×
29.05.2018
218.016.574b

Устройство для измерения расстояния до места повреждения линий электропередачи

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к измерительной технике и может быть использовано при создании приборов для автоматического определения расстояния до места аварии в линиях электропередачи. Сущность: в устройство введен блок укорочения, содержащий микроконтроллер, к аналоговым входам которого подключены датчики температуры провода, температуры воздуха, диэлектрической проницаемости воздуха и удельной проводимости земли, а к выходу подключен блок цифровой индикации и через цифроаналоговый преобразователь функциональный приемник, выполненный на базе операционного усилителя с неинвертирующим входом. При этом фотосопротивление первого оптрона функционального приемника, соединяющее инвертирующий вход усилителя с землей, через светодиод первого оптрона соединено с формирователем экспоненциальной функции, представляет собой цепь, состоящую из фотосопротивления второго оптрона и конденсатора, на вход которой подается прямоугольный импульс с генератора зондирующих импульсов. Фотосопротивление формирователя экспоненциальной функции через второй оптрон соединено с микроконтроллером через цифроаналоговый преобразователь. Технический результат: повышение точности измерения расстояния при воздействии внешних факторов. 4 ил.
Реферат Свернуть Развернуть

Предложенное устройство относится к импульсной технике и электроизмерениям и может быть использовано при создании приборов для автоматического определения расстояния до места обрыва и короткого замыкания в линиях электропередачи и связи.

Известно устройство для определения расстояния до места повреждения в линиях электропередачи и связи [Патент на изобретение РФ, 1247793, МПК G01R 31/11, 05.1986], основанное на локационном методе определения расстояния до места повреждения: в линию посылают зондирующие сигналы, принимают отраженные от неоднородностей волнового сопротивления и повреждения сигналы и определяют место повреждения по временной задержке отраженных импульсов относительно зондирующих. Зондирующие и отраженные сигналы поступают в стробоскопический преобразователь, преобразуются в аналоговый сигнал, который регистрируется на экране электронно-лучевой трубки в виде импульсной характеристики линии.

Информация о временной задержке отраженных импульсов относительно зондирующего импульса с учетом коэффициента укорочения электромагнитных волн в линии при ручном совмещении фронта зондирующего и отраженного сигналов на экране электронно-лучевой трубки с помощью датчиков расстояния и укорочения преобразуется в блоке цифровой индикации в информацию о расстоянии или коэффициенте укорочения импульсов в линии.

Устройство содержит тактовый генератор, генератор быстрого пилообразного напряжения, генератор зондирующих импульсов, датчик опорного напряжения, датчик напряжения масштаба, генератор медленного, пилообразного напряжения, датчик укорочения, элемент сравнения стробоскопический преобразователь, блок осциллографической индикации, аналого-цифровой преобразователь, коммутатор, мультиплексор и блок цифровой индикации.

Этому устройству присущи следующие недостатки: ограниченная точность измерения из-за использования в устройстве электронно-лучевого индикатора; необходимость визуального анализа импульсной характеристики для выделения полезного сигнала о повреждениях на фоне отражений от муфт и неоднородностей волнового сопротивления, переотражений от несогласования сопротивлений генератора и линии; погрешность измерения расстояния из-за неточности задания коэффициента укорочения и соответственно скорости распространения импульса.

Наиболее близким по технической сущности к предлагаемому устройству является устройство для измерения расстояния до места повреждения линий электропередачи и связи, и это устройство - прототип [Патент на изобретение РФ 2098838, Способ определения расстояния до места повреждения и длины проводов и кабелей линий электропередачи и связи и устройство для его осуществления, МПК G01R 31/11, 10.12.1997].

Устройство содержит генератор зондирующих импульсов, входом соединенный с тактовым генератором, а выходом - с первым коммутатором, вход и выход которого подключены к функциональному приемнику, а второй выход подключен к детектору, соединенному с первым входом элемента сравнения, а ко второму входу элемента сравнения подключен формирователь порогового напряжения, а выход элемента сравнения соединен с формирователем начала и окончания счета, формирователь порогового напряжения соединен с генератором зондирующих импульсов, с формирователем импульсов начала и окончания счета непосредственно и через формирователь импульсов записи и обнуления, тактовый генератор также соединен с функциональным приемником, с формирователем импульсов начала и окончания счета и с измерительной цепью: датчиком расстояния, соединенным с формирователем импульсов записи и обнуления, датчиком укорочения с вторым коммутатором, аналого-цифровым преобразователем и блоком индикации.

Этому устройству присущи следующие недостатки:

1. Низкая точность определения места повреждения, обусловленная большой погрешностью методической составляющей, а именно погрешностью задания коэффициента укорочения. Эта составляющая в отличие от инструментальной составляющей (0,2-2%) может достигать десятков процентов. Это связано с тем, что скорость распространения импульса в линии зависит не только от конструкции линии и материалов провода и изоляции, но от климатических факторов: влажности, температуры, гололеда и ветра. Если влияние конструкции и материалов учитывается и корректируется при испытании участка линии с известным размером, то зависимость параметров линии и соответственно коэффициента укорочения от климатических факторов в известных устройствах не учитывается.

2. Сложность выделения на фоне помех полезной информации - отраженного от места повреждения импульса, поскольку в устройстве функциональный приемник представляет собой дифференциальный усилитель, на второй вход которого полается экспоненциальный сигнал, т.е. выполняется аддитивная операция (сложение), а не мультипликативная - умножение коэффициента усиления усилителя на экспоненциальную функцию, как указано в описании устройства. Таким образом, в устройстве не корректируется коэффициент усиление сигнала по экспоненциальному закону в зависимости от времени возвращения отраженного сигнала и не повышается отношение сигнал/шум.

3. Логические операции в устройстве реализованы на элементной базе, что усложняет технологический процесс изготовления и ограничивает функциональные возможности устройства.

Техническим результатом заявленного измерительного устройства для определения места аварии воздушных линий электропередачи является повышение точности измерения расстояния до места повреждения линии электропередачи при воздействии внешних факторов за счет более обоснованного выбора значения коэффициента укорочения заявленного устройства.

Указанный технический результат достигается тем, что устройство для измерения расстояния до места повреждения линий электропередачи, содержащее генератор зондирующих импульсов, входом соединенный с тактовым генератором, а выходом - с коммутатором, вход и выход которого подключены к функциональному приемнику, а второй выход подключен к детектору, соединенному с первым входом элемента сравнения, а ко второму входу элемента сравнения подключен формирователь порогового напряжения, а выход элемента сравнения соединен с формирователем начала и окончания счета, формирователь порогового напряжения соединен с генератором зондирующих импульсов, с формирователем импульсов начала и окончания счета непосредственно и через формирователь импульсов записи и обнуления, который соединен с датчиком расстояния, к которому подключен тактовый генератор, также соединенный с формирователем импульсов начала и окончания счета, и блок цифровой индикации, причем в устройство введен блок укорочения, содержащий микроконтроллер, к аналоговым входам которого подключены датчики температуры провода, температуры воздуха, диэлектрической проницаемости воздуха и удельной проводимости земли, а к выходу подключен блок цифровой индикации и через цифроаналоговый преобразователь функциональный приемник, выполненный на базе операционного усилителя с неинвертирующим входом, при этом фотосопротивление первого оптрона функционального приемника, соединяющее инвертирующий вход усилителя с землей, через светодиод первого оптрона соединено с формирователем экспоненциальной функции, представляет собой цепь, состоящую из фотосопротивления второго оптрона и конденсатора, на вход которой подается прямоугольный импульс с генератора зондирующих импульсов, а сопротивление формирователя экспоненциальной функции через второй оптрон соединено с микроконтроллером через цифроаналоговый преобразователь.

Указанное отличие позволяет осуществлять коррекцию скорости прохождения локационного и отраженного импульсов по линии электропередачи. Коррекция выполняется по функциональным зависимостям параметров длинной линии, которые зависят от внешних климатических факторов и измеряются соответствующими датчиками. Управление скоростью осуществляется через блок задания коэффициента укорочения рефлектометра. Отличительным признаком является введение блока укорочения, содержащего микроконтроллер, к аналоговому входу которого подключены датчики внешних климатических факторов вычисляющих реальную фазовую скорость перемещения импульса в линии и соответственно значительно повышает точность определения расстояния до места аварии; функционального блока, который изменяет коэффициент усиления по экспоненциальному закону и компенсирует уменьшение амплитуды, что приводит к повышению точности регистрации отраженного импульса.

На фиг. 1 изображена блок-схема устройства для измерения расстояния до места повреждения линий, на фиг. 2 - схема функционального приемника, на фиг. 3 - схема установки датчиков и подключения к линии устройства, на фиг. 4 - схема время-импульсная диаграмма, поясняющая работу устройства.

Устройство для измерения расстояния до места повреждения линии электропередачи (фиг. 1) содержит тактовый генератор (ТГ) 1, низкочастотный выход 1 которого соединен с входом генератора зондирующих импульсов (ГЗИ) 2, выход которого соединен с коммутатором (К) 3, управляющим процессом измерения. Выход К 3 соединен с функциональным приемником (ФП) 4, осуществляющим коррекцию отраженного импульса в зависимости от времени его возвращения. Выход ФП 4 соединен с детектором (Д) 5, выход которого подключен к первому входу элемента сравнения (ЭС) 6. Выход ЭС 6 соединен с формирователем импульсов начала и окончания счета (ФИНОС) 7, выход которого соединен с входом формирователя импульсов записи и обнуления (ФИЗО) 8 и с первым входом формирователя порогового напряжения (ФПН) 9, а ко второму входу ФПН 9 подключен выход ФИЗО 8. Третий вход ФПН 9 соединен с ГЗИ 2. Выход ФПН 9 соединен со вторым входом ЭС 6. К выходу ФИЗО 8 подключен датчик расстояния (ДР) 10, который соединен с блоком укорочения (БУ) 11, содержащий микроконтроллер (МК)12, к аналоговым входам которого подключены датчики температуры провода 13, температуры воздуха 14, диэлектрической проницаемости воздуха 15 и удельной проводимости земли 16. Выход МК 12 соединен через цифроаналоговый преобразователь (ЦАП) 17 с входом ФП 4 и с блоком цифровой индикации (БЦИ) 18. Низкочастотный выход ТГ 1 соединен с ФИНОС 7, а высокочастотный выход соединен с ДР 10.

ФП 4 (Фиг. 2) выполнен на базе операционного усилителя 19 с неинвертирующим входом. Коэффициент передачи усилителя 19 определяется отношением сопротивления 20 обратной связи к фотосопротивлению 21 первого оптрона 22, который осуществляет связь с гальванической развязкой фотосопротивления 21 с оптическим сигналом источника первого оптрона 22, который управляет коэффициентом усиления усилителя 19. Вход первого оптрона 22 соединен с формирователем экспоненциальной функции, которая представляет собой цепь из фотосопротивления 23 и конденсатора 24, вход которого соединен с ГЗИ 2 через К 3. Постоянная времени цепи, состоящей из фотосопротивления 23 и конденсатора 24, τ=Rф2С где Rф2 - фотосопротивление 23, Ом, С - емкость конденсатора 24, Ф; задается значением фотосопротивления 22 второго оптрона 25, который осуществляет связь с гальванической развязкой фотосопротивления 23 формирователя экспоненциальной функции с оптическим сигналом источника второго оптрона 25, который через ЦАП 17 управляется МК 12.

На фигуре 3 изображена схема установки датчиков и подключения к линии устройства для измерения расстояния до места повреждения линии электропередачи, где 3 - это коммутатор, соединенный с линией электропередачи; 12 - микроконтроллер; 13 - датчик температуры воздуха, устанавливается непосредственно на провод, к которому подключен КЗ; 14 - датчик температуры воздуха; 15 - датчик диэлектрической проницаемости воздуха, датчики 14 и 15 устанавливаются на отдельную опору; 16 - датчик удельной проводимости земли, представляющий из себя два штыря, воткнутые в землю, соединенные с электронным блоком, входящий в комплект с датчиком. Поскольку линия является протяженной, то и внешние факторы являются общими для всей линии, то расстояние установки датчиков относительно опоры линии не важна.

Устройство работает следующим образом (Фиг. 4). МК 12 устанавливает два режима работы: режим измерения, режим установки коэффициента укорочения электромагнитной волны в линии электропередачи. В режиме установки коэффициента укорочения работает БУ 11. В режиме измерения до места повреждения работают все блоки структурной схемы, кроме БУ 11.

ГЗИ 2 на основе импульсов (фиг 4.а) ТГ 1 вырабатывает зондирующие импульсы с заданными параметрами: длительность и периодом, импульсы для функционального изменения порогового напряжения и окончания счета.

К 3 осуществляет коммутацию зондирующих и отраженных импульсов на объект измерения и вход ФП 4, а также коммутацию отраженных усиленных ФП 4 импульсов на вход Д 5 (фиг. 4.б).

Д 5 преобразует двухполярный входной сигнал в однополярный положительный сигнал, который поступает на первый вход ЭС 6. Если амплитуда сигнала не превышает пороговый уровень напряжения ФПН 9, то ЭС 6 не регистрирует превышения и не осуществляется измерение (фиг. 4.в). В следующем такте ФПН 9 уменьшает пороговый уровень напряжения, и если ЭС 6 не срабатывает, то процесс повторяется. При превышении по амплитуде входным сигналом опорного уровня на выходе ЭС 6 формируется сигнал (фиг. 4.г), формирующий импульс окончания счета в ФИНОС 7 (фиг. 4.д), запрещая прохождения тактовых счетных импульсов на ДР 10. Количество подсчитанных импульсов ТГ 1 за время задержки отраженных импульсов относительно зондирующих (фиг. 4.е) в ДР 10 соответствует расстоянию до места повреждения. Одновременно запускается ФИЗО 8, который формирует импульс обнуления счетчика (фиг. 4.ж) и импульс записи в регистр ДР 10. Результат измерения передается в МК 12, в котором вводится поправка на результат измерения по коэффициенту укорочения. Результат измерения регистрируется БЦИ 18.

В режиме установки коэффициента укорочения работает БУ 11.

Фазовая скорость Vф определяется соответственно с помощью выражения:

где ω - частота, Гц; β - коэффициент фазы длинной линии, который определяется по формуле:

I

где С0 - поперечная емкость между прямыми и обратными проводами, Ф; L0 - индуктивность петли, образованной прямыми обратным проводами, Гн; R0 - продольное активное сопротивление прямого и обратного проводов, Ом; G0 - поперечная активная проводимость утечки изоляции между прямым и обратным проводами, См.

Отклонения параметров линии R0, L0, С0, G0, обусловленные влиянием климатических факторов, вызывают отклонение коэффициента фазы и соответственно фазовой скорости

Зависимость активного сопротивления от температуры провода определяется следующей зависимостью [Марголин Н.Ф. Сопротивление воздушных линий передачи / Н.Ф. Марголин - М.: Мособлполиграф, 1937. - 61 с.]:

где R020 - табличное значение удельного сопротивления при температуре провода 20°С, Ом; α - температурный коэффициент электрического сопротивления, Ом/град; tпр - температура провода, °С.

Полное сопротивление провода определяется выражениями [Марголин Н.Ф. Сопротивление воздушных линий передачи / Н.Ф. Марголин - М.: Мособлполиграф, 1937. - 61 с. ]:

где Rпр - активное сопротивление линии, Ом; XL - реактивное сопротивление линии, Ом; ƒ - частота сети, Гц; rпр - радиус провода, м; γ - удельная проводимость земли, См/м.

Величина относительной диэлектрической проницаемости газов εr зависит от температуры при постоянном давлении. Для сухого воздуха εr в интервале температур от -60 до +60°С можно считать постоянным и приблизительно равным 2⋅10-6 °С-1. Однако дождь и снег оказывают значительное влияние на удельную емкость линии. Кроме того, влажность и температура воздуха оказывают влияние на токи утечки, т.е. поперечную удельную проводимость линии.

Коэффициент затухания α (ω) определяется с помощью формулы:

По измеренным с помощью датчиков параметрам: температуры провода 13, температуры воздуха 14, диэлектрической проницаемости воздуха 15 и удельной проводимости земли 16 и заданным функциональным зависимостям с помощью МК 12 вычисляются скорость распространения импульса в линии или коэффициент укорочения. МК 13 вычисляет также значение сопротивления для коэффициента затухания линии, поступающее через ЦАП 17 на вход ФП 4. Затем по вычисленным значениям определяется расстояние до места аварии.

ФП 4 работает следующим образом (Фиг. 4): на вход цепи из фотосопротивления 23, второго оптрона 25 и конденсатора 24 с ГЗИ 2 поступает прямоугольный импульс (фиг. 4.а) и в цепи возникает переходный процесс U(1-е-t/τ), где U - амплитуда импульса, В; с постоянной времени τ=RФ2С. Сигнал с формирователя экспоненциальной функции поступает на вход первого оптрона 22 через светодиод 21, который изменяет фотосопротивление 21 по экспоненциальному закону Rф1e-t/τ (фиг. 4.з), где Rф1 - фотосопротивление 21, Ом; а коэффициент усиления усилителя 19 по закону Кеt/τ (фиг. 4.и), где K - коэффициент усилителя без коррекции. Для полной компенсации затухания отраженного импульса в линии Ue-αt необходимо, чтобы постоянная времени была равна величине, обратной коэффициенту затухания линии τ=1/α.

Таким образом, конструкция завленного устройства позволяет значительно повысить точность измерения расстояния до места повреждения линии электропередачи за счет автоматической коррекции скорости перемещения импульса, зависящей от внешних факторов, по измеренным с помощью соответствующих датчиков величинам внешних факторов и вычисленными с помощью микроконтроллера сигналами коррекции.

Устройство для измерения расстояния до места повреждения линий электропередачи, содержащее генератор зондирующих импульсов, входом соединенный с тактовым генератором, а выходом - с коммутатором, вход и выход которого подключены к функциональному приемнику, а второй выход подключен к детектору, соединенному с первым входом элемента сравнения, а ко второму входу элемента сравнения подключен формирователь порогового напряжения, а выход элемента сравнения соединен с формирователем начала и окончания счета, формирователь порогового напряжения соединен с генератором зондирующих импульсов, с формирователем импульсов начала и окончания счета непосредственно и через формирователь импульсов записи и обнуления, который соединен с датчиком расстояния, к которому подключен тактовый генератор, также соединенный с формирователем импульсов начала и окончания счета, и блок цифровой индикации, отличающееся тем, что введен блок укорочения, содержащий микроконтроллер, к аналоговым входам которого подключены датчики температуры провода, температуры воздуха, диэлектрической проницаемости воздуха и удельной проводимости земли, а к выходу подключен блок цифровой индикации и через цифроаналоговый преобразователь функциональный приемник, выполненный на базе операционного усилителя с неинвертирующим входом, при этом фотосопротивление первого оптрона функционального приемника, соединяющее инвертирующий вход усилителя с землей, через светодиод первого оптрона соединено с формирователем экспоненциальной функции, представляет собой цепь, состоящую из фотосопротивления второго оптрона и конденсатора, на вход которой подается прямоугольный импульс с генератора зондирующих импульсов, а фотосопротивление формирователя экспоненциальной функции через второй оптрон соединено с микроконтроллером через цифроаналоговый преобразователь.
Устройство для измерения расстояния до места повреждения линий электропередачи
Устройство для измерения расстояния до места повреждения линий электропередачи
Устройство для измерения расстояния до места повреждения линий электропередачи
Устройство для измерения расстояния до места повреждения линий электропередачи
Устройство для измерения расстояния до места повреждения линий электропередачи
Источник поступления информации: Роспатент

Showing 51-60 of 362 items.
29.12.2017
№217.015.f3fd

Способ получения композиции для маслобензиностойкого пластиката

Изобретение относится к области полимерной промышленности и может быть использовано для изготовления кабельного пластиката. Осуществляют смешение поливинилхлорида, диоктилфталата, стеарата кальция, трехосновного сульфата свинца, эпоксидной смолы. Смешение компонентов смеси ведут при нормальных...
Тип: Изобретение
Номер охранного документа: 0002637910
Дата охранного документа: 07.12.2017
29.12.2017
№217.015.f475

Фторсодержащая полиамидная композиция с пониженной горючестью

Изобретение относится к композиционным материалам с пониженной горючестью, включающим полимерную основу и наполнитель (антипирен), и может быть использовано для производства формованных изделий. Композиция включает полиамид ПА-6 и смесь антипиренов, состоящую из...
Тип: Изобретение
Номер охранного документа: 0002637955
Дата охранного документа: 08.12.2017
29.12.2017
№217.015.f48f

Теплозащитный материал

Изобретение относится к теплозащитному материалу на основе этиленпропилендиенового каучука, который может использоваться в авиа- и ракетостроении. Теплозащитный материал содержит этиленпропилендиеновый каучук СКЭПТ-40, вулканизующие агенты серу и тиурам Д, ускоритель вулканизации...
Тип: Изобретение
Номер охранного документа: 0002637932
Дата охранного документа: 08.12.2017
29.12.2017
№217.015.f4bf

Способ получения композиции для трудногорючего пластиката

Изобретение относится к области полимерной промышленности и может быть использовано для изготовления кабельного пластиката. Осуществляют смешение поливинилхлорида, диоктилфталата, стеарата кальция, трехосновного сульфата свинца, эпоксидной смолы, дифенилолпропана, добавление в смесь...
Тип: Изобретение
Номер охранного документа: 0002637951
Дата охранного документа: 08.12.2017
29.12.2017
№217.015.f4f7

Композиция для маслобензиностойкого пластиката

Изобретение относится к области полимерной промышленности и может быть использовано для изготовления кабельного пластиката. Композиция для кабельного пластиката содержит компоненты при следующем соотношении, мас.ч: поливинилхлорид эмульсионный ЕП 6602-С (100,0); эпоксидная смола ЭД-20 (10,0);...
Тип: Изобретение
Номер охранного документа: 0002637950
Дата охранного документа: 08.12.2017
29.12.2017
№217.015.f635

Способ получения меланина из лузги подсолнечника

Изобретение относится к фармацевтической промышленности, а именно к способу получения меланина из лузги подсолнечника. Способ получения меланина из лузги подсолнечника, включающий промывание водой неизмельченной лузги подсолнечника, сушку, измельчение, экстрагирование раствором гидроксида...
Тип: Изобретение
Номер охранного документа: 0002637646
Дата охранного документа: 05.12.2017
29.12.2017
№217.015.f9f3

Способ автоматического ограничения скорости автомобиля

Изобретение относится к технике автоматического управления ограничением скорости движения транспортных средств. При осуществлении способа автоматического ограничения скорости автомобиля задают допускаемую скорость движения. Сравнивают с допускаемой скоростью движения фактическую скорость...
Тип: Изобретение
Номер охранного документа: 0002639934
Дата охранного документа: 25.12.2017
19.01.2018
№218.016.00a2

Способ получения органомодифицированного монтмориллонита с полифторалкильными группами

Изобретение относится к способу получения модифицированного монтмориллонита. Способ получения органомодифицированного монтмориллонита с полифторалкильными группами включает обработку природного монтмориллонита смесью 1,1,3-тригидроперфторпропанола-1, 1,1,5-тригидроперфторпентанола-1 и...
Тип: Изобретение
Номер охранного документа: 0002629300
Дата охранного документа: 28.08.2017
19.01.2018
№218.016.0137

Способ получения вторичных аминов

Изобретение относится к улучшенному способу получения вторичных аминов, в частности к способу получения вторичных насыщенных аминов, восстановительным аминированием нитрилов при нагревании. Полученные амины находят применение как полупродукты в органическом синтезе и для получения...
Тип: Изобретение
Номер охранного документа: 0002629771
Дата охранного документа: 04.09.2017
19.01.2018
№218.016.014d

Способ получения фотополимеризующейся композиции

Настоящее изобретение относится к способу изготовления полимер-мономерной композиции, которая может использоваться для получения неокрашенных оптически прозрачных материалов с пониженной горючестью и высокой адгезией к силикатным стеклам. Описан способ получения фотополимеризующейся...
Тип: Изобретение
Номер охранного документа: 0002629769
Дата охранного документа: 04.09.2017
Showing 1-7 of 7 items.
29.05.2018
№218.016.5720

Оптико-электронное устройство для измерения размеров обечаек

Изобретение относится к оптическим устройствам для измерения и контроля, а именно к устройствам для измерения геометрических параметров нагретых изделий, и может быть использовано при производстве обечаек. Оптико-электронное устройство для определения размера обечаек содержит двухкоординатный...
Тип: Изобретение
Номер охранного документа: 0002654957
Дата охранного документа: 23.05.2018
29.05.2018
№218.016.57f7

Оптическое устройство для измерения диаметров крупногабаритных деталей

Изобретение относится к оптическим устройствам для измерения и контроля, а именно к устройствам для измерения геометрических параметров нагретых изделий, и может быть использовано при производстве обечаек. Оптическое устройство для измерения диаметров крупногабаритных деталей содержит...
Тип: Изобретение
Номер охранного документа: 0002654952
Дата охранного документа: 23.05.2018
25.06.2018
№218.016.66ec

Система контроля гололёдных нагрузок на провода воздушных линий электропередачи

Использование: в области электроэнергетики. Техническим результат – увеличение точности измерения гололедных нагрузок за счет помехоустойчивости канала регистрации провиса провода. Система контроля гололедных нагрузок на провода воздушных линий электропередачи содержит измерительные посты,...
Тип: Изобретение
Номер охранного документа: 0002658344
Дата охранного документа: 20.06.2018
19.01.2019
№219.016.b19e

Устройство для контроля состояния воздушных линий электропередачи

Изобретение относится к электроэнергетике и может быть использовано для контроля состояния воздушных линий электропередачи (ВЛЭП), а именно измерения гололедно-ветровых нагрузок и мониторинга температурного режима эксплуатации. Заявленное устройство для контроля состояния воздушных линий...
Тип: Изобретение
Номер охранного документа: 0002677498
Дата охранного документа: 17.01.2019
15.03.2019
№219.016.e0e5

Способ измерения геометрических параметров оболочки вращения

Изобретение относится к области технических измерений и может быть использовано при измерении геометрических параметров (отклонений формы и биений) преимущественно крупногабаритных корпусных изделий. Способ заключается в том, что предварительно создают основную (ρ, θ, z) и вспомогательную (r,...
Тип: Изобретение
Номер охранного документа: 0002426067
Дата охранного документа: 10.08.2011
04.02.2020
№220.017.fd7b

Интеллектуальное устройство для измерения расстояния до места повреждения линий электропередачи

Изобретение относится к измерительной технике и может быть использовано при создании приборов для автоматического определения расстояния до места аварии в линиях электропередачи. Сущность: введен блок стабилизации параметров информационного сигнала, содержащий усилитель информационного сигнала...
Тип: Изобретение
Номер охранного документа: 0002712771
Дата охранного документа: 31.01.2020
06.03.2020
№220.018.09dc

Устройство интеллектуальной токовой защиты электрических сетей от однофазных замыканий на землю

Изобретение относится к электротехнике и может быть использовано для релейной защиты в электрических сетях напряжением 6-35 кВ, работающих с изолированной или резистивно-заземленной нейтралью при однофазных замыканиях на землю (ОЗЗ) через переходные сопротивления. Технический результат:...
Тип: Изобретение
Номер охранного документа: 0002715909
Дата охранного документа: 04.03.2020
+ добавить свой РИД