения и подстилающей поверхностью, принимают отраженные волны, выделяют сигналы с доплеровскими частотами на смесителях между излучаемыми и принимаемыми волнами, измеряют эти частоты и , определяют модуль средней скорости V за время Δt по формуле . Дополнительно к этому определяют угол поворота транспортного средства ϕ за то же время по формуле при ширине транспортного средства, равной r.

На Фиг. 1 представлено расположение сбоку на транспортном средстве 3 одного из двух одинаковых доплеровских датчиков путевой скорости - 1, 2, реализующих способ.

На Фиг. 2 показано расположение доплеровских датчиков 1 и 2 на транспортном средстве 3 сверху при его движении.

На Фиг. 3 поясняется процесс определения вектора путевой скорости при движении транспортного средства.

Антенна каждого доплеровского датчика скорости расположена на боковой стороне транспортного средства и направлена под углом α к направлению движения, как показано на Фиг. 1, и повернута на угол β от его оси, как показано на Фиг. 2. При этом расстояние между ними равно r. Каждый датчик выделяет доплеровскую частоту, пропорциональную радиальной скорости взаимного перемещения датчиков и подстилающей отражающей поверхности и . В результате, скорости перемещения точек расположения датчиков V1 и V2 можно определить по формулам:

Если транспортное средство движется по прямой, совпадающей с его осью, то эти скорости будут равны. Допустим, происходит поворот направо, как показано на Фиг. 2. Тогда скорость V1 будет больше V2, а движение будет происходить по окружности с радиусом R, проходящей через центр транспортного средства. Его левая и правая стороны будут перемещаться по радиусам R+r/2 и R-r/2, соответственно. Если это состояние сохраняется в течение времени Δt, то радиус можно определить по формуле:

При подстановке в формулу (4) значения скоростей из (3) получим:

Теперь допустим, что перемещение транспортного средства разделено на i=1, 2 …N отрезков времени с дискретностью Δt, где N - общее число таких отрезков. Тогда, если поместить в начале движения (i=1) транспортное средство в центр прямоугольных координат с осью Yi-1, совпадающей с его собственной осью, то за первое время Δt при скоростях и можно вычислить Ri, лежащий на оси Xi-1 по формуле (5) (см. Фиг. 3). Затем можно определить угол дуги его перемещения wi за время Δt из точки P0 в точку P1 по формуле:

Как видно из Фиг. 3, угол отклонения транспортного средства от первоначального направления ϕi при этом равен половине этого угла, тогда с учетом (6) получим:

Поскольку , то с учетом (3) получим:

Подставив в выражение (7) значения Ri и Vi из (5) и (8), получим выражение для угла вектора скорости в каждый дискретный отрезок времени Δt:

Таким образом, получив выражение для вектора скорости при перемещении от первоначальной точки P0 к точке P1 и так далее к точкам Pi-1, перемещая систему текущих координат и измеряя соответствующие текущие значения доплеровских частот и , появляется возможность его непрерывного измерения на всем маршруте транспортного средства с дискретностью Δt.

Благодаря измерению вектора путевой скорости увеличивается точность измерения пути транспортного средства с возможностью построения маршрута его перемещения. Зная его значение на каждом отрезке маршрута, можно рассчитать путь перемещения при первоначальной системе координат (см. Фиг. 3) по формулам:

При этом длина каждой хорды Li определяется по известной формуле:

.

Способ измерения путевой скорости, при котором СВЧ волны с длиной волны λ излучают с двух сторон транспортного средства под углом β к его оси и углом α между направлением движения и подстилающей поверхностью, принимают отраженные волны, выделяют сигналы с доплеровскими частотами на смесителях между излучаемыми и принимаемыми волнами, измеряют эти частоты ƒ и ƒ, определяют модуль средней скорости V за время Δt по формуле V=λ(ƒ+ƒ)/4cos(α)cos(β), отличающийся тем, что определяют угол поворота транспортного средства ϕ за то же время по формуле ϕ=λ(ƒ-ƒ)/4πrcos(α)cos(β) при ширине транспортного средства, равной r.
СПОСОБ ИЗМЕРЕНИЯ ВЕКТОРА ПУТЕВОЙ СКОРОСТИ ТРАНСПОРТНОГО СРЕДСТВА
СПОСОБ ИЗМЕРЕНИЯ ВЕКТОРА ПУТЕВОЙ СКОРОСТИ ТРАНСПОРТНОГО СРЕДСТВА
СПОСОБ ИЗМЕРЕНИЯ ВЕКТОРА ПУТЕВОЙ СКОРОСТИ ТРАНСПОРТНОГО СРЕДСТВА
СПОСОБ ИЗМЕРЕНИЯ ВЕКТОРА ПУТЕВОЙ СКОРОСТИ ТРАНСПОРТНОГО СРЕДСТВА
СПОСОБ ИЗМЕРЕНИЯ ВЕКТОРА ПУТЕВОЙ СКОРОСТИ ТРАНСПОРТНОГО СРЕДСТВА
СПОСОБ ИЗМЕРЕНИЯ ВЕКТОРА ПУТЕВОЙ СКОРОСТИ ТРАНСПОРТНОГО СРЕДСТВА
СПОСОБ ИЗМЕРЕНИЯ ВЕКТОРА ПУТЕВОЙ СКОРОСТИ ТРАНСПОРТНОГО СРЕДСТВА
СПОСОБ ИЗМЕРЕНИЯ ВЕКТОРА ПУТЕВОЙ СКОРОСТИ ТРАНСПОРТНОГО СРЕДСТВА
Источник поступления информации: Роспатент

Showing 11-20 of 276 items.
20.02.2014
№216.012.a328

Автономный счетчик газа

Изобретение относится к измерительным устройствам и может быть использовано в технологических трубопроводах для измерения количества газа или жидкости в производственных процессах, а также в узлах учета энергоресурсов для коммерческого расчета в ЖКХ. Автономный счетчик газа содержит вход и...
Тип: Изобретение
Номер охранного документа: 0002507483
Дата охранного документа: 20.02.2014
27.02.2014
№216.012.a743

Устройство для измерения геометрического размера диэлектрической частицы

Предлагаемое техническое решение относится к измерительной технике. Техническим результатом является повышение точности измерения. Технический результат достигается тем, что в устройство для измерения геометрического размера диэлектрической частицы, содержащее источник излучения, детектор и...
Тип: Изобретение
Номер охранного документа: 0002508534
Дата охранного документа: 27.02.2014
20.04.2014
№216.012.b945

Способ отказоустойчивого управления движением корабля по глубине

Изобретение относится к области судостроения. Способ заключается в использовании задатчика глубины, первого фильтра оценки сигнала глубины, четвертого фильтра оценки сигнала угла дифферента и сумматора, на вход которого вводят сигналы. С выхода сумматора сигнал заданной скорости...
Тип: Изобретение
Номер охранного документа: 0002513157
Дата охранного документа: 20.04.2014
10.05.2014
№216.012.c0ab

Устройство для определения поступательного перемещения

Изобретение относится к измерительной технике. Техническим результатом заявляемого изобретения является повышение точности измерения. Технический результат достигается тем, что в устройство для определения поступательного перемещения, содержащее источник излучения и приемник, введены измеритель...
Тип: Изобретение
Номер охранного документа: 0002515072
Дата охранного документа: 10.05.2014
10.05.2014
№216.012.c131

Спецпроцессор для задачи выполнимости булевых формул

Изобретение относится к вычислительной технике, в частности к специализированным процессорам с высокой степенью параллелизма. Технический результат заключается в снижении сложности спецпроцессора и повышении скорости решения задачи о выполнимости булевых функций за счет упрощения структуры...
Тип: Изобретение
Номер охранного документа: 0002515206
Дата охранного документа: 10.05.2014
10.05.2014
№216.012.c136

Спецпроцессор для поиска гамильтоновых циклов в графах

Изобретение относится к вычислительной технике и направлено на построение эффективного спецпроцессора, осуществляющего поиск Гамильтонова цикла в графе, заданном матрицей смежностей, хранящейся в памяти. Техническим результатом является увеличение скорости решения задачи отыскания Гамильтонова...
Тип: Изобретение
Номер охранного документа: 0002515211
Дата охранного документа: 10.05.2014
10.05.2014
№216.012.c144

Каскадное парафазное логическое устройство

Изобретение относится к области вычислительной техники и может быть использовано в КМДП интегральных схемах при реализации логических устройств. Технический результат - повышение быстродействия устройства. Устройство содержит тактовый КМДП инвертор и в каждом каскаде два транзистора сброса...
Тип: Изобретение
Номер охранного документа: 0002515225
Дата охранного документа: 10.05.2014
10.05.2014
№216.012.c2ae

Способ организации и ведения медицинского мониторинга

Изобретение относится к способу организации и ведения медицинского мониторинга данных состояния пациентов. Технический результат заключается в повышении эффективности и надежности мониторинга и диагностики состояния пациентов. В способе на каждого пациента формируют несколько электронных карт,...
Тип: Изобретение
Номер охранного документа: 0002515587
Дата охранного документа: 10.05.2014
20.05.2014
№216.012.c317

Тактируемый логический элемент и-или

Изобретение относится к области вычислительной техники и может быть использовано для реализации каскадных логических устройств конвейерного типа. Техническим результатом является уменьшение потребляемой мощности. Тактируемый логический элемент И-ИЛИ содержит предзарядовый транзистор 1 p-типа,...
Тип: Изобретение
Номер охранного документа: 0002515702
Дата охранного документа: 20.05.2014
20.05.2014
№216.012.c405

Инерционный магнитоэлектрический генератор

Изобретение относится к электротехнике и может служить автономным источником питания для различных систем. Технический результат состоит в получении высоких удельных показателей генерации электрических сигналов с величиной, достаточной для электропитания различных электротехнических устройств...
Тип: Изобретение
Номер охранного документа: 0002515940
Дата охранного документа: 20.05.2014
Showing 11-20 of 41 items.
20.01.2016
№216.013.a401

Бесконтактное радиоволновое устройство для измерения толщины диэлектрических материалов

Изобретение относится к измерительной технике и может быть использовано для бесконтактного и дистанционного определения толщины плоских диэлектрических материалов. Бесконтактное радиоволновое устройство для измерения толщины диэлектрических материалов содержит первый СВЧ-генератор, делитель...
Тип: Изобретение
Номер охранного документа: 0002573627
Дата охранного документа: 20.01.2016
20.02.2016
№216.014.e89b

Способ измерения диэлектрической проницаемости жидкости в емкости

Изобретение используется для высокоточного определения диэлектрической проницаемости жидкости, находящейся в какой-либо емкости, независимо от ее уровня. Сущность изобретения заключается в том, что в сторону поверхности жидкости по нормали к ней излучают частотно-модулированные по линейному...
Тип: Изобретение
Номер охранного документа: 0002575767
Дата охранного документа: 20.02.2016
10.04.2016
№216.015.2cb4

Радиоволновый фазовый способ измерения толщины диэлектрических материалов

Использование: для бесконтактного и дистанционного определения толщины плоских диэлектрических материалов. Сущность изобретения заключается в том, что одновременно излучают электромагнитные волны с частотой F и частотой в k раз выше kF в сторону поверхности диэлектрической пластины по нормали к...
Тип: Изобретение
Номер охранного документа: 0002579173
Дата охранного документа: 10.04.2016
27.05.2016
№216.015.42c1

Устройство для измерения массового расхода жидких и сыпучих сред

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения скорости потока и расхода жидких и сыпучих сред в трубопроводах. В частности, при трубопроводной транспортировке нефтепродуктов и сжиженных газов. Устройство для измерения расхода жидких и...
Тип: Изобретение
Номер охранного документа: 0002585320
Дата охранного документа: 27.05.2016
13.01.2017
№217.015.73e2

Способ измерения массового расхода жидких сред

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения расхода жидких сред в трубопроводах. Радиоволну направляют через радиопрозрачное окно в трубопроводе под углом α к направлению движения потока. Отраженную волну смешивают с частью падающей волны...
Тип: Изобретение
Номер охранного документа: 0002597666
Дата охранного документа: 20.09.2016
13.01.2017
№217.015.7496

Радиоволновое устройство для измерения скорости потока жидких сред

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения скорости потока и расхода жидких сред в трубопроводах. Устройство содержит генератор СВЧ, циркулятор, приемо-передающую антенну, направленную через радиопрозрачное окно в трубопроводе под углом к...
Тип: Изобретение
Номер охранного документа: 0002597663
Дата охранного документа: 20.09.2016
13.01.2017
№217.015.7e50

Бесконтактный радиоволновый способ измерения уровня жидкости в емкости

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения уровня жидкости в емкости, в частности оно может быть применено для измерения уровня нефтепродуктов, сжиженных газов, охлаждающей жидкости в ядерных реакторах и др. Предлагается бесконтактный...
Тип: Изобретение
Номер охранного документа: 0002601283
Дата охранного документа: 27.10.2016
13.01.2017
№217.015.7eb9

Устройство для измерения массового расхода жидких сред

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения расхода жидких сред в трубопроводах. Устройство содержит генератор СВЧ, циркулятор, приемо-передающую антенну, направленную через радиопрозрачное окно в трубопроводе под углом к направлению...
Тип: Изобретение
Номер охранного документа: 0002601273
Дата охранного документа: 27.10.2016
13.01.2017
№217.015.8347

Устройство для измерения массового расхода жидких сред

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения скорости потока и расхода жидкостей в трубопроводах, в частности, при трубопроводной транспортировке нефтепродуктов и сжиженных газов. Устройство для измерения расхода жидких сред содержит первый...
Тип: Изобретение
Номер охранного документа: 0002601538
Дата охранного документа: 10.11.2016
25.08.2017
№217.015.a80f

Способ измерения массового расхода жидких и сыпучих сред

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения массового расхода жидкостей в трубопроводах. В частности, при трубопроводной транспортировке нефтепродуктов, сжиженных газов, продуктов химического производства, в т.ч. химически агрессивных...
Тип: Изобретение
Номер охранного документа: 0002611336
Дата охранного документа: 21.02.2017
+ добавить свой РИД