×
29.05.2018
218.016.56f5

ВОЛНОВОДНОЕ УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ПАРАМЕТРОВ ЖИДКОСТЕЙ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области СВЧ-техники и может быть использовано для измерения и контроля жидкостей, в частности водных растворов и суспензий веществ химической и биологической природы в различных технологических процессах, исследованиях структуры водных растворов, определения влагосодержания углеводородов, в том числе и «на потоке», а также в биофизических исследованиях. Конструкция резонансной измерительной камеры отличается возможностью надежной и устойчивой механической перестройки и подбора оптимальной связи резонатора с волноводным трактом. Перестраиваемая волноводно-диэлектрическая камера для контроля жидкостей включает разборную волноводную камеру. Прилегающая к фланцу волноводного тракта вставка содержит резьбовое гнездо для емкостного штыря, который представляет собой цилиндрический проводник, установленный по направлению силовых линий напряженности электрического поля Е и соединенный одним концом с широкой стенкой волновода. Между вставкой и фланцем волновода имеется неглубокая канавка, вдоль которой может перемещаться полоска тонкого металла в виде резонансной (индуктивно-емкостной) диафрагмы. Размеры и расположение диафрагмы выбираются таким образом, чтобы в волноводном устройстве получить взаимное уничтожение волн, отраженных от конца волновода и от диафрагмы. Волноводная вставка содержит сквозное отверстие для диэлектрической трубки, в которую заливается измеряемая жидкость. Гладкая пластина закрывает сквозное отверстие волновода и является короткозамыкателем тракта. С помощью перемещения тонкой диафрагмы, а также емкостного штыря добиваются максимального значения добротности резонаторной измерительной системы, что регистрируется по величине амплитуды резонансной кривой на экране. Разность амплитуд резонансной кривой при последовательных измерениях показывает изменение концентрации вещества в исследуемой жидкости, связанной с изменением величины диэлектрической проницаемости. 1 з.п. ф-лы, 1 ил.

Изобретение относится к области микроволновой диэлектрометрии и может быть использовано для определения концентраций веществ в водных растворах в целях контроля влаги в углеводородных смесях, загрязнения водных сред, концентрации биологических клеток в суспензиях.

Известны конструкции устройств для измерения поглощения жидкостью в диэлектрическом капилляре электромагнитного излучения микроволнового диапазона. В устройстве, предложенном в работе [Виноградов Е.А., Ирисова Н.А., Прохоров A.M. и др. Спектрометр для измерения поглощения электромагнитного излучения жидкостью А.с. СССР №1432394, МПК G01N 22/00] измерительная кювета с рабочим веществом выполнена в виде капилляра с электродами, вмонтированными в его торцы и соединенными с синхронным детектором. При этом капилляр устанавливается при настройке параллельно вектору плоскости поляризации электрического поля микроволнового излучения. Уровень поглощения микроволнового излучения жидкостью в капиллярной трубке определяется в данном случае по изменению электропроводности жидкости.

Недостатком данного метода является необходимость использования открытого резонатора, который не позволяет сконцентрировать микроволновое излучение в такой же степени, как закрытый металлический волновод. Следовательно, имеют место потери энергии излучения, приводящие к снижению чувствительности измерений поглощения.

Следующей конструкцией измерительного устройства, более близкого к предлагаемому, является капиллярная кювета, представляющая собой тонкостенную тефлоновую трубку в волноводе, которая использовалась для исследования водных растворов [Беляков Е.В., Храпко А. Ячейка для измерения параметров жидких диэлектриков. А.с. СССР №1307315, МПК G01N 22/00]. Недостатком данной конструкции по сравнению с предложенной является отсутствие возможности подстройки резонансной системы, что препятствовало использованию данного устройства для измерения диэлектрических характеристик широкого ряда сильнопоглощающих жидкостей.

Прототипом предлагаемого устройства является конструкция резонатора, отличающаяся возможностью перестройки геометрических размеров широкой стенки волновода в виде поршней с отверстиями для диэлектрической капиллярной трубки, в которую помещена измеряемая жидкость [Беляков Е.В. Измерительный СВЧ-резонатор для диэлектриков с большими потерями. А.с. СССР №1307315, МПК G01N 22/00]. Измерение диэлектрических характеристик жидкостей с помощью данного устройства выполняется следующим образом. В радиопрозрачный капилляр, пронизывающий широкую стенку металлического прямоугольного волновода, наливается исследуемая жидкость. Затем с помощью подвижных поршней добиваются максимального значения добротности резонаторной измерительной системы, что регистрируется по величине амплитуды резонансной кривой на экране. Разность амплитуд резонансной кривой при последовательных измерениях показывает изменение концентрации вещества в бинарной или же многокомпонентной исследуемой жидкости, связанной с изменением величины диэлектрической проницаемости. Более высокая чувствительность измерений наблюдается при измерениях уровня сигнала на склоне резонансной кривой. В этом случае оценивается смещение пика резонансной кривой по шкале частот, что повышает чувствительность измеряемого параметра жидкости, связанного также с изменением величины диэлектрической проницаемости.

Перемещение поршней перпендикулярно плоскости широкой стенки волновода осуществляется с помощью регулировочных винтов. Несмотря на высокие технические характеристики устройства, его работа отличается крайней нестабильностью, связанной с механической неустойчивостью элементов конструкции, что приводит к нестабильности результатов измерения амплитуды резонансной кривой отраженного СВЧ-сигнала.

Технический результат, получаемый при использовании предлагаемого устройства, заключается в уменьшении искажения формы резонансной кривой отраженного СВЧ-сигнала за счет улучшения контакта контролируемой жидкости, помещенной в диэлектрический капилляр с волноводным измерительным устройством, что приводит к повышению точности и чувствительности измерений.

Технический результат достигается тем, что волноводное устройство выполняется разъемным. Прилегающая к фланцу волноводного тракта вставка содержит резьбовое гнездо для емкостного штыря, который представляет собой цилиндрический проводник, установленный по направлению силовых линий напряженности электрического поля Е и соединенный одним концом с широкой стенкой волновода. При некоторой длине штыря, близкой к λ0/4, проводимость последовательного контура обращается в бесконечность и волновод закорачивается. Между вставкой и фланцем волновода имеется неглубокая канавка, вдоль которой может перемещаться полоска тонкого металла в виде резонансной (индуктивно-емкостной) диафрагмы. Размеры и расположение диафрагмы выбираются таким образом, чтобы в волноводном устройстве получить взаимное уничтожение волн, отраженных от конца волновода и от диафрагмы. Волноводная вставка содержит сквозное отверстие для диэлектрической трубки, в которую заливается измеряемая жидкость. Гладкая пластина закрывает сквозное отверстие волновода и является короткозамыкателем тракта. С помощью перемещения тонкой диафрагмы, а также емкостного штыря добиваются максимального значения добротности резонаторной измерительной системы, что регистрируется по величине амплитуды резонансной кривой на экране. Разность амплитуд резонансной кривой при последовательных измерениях показывает изменение концентрации вещества в исследуемой жидкости, связанной с изменением величины диэлектрической проницаемости. Более высокая чувствительность измерений наблюдается при измерениях уровня сигнала на склоне резонансной кривой. В этом случае оценивается смещение пика резонансной кривой по шкале частот, что повышает чувствительность измеряемого параметра жидкости, связанного также с изменением величины диэлектрической проницаемости. Таким образом, предложены регулировочные элементы, совместное действие которых обеспечивает максимальную добротность резонатора для каждой концентрации вещества в исследуемой жидкости и обеспечивающие стабильность результатов измерений диэлектрических параметров контролируемой жидкости.

На фиг. 1 представлена конструкция волноводного устройство для измерения параметров жидкости, где 1 - волновод СВЧ-тракта; 2 - подвижная индуктивно-емкостная диафрагма; 3 - диэлектрическая трубка; 4 - измеряемая жидкость; 5 - короткозамыкающая пластина; 6 - емкостный штырь.

Измерение диэлектрических характеристик жидкостей с помощью данного устройства выполняется следующим образом. В диэлектрическую, трубку (3), пронизывающую широкую стенку металлического прямоугольного волновода (1), наливается исследуемая жидкость (4). Затем с помощью настроечных элементов - резонансной диафрагмы (2) и емкостного штыря (6), добиваются максимального значения добротности резонаторной измерительной системы, что регистрируется по величине амплитуды резонансной кривой на экране. Разность амплитуд резонансной кривой при последовательных измерениях показывает изменение концентрации вещества в исследуемой жидкости, связанной с изменением величины диэлектрической проницаемости. Более высокая чувствительность измерений наблюдается при измерениях уровня сигнала на склоне резонансной кривой. В этом случае оценивается смещение пика резонансной кривой по шкале частот, что повышает чувствительность измеряемого параметра жидкости, связанного также с изменением величины диэлектрической проницаемости.

Таким образом, предлагаемое техническое решение позволяет использовать регулировочные элементы, совместное действие которых обеспечивает максимальную добротность резонатора для каждой концентрации вещества в исследуемой жидкости и обеспечивает повышение чувствительности результатов измерений диэлектрических параметров контролируемой жидкости. Кроме того, упрощается конструкция устройства за счет исключения настроечных поршней с дифференциальными винтами, фторопластовыми шайбами, зубчатыми колесами и спиральными пружинами, уменьшаются габариты устройства и его вес в несколько раз и, следовательно, должна снижаться себестоимость измерительного узла.


ВОЛНОВОДНОЕ УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ПАРАМЕТРОВ ЖИДКОСТЕЙ
ВОЛНОВОДНОЕ УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ПАРАМЕТРОВ ЖИДКОСТЕЙ
Источник поступления информации: Роспатент

Showing 81-90 of 91 items.
12.06.2020
№220.018.25e6

Аддитивный способ и устройство внешнего возбуждения механической колебательной системы вибровискозиметра

Изобретение относится к области исследования свойств жидкостей с помощью вибровискозиметров. Сущность: колебательную систему приводят в режим колебаний посредством устройства возбуждения, непрерывно изменяют частоту колебаний устройства возбуждения до достижения собственной частоты ω, которую...
Тип: Изобретение
Номер охранного документа: 0002723159
Дата охранного документа: 09.06.2020
06.07.2020
№220.018.2f81

Способ измерения граничной частоты электролюминесценции локальных областей светоизлучающей гетероструктуры

Изобретение относится к технике измерения динамических характеристик светодиодов и полупроводниковых светоизлучающих структур и может быть использовано для диагностики однородности светоизлучающих гетероструктур (СГС) и их характеристики по динамическим свойствам. Способ измерения граничной...
Тип: Изобретение
Номер охранного документа: 0002725613
Дата охранного документа: 03.07.2020
12.04.2023
№223.018.466a

Способ изготовления устройств с тонкопленочными туннельными переходами

Способ изготовления устройств с тонкопленочными сверхпроводниковыми переходами включает нанесение двух слоев резиста разной чувствительности, экспозицию в электронном литографе, проявление этих слоев резиста, напыление первого слоя нормального металла или сверхпроводника под углом к подложке,...
Тип: Изобретение
Номер охранного документа: 0002733330
Дата охранного документа: 01.10.2020
21.04.2023
№223.018.4f81

Джозефсоновский параметрический усилитель бегущей волны на основе би-сквидов

Изобретение относится к параметрическому усилителю бегущей волны. Технический результат - расширение свободного от паразитных составляющих динамического диапазона. Для этого параметрический усилитель бегущей волны содержит размещенные на подложке копланарный волновод и связанные с ним...
Тип: Изобретение
Номер охранного документа: 0002792981
Дата охранного документа: 28.03.2023
16.05.2023
№223.018.5df5

Мажоритарный элемент на спиновых волнах

Использование: для построения высоконадежных помехоустойчивых телекоммуникационных систем. Сущность изобретения заключается в том, что мажоритарный элемент на спиновых волнах содержит структуру, выполненную в виде пластины из диэлектрика, с нанесенным на одну сторону слоем магнитоактивной...
Тип: Изобретение
Номер охранного документа: 0002758000
Дата охранного документа: 25.10.2021
16.05.2023
№223.018.5df6

Мажоритарный элемент на спиновых волнах

Использование: для построения высоконадежных помехоустойчивых телекоммуникационных систем. Сущность изобретения заключается в том, что мажоритарный элемент на спиновых волнах содержит структуру, выполненную в виде пластины из диэлектрика, с нанесенным на одну сторону слоем магнитоактивной...
Тип: Изобретение
Номер охранного документа: 0002758000
Дата охранного документа: 25.10.2021
16.05.2023
№223.018.6066

Металл-диэлектрик-металл-диэлектрик-металл фотодетектор

Изобретение относится к детекторам излучения, полевым транзисторам, туннельным усилителям с потоком горячих электронов, МДМДМ туннельным структурам для приема излучения миллиметровых и субмиллиметровых волн. Металл-Диэлектрик-Металл-Диэлектрик-Металл детектор, содержащий металлический проводник...
Тип: Изобретение
Номер охранного документа: 0002749575
Дата охранного документа: 15.06.2021
29.05.2023
№223.018.7282

Перестраиваемый генератор шумового сигнала

Изобретение относится к области радиотехники и измерительной техники, а именно к приборам, предназначенным для измерения слабых сигналов и может быть использовано для калибровки чувствительности криогенных усилителей и детекторов гигагерцового диапазона. Техническим результатом изобретения...
Тип: Изобретение
Номер охранного документа: 0002796347
Дата охранного документа: 22.05.2023
03.06.2023
№223.018.763c

Способ неразрушающей диагностики дефектов сквозного металлизированного отверстия печатной платы

Изобретение относится к средствам неразрушающего контроля качества сквозных металлизированных отверстий (СМО) печатных плат (ПП). Технический результат - повышение достоверности выявления дефектов и в обеспечение возможности их идентификации. Технический результат достигается тем, что в способе...
Тип: Изобретение
Номер охранного документа: 0002761863
Дата охранного документа: 13.12.2021
06.06.2023
№223.018.791e

Осциллятор для генератора терагерцового излучения

Изобретение относится к прикладной физике и может быть использовано в измерительной технике для генерации и приема излучения в диапазоне частот 0.1-5 ТГц. Осциллятор для генератора терагерцового излучения включает гетероструктуру на основе слоев антиферромагнитного диэлектрика и платины,...
Тип: Изобретение
Номер охранного документа: 0002742569
Дата охранного документа: 08.02.2021
Showing 1-2 of 2 items.
25.08.2017
№217.015.b28c

Перестраиваемая волноводно-диэлектрическая камера для контроля жидкостей

Изобретение относится к области СВЧ-техники и может быть использовано для измерения и контроля жидкостей, в частности водных растворов и суспензий веществ химической и биологической природы, в различных технологических процессах, исследованиях структуры водных растворов, определения...
Тип: Изобретение
Номер охранного документа: 0002614047
Дата охранного документа: 22.03.2017
19.01.2018
№218.016.073d

Свч-способ измерения концентрации водных растворов

Изобретение относится к области СВЧ-техники и может быть использовано для определения концентраций веществ в водных растворах, в том числе для контроля влаги в углеводородных смесях, при контроле загрязнения водных сред, при контроле концентрации биологических клеток в суспензиях. Способ...
Тип: Изобретение
Номер охранного документа: 0002631340
Дата охранного документа: 21.09.2017
+ добавить свой РИД