×
29.05.2018
218.016.5720

Результат интеллектуальной деятельности: Оптико-электронное устройство для измерения размеров обечаек

Вид РИД

Изобретение

Аннотация: Изобретение относится к оптическим устройствам для измерения и контроля, а именно к устройствам для измерения геометрических параметров нагретых изделий, и может быть использовано при производстве обечаек. Оптико-электронное устройство для определения размера обечаек содержит двухкоординатный механизм определения центра поперечного сечения измеряемой детали, который состоит из двухкоординатного механизма базирования оптической головки и блока управления, который состоит из промышленного контроллера, управляющие выходы которого соединены с серводвигателями привода вращения, механизмами перемещения горизонтальной штанги и вертикальной направляющей и с входами сигнального процессора, вход которого подключен к оптическому дальномеру, и дисплеем, а входы промышленного контроллера при этом соединены с выходами сигнального процессора. Технический результат - повышение точности, быстродействия, надежности устройства. 2 ил.

Изобретение относится к измерительной технике, а именно к устройствам для измерения геометрических параметров цилиндрических полых изделий, и может быть использовано в химическом и нефтяном машиностроении для контроля формы поперечного сечения обечаек, изготавливаемых методом гибки из листового материала.

Известно фотоэлектрическое устройство для контроля внутреннего диаметра обечаек (А.С. SU 1232945, МПК G01B 21/10, 23.05.1986), содержащее диапроектор, пять световодов, входные концы четырех из которых установлены в плоскости изображения диапроектора по углам квадрата, пять фотодатчиков, установленных на выходных концах световодов, перемещающий двухкоординатный механизм, снабженный двумя серводвигателями, и электронный регистратор сигналов, имеющий пять цепей из последовательно соединенных усилителей фототока и формирователей импульсов, и индикатор, входы усилителей, являющиеся входами электронного регистратора сигналов, соединены с выходами фотодатчиков.

К причинам, препятствующим достижению заданного технического результата, относится громоздкость конструкции, снижающая надежность, и сложный алгоритм контроля, который снижает быстродействие устройства. Использование в данном устройстве времяимпульсного метода определения границы изделия снижает точность из-за низкой разрешающей способности.

Из известных оптико-электронных устройств наиболее близким является оптико-электронное устройство для измерения размеров обечаек (П. м. РФ 159150, МПК G01B 11/00, 2016). Устройство содержит оптическую головку с приводом вращения, установленную на перемещающем двухкоординатном механизме базирования оптической головки, соединенном с серводвигателями, и регистратор сигнала. Устройство снабжено двухкоординатным механизмом определения центра поперечного сечения измеряемой детали, состоящим из горизонтальной и вертикальной осей, с подвижно установленными на них датчиками определения положения касательных к контуру поперечного сечения измеряемой детали, и жестко установленными в основании осей лазерными дальномерами, а оптическая головка установлена с возможностью вращения в плоскости поперечного сечения измеряемой детали на горизонтальной штанге, установленной на вертикальной направляющей двухкоординатного механизма базирования оптической головки, перпендикулярно плоскости поперечного сечения измеряемой детали, с возможностью перемещения по вертикальной направляющей, причем горизонтальная направляющая двухкоординатного механизма базирования оптической головки совмещена с горизонтальной осью двухкоординатного механизма определения центра поперечного сечения измеряемой детали.

К причинам, препятствующим достижению заданного технического результата, относятся погрешности, возникающие из-за отличия формы внутренней поверхности измеряемой детали от формы идеального эллипса, а также тот факт, что в условиях высоких градиентов температур происходит температурная деформация направляющих механизма поиска центра, снижая точность измерения и надежность устройства. Использованный в данном устройстве метод для поиска центра - метод прямоугольника обладает низкой производительностью, что снижает быстродействие устройства.

Техническим результатом является повышение точности, быстродействия и надежности устройства

Указанный технический результат достигается тем, что в оптико-электронном устройстве для измерения размеров обечаек, содержащем оптическую головку, представляющую собой оптический дальномер, установленный на приводе вращения, соединенном с серводвигателем, установленную на перемещающем двухкоординатном механизме базирования оптической головки, соединенном с серводвигателями, двухкоординатный механизм определения центра поперечного сечения измеряемой детали и механизмы перемещения горизонтальной штанги и вертикальной направляющей, согласно изобретению двухкоординатный механизм определения центра поперечного сечения измеряемой детали состоит из двухкоординатного механизма базирования оптической головки и блока управления, который состоит из промышленного контроллера, управляющие выходы которого соединены с серводвигателями привода вращения, механизмами перемещения горизонтальной штанги и вертикальной направляющей и с входами сигнального процессора, вход которого подключен к оптическому дальномеру, и дисплеем, а входы промышленного контроллера при этом соединены с выходами сигнального процессора.

Исполнение двухкоординатного механизма определения центра поперечного сечения измеряемой детали, состоящего из двухкоординатного механизма базирования оптической головки и блока управления, позволяет упростить конструкцию устройства, исключив большое количество перемещающих механизмов и приводов, что значительно увеличивает надежность устройства.

Использование сигнального процессора, вход которого подключен к оптическому дальномеру, позволяет производить поиск центра спектральным методом, что позволяет повысить точность определения центра детали за счет снижения методической погрешности, возникающей из-за неправильной формы детали, что повышает точность измерения.

Использование блока управления, состоящего из промышленного контроллера, управляющие выходы которого соединены с серводвигателями привода вращения, механизмами перемещения горизонтальной штанги, вертикальной направляющей и с входами сигнального процессора, вход которого подключен к оптическому дальномеру, и дисплеем, а входы промышленного контроллера при этом соединены с выходами сигнального процессора позволяет ускорить процесс поиска центра за счет быстрых вычислений со стороны сигнального процессора, а также за счет использования похожих операций как для поиска центра, так и для снятия профилограммы, что положительно сказывается на быстродействии устройства.

На фиг. 1 изображено оптико-электронное устройство для измерения размеров обечаек. На фиг. 2 изображен двухкоординатный механизм определения центра детали.

Оптико-электронное устройство для измерения размеров обечаек содержит оптическую головку 1, представляющую собой лазерный дальномер 2, установленный на приводе вращения 3, который соединен с серводвигателем 4. Оптическая головка 1 установлена с возможностью вращения в плоскости поперечного сечения измеряемой детали 5 на горизонтальной штанге 6 перемещающего двухкоординатного механизма базирования 7 оптической головки 1.

Горизонтальная штанга 6 посредством механизма перемещения 8, соединенного с серводвигателем 4, с возможностью перемещения установлена на вертикальной направляющей 9 двухкоординатного механизма базирования 7 оптической головки 1, перпендикулярно плоскости поперечного сечения измеряемой детали 5.

При этом вертикальная направляющая 9 посредством механизма перемещения 8, соединенного с серводвигателем 4, с возможностью перемещения установлена на горизонтальной направляющей 10, которая установлена на основании 11.

На основании 11 с возможностью перемещения размещен двухкоординатный механизм определения центра детали 12, состоящий из двухкоординатного механизма базирования оптической головки 7, соединенного с блоком управления 13, который состоит из промышленного контроллера 14, позволяющего в реальном времени управлять приводами по команде оператора, управляющие выходы которого соединены с серводвигателями 4 привода вращения 3, механизмами перемещения 8 горизонтальной штанги 6, вертикальной направляющей 9 и с входами сигнального процессора 15 для вычисления первой гармонической составляющей пространственной частоты поперечного профиля измеряемой детали 5, вход которого подключен к лазерному дальномеру 2 оптической головки 1, и дисплеем 16, при этом входы промышленного контроллера 14 соединены с выходами сигнального процессора 15.

Устройство работает следующим образом. Измеряемая деталь 5 устанавливается на оптико-электронное устройство для измерения размеров обечаек перпендикулярно к горизонтальной направляющей 10 так, чтобы оптическая головка 1, расположенная на горизонтальной штанге 6, оказалась внутри детали 5. От оператора на промышленный контроллер 14 приходит команда о запуске поиска центра детали 5. Поиск центра представляет собой предварительное снятие профилограммы из произвольной точки поперечного сечения детали с последующим вычислением координат центра. Предварительное снятие профилограммы осуществляется следующим образом.

Оператор подает на промышленный контроллер 14 команду о снятии профилограммы. В результате этого промышленный контроллер 14 выполняет следующие действия: подает управляющий сигнал на серводвигатель 4 привода вращения 3, заставляя его якорь повернуться на заданный угол, что поворачивает привод вращения 3 с закрепленным на нем оптическим дальномером 2 на такой же угол, затем сигнальным процессором 15 показания с лазерного дальномера 2 считываются и сохраняются в памяти. Указанные действия продолжаются, пока привод вращения 4 не сделает полный круг. После этого в памяти устройства находится двумерный массив данных, содержащий показания лазерного дальномера 2 в зависимости от угла поворота якоря привода вращения 3. После этого сигнальный процессор 15 вычисляет координаты центра измеряемой детали 5. Для этого сначала вычисляется действительная Re и мнимая Im части комплексного значения первой гармоники по следующим формулам:

; ,

где N - число отсчетов профилограммы;

rn - радиус вектор отсчета, м;

ϕn - угол отсчета, рад;

n - номер отсчета.

После чего вычисляется амплитуда М и фаза Р первой гармоники:

По найденным значениям амплитуды М и фазы Р первой гармоники определяется значение смещения по горизонтали dx и по вертикали dy:

;

После нахождения центра происходит выставление оптической головки 1 в найденные координаты центра. Для этого оператором на промышленный контроллер 14 подается команда о выставлении оптической головки 1 в координаты центра измеряемой детали 5, в результате чего промышленный контроллер 14 подает управляющие сигналы на серводвигатель 4 механизма перемещения 8 вертикальной направляющей 9. В результате этого его якорь начинает вращаться, что приводит в движение механизм перемещения 8 вертикальной направляющей 9 по горизонтальной направляющей 10 двухкоординатного механизма базирования 7 оптической головки 1. Пройденное расстояние вычисляется промышленным контроллером 14 и равняется dx. Когда это расстояние станет равным dx, произойдет остановка вращения якоря серводвигателя 4. После этого с промышленного контроллера 14 поступают управляющие импульсы на серводвигатель 4 механизма: перемещения 8 горизонтальной штанги 6 по вертикальной направляющей 9 двухкоординатного механизма базирования 7. Его якорь начинает вращаться, что приводит к перемещению горизонтальной штанги 6. Пройденное расстояние вычисляется промышленным контроллером 14 и равняется dy. Когда это расстояние станет равным dy, произойдет остановка вращения якоря серводвигателя 4.

После выставления оптической головки в центр измеряемой детали 5 происходит окончательное снятие профилограммы, полностью идентичное предварительному, за исключением того, что после снятия профилограммы происходит отображение результатов измерения на дисплей 16 с помощью промышленного контроллера 14.

Таким образом, выполнение двухкоординатного механизма определения центра поперечного сечения измеряемой детали 12 состоящим из двухкоординатного механизма базирования оптической головки 7 и блока управления 13, который состоит из промышленного контроллера 15, управляющие выходы которого соединены с серводвигателями 4 привода вращения 3, механизмами перемещения 8 горизонтальной штанги 6 и вертикальной направляющей 9 и с входами сигнального процессора 15, вход которого подключен к лазерному дальномеру 2 оптической головки 1, и дисплеем 16, а входы промышленного контроллера 15 при этом соединены с выходами сигнального процессора 16, обеспечивает увеличение точности измерения, быстродействия и повышение надежности заявляемого оптико-электронного устройства для измерения размеров обечаек.

Оптико-электронное устройство для измерения размеров обечаек, содержащее оптическую головку, представляющую собой оптический дальномер, установленный на приводе вращения, соединенном с серводвигателем, установленную на перемещающем двухкоординатном механизме базирования оптической головки, соединенном с серводвигателями, двухкоординатный механизм определения центра поперечного сечения измеряемой детали и механизмы перемещения горизонтальной штанги и вертикальной направляющей, отличающееся тем, что двухкоординатный механизм определения центра поперечного сечения измеряемой детали состоит из двухкоординатного механизма базирования оптической головки и блока управления, который состоит из промышленного контроллера, управляющие выходы которого соединены с серводвигателями привода вращения, механизмами перемещения горизонтальной штанги и вертикальной направляющей и с входами сигнального процессора, вход которого подключен к оптическому дальномеру, и дисплеем, а входы промышленного контроллера при этом соединены с выходами сигнального процессора.
Оптико-электронное устройство для измерения размеров обечаек
Оптико-электронное устройство для измерения размеров обечаек
Источник поступления информации: Роспатент

Showing 141-150 of 362 items.
09.11.2018
№218.016.9bf3

Теплозащитный материал

Изобретение относится к теплозащитному материалу на основе этиленпропилендиенового каучука, который может использоваться в авиа- и ракетостроении. Теплозащитный материал содержит этиленпропилендиеновый каучук СКЭПТ-40, вулканизующие агенты серу и тиурам Д, ускоритель вулканизации...
Тип: Изобретение
Номер охранного документа: 0002671865
Дата охранного документа: 07.11.2018
30.11.2018
№218.016.a1bb

Способ нанесения покрытия из антифрикционного твердого сплава методом взрывного прессования

Изобретение может быть использовано для изготовления взрывным прессованием композиционных многослойных деталей. На поверхности металлической подложки размещают титановый порошок. Затем формируют промежуточный слой из смеси порошков карбида хрома с титаном в соотношении 78 мас. % CrC и 22 мас. %...
Тип: Изобретение
Номер охранного документа: 0002673594
Дата охранного документа: 28.11.2018
30.11.2018
№218.016.a1d8

Способ комбинированной сварки взрывом

Изобретение может быть использовано при изготовлении сваркой взрывом биметаллических заготовок и переходных элементов, преимущественно из трудносвариваемых толстолистовых разнородных металлов. Метаемую пластину устанавливают над неподвижной пластиной с зазором и инициируют расположенный на ней...
Тип: Изобретение
Номер охранного документа: 0002673595
Дата охранного документа: 28.11.2018
05.12.2018
№218.016.a34a

Способ изготовления легкоочищаемых литейных керамических форм, получаемых по выплавляемым моделям

Изобретение относится к области литейного производства и может быть использовано для изготовления литейных керамических форм по выплавляемым моделям при производстве точных отливок из черных и цветных сплавов. Способ изготовления легкоочищаемых литейных керамических форм, получаемых по...
Тип: Изобретение
Номер охранного документа: 0002673872
Дата охранного документа: 30.11.2018
05.12.2018
№218.016.a364

Суспензия для изготовления легкоочищаемых литейных керамических форм

Изобретение относится к области литейного производства и может быть использовано для изготовления литейных керамических форм по выплавляемым моделям при производстве точных отливок из черных и цветных сплавов. Суспензия включает этилсиликат, ацетон, воду, соляную кислоту, пылевидный огнеупорный...
Тип: Изобретение
Номер охранного документа: 0002673873
Дата охранного документа: 30.11.2018
20.12.2018
№218.016.a920

Состав для огнезащитных покрытий резин

Изобретение относится к области получения огнезащитных покрытий на основе полимерного связующего и может найти применение в резинотехнической промышленности. Cостав для огнезащитных покрытий включает, мас.ч.: хлорсульфированный полиэтилен 15, толуол 85 и углеродные волокна 1-3. В качестве...
Тип: Изобретение
Номер охранного документа: 0002675558
Дата охранного документа: 19.12.2018
21.12.2018
№218.016.aa2a

Состав для огнезащитных покрытий резин

Изобретение относится к области получения огнезащитных покрытий на основе полимерного связующего и может найти применение в резинотехнической промышленности. Состав для огнезащитных покрытий включает, мас.ч.: хлорсульфированный полиэтилен 15, толуол 85 и микроуглеродные волокна 1-5, полученные...
Тип: Изобретение
Номер охранного документа: 0002675575
Дата охранного документа: 19.12.2018
16.01.2019
№219.016.afd8

Клеевая композиция

Изобретение относится к клеевой промышленности и может быть использовано в резиновой промышленности при склеивании вулканизованных резин на основе различных каучуков друг с другом. Композиция включает компоненты при следующем соотношении, мас.ч.: хлоропреновый каучук наирит ДП (90,00),...
Тип: Изобретение
Номер охранного документа: 0002677175
Дата охранного документа: 15.01.2019
16.01.2019
№219.016.b03a

Эластомерная композиция на основе бутадиен-нитрильного каучука

Изобретение относится к области эластомерных композиций на основе бутадиен-нитрильных каучуков, которые можно использовать в резинотехнических изделиях, обладающих стойкостью к действию нефти и продуктов ее переработки, в отраслях промышленности, где необходима маслобензостойкость и...
Тип: Изобретение
Номер охранного документа: 0002677211
Дата охранного документа: 15.01.2019
19.01.2019
№219.016.b19e

Устройство для контроля состояния воздушных линий электропередачи

Изобретение относится к электроэнергетике и может быть использовано для контроля состояния воздушных линий электропередачи (ВЛЭП), а именно измерения гололедно-ветровых нагрузок и мониторинга температурного режима эксплуатации. Заявленное устройство для контроля состояния воздушных линий...
Тип: Изобретение
Номер охранного документа: 0002677498
Дата охранного документа: 17.01.2019
Showing 1-7 of 7 items.
29.05.2018
№218.016.574b

Устройство для измерения расстояния до места повреждения линий электропередачи

Изобретение относится к измерительной технике и может быть использовано при создании приборов для автоматического определения расстояния до места аварии в линиях электропередачи. Сущность: в устройство введен блок укорочения, содержащий микроконтроллер, к аналоговым входам которого подключены...
Тип: Изобретение
Номер охранного документа: 0002654958
Дата охранного документа: 23.05.2018
29.05.2018
№218.016.57f7

Оптическое устройство для измерения диаметров крупногабаритных деталей

Изобретение относится к оптическим устройствам для измерения и контроля, а именно к устройствам для измерения геометрических параметров нагретых изделий, и может быть использовано при производстве обечаек. Оптическое устройство для измерения диаметров крупногабаритных деталей содержит...
Тип: Изобретение
Номер охранного документа: 0002654952
Дата охранного документа: 23.05.2018
25.06.2018
№218.016.66ec

Система контроля гололёдных нагрузок на провода воздушных линий электропередачи

Использование: в области электроэнергетики. Техническим результат – увеличение точности измерения гололедных нагрузок за счет помехоустойчивости канала регистрации провиса провода. Система контроля гололедных нагрузок на провода воздушных линий электропередачи содержит измерительные посты,...
Тип: Изобретение
Номер охранного документа: 0002658344
Дата охранного документа: 20.06.2018
19.01.2019
№219.016.b19e

Устройство для контроля состояния воздушных линий электропередачи

Изобретение относится к электроэнергетике и может быть использовано для контроля состояния воздушных линий электропередачи (ВЛЭП), а именно измерения гололедно-ветровых нагрузок и мониторинга температурного режима эксплуатации. Заявленное устройство для контроля состояния воздушных линий...
Тип: Изобретение
Номер охранного документа: 0002677498
Дата охранного документа: 17.01.2019
15.03.2019
№219.016.e0e5

Способ измерения геометрических параметров оболочки вращения

Изобретение относится к области технических измерений и может быть использовано при измерении геометрических параметров (отклонений формы и биений) преимущественно крупногабаритных корпусных изделий. Способ заключается в том, что предварительно создают основную (ρ, θ, z) и вспомогательную (r,...
Тип: Изобретение
Номер охранного документа: 0002426067
Дата охранного документа: 10.08.2011
04.02.2020
№220.017.fd7b

Интеллектуальное устройство для измерения расстояния до места повреждения линий электропередачи

Изобретение относится к измерительной технике и может быть использовано при создании приборов для автоматического определения расстояния до места аварии в линиях электропередачи. Сущность: введен блок стабилизации параметров информационного сигнала, содержащий усилитель информационного сигнала...
Тип: Изобретение
Номер охранного документа: 0002712771
Дата охранного документа: 31.01.2020
06.03.2020
№220.018.09dc

Устройство интеллектуальной токовой защиты электрических сетей от однофазных замыканий на землю

Изобретение относится к электротехнике и может быть использовано для релейной защиты в электрических сетях напряжением 6-35 кВ, работающих с изолированной или резистивно-заземленной нейтралью при однофазных замыканиях на землю (ОЗЗ) через переходные сопротивления. Технический результат:...
Тип: Изобретение
Номер охранного документа: 0002715909
Дата охранного документа: 04.03.2020
+ добавить свой РИД