×
29.05.2018
218.016.5578

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ЦИРКОНИЯ ЭЛЕКТРОЛИЗОМ РАСПЛАВЛЕННОГО ЭЛЕКТРОЛИТА (ВАРИАНТЫ)

Вид РИД

Изобретение

Аннотация: Изобретение относится к области получения циркония электролизом расплавленного электролита. Проводят электролиз расплавленного электролита с использованием в качестве исходных солей фторцирконата калия, хлорида калия и тетрафторида циркония при контроле количества электричества, температуры электролита, состава электролита. Состав электролита поддерживают путем взятия проб электролита для определения его состава по концентрациям циркония и хлора. Определяют расчетную массу загрузки фторцирконата калия и хлорида калия и загрузки их в электролизер. Во втором варианте способа в качестве исходных солей используют фторцирконат калия, хлорид калия, хлорид натрия и тетрафторид циркония, а в третьем - фторцирконат калия, хлорид калия, хлорид натрия, хлорид магния и тетрафторид циркония. Определение расчетной массы загрузки фторцирконата калия и хлорида калия, а также хлорида натрия и хлорида магния ведут по расчетным формулам. В четвертом варианте способа в качестве исходных солей используют фторцирконат калия, хлориа калия и хлорид натрия. Способ позволяет повысить степень извлечения циркония. 4 н.п. ф-лы, 2 табл., 1пр.

Изобретение относится к области получения циркония электролизом расплавленного электролита.

Известен способ получения циркония, при котором дозирование солей в расплав осуществляется в зависимости от температуры электролита [Безумов В.Н., Бакланов В.П., Дунаев А.И., Матюшкин Н.А, Титов Г.Н., Огородников Л.В., Разработка математических моделей процесса электролиза в расплаве K2ZrF6 - KCl - KF - NaCl, Цветные металлы, №7, 2005 г., 100-102 с.]. В соответствии с этим способом, при температуре электролита больше заданного значения осуществляется дозирование солей в расплав, а при температуре электролита меньше заданного значения дозирование солей в расплав отсутствует, при этом заданная температура электролита рассчитывается по формулам:

tпл=901,2-11,6⋅CZ+26,95⋅CNa - 4,062⋅CCl ⋅ CNa,

tзад=tпл+Δ,

где tпл - температура плавления электролита, °C;

CNa - содержание Na в электролите, мас. %;

CCl - содержание Cl в электролите, мас. %;

Cz - сумма содержаний Zr и Cl в электролите, мас. %;

Δ - величина перегрева электролита, °С.

Недостатком известного способа является низкая точность поддержания температуры электролита, вызванная тем, что в формулах для расчета заданной температуры электролита не учитываются индивидуальные особенности электролизера (степень загрязненности охлаждающих рубашек, точность установки электродов, степень расхода графитовых анодов и т.д.).

Наиболее близким к заявляемому техническому решению является аналог (RU 2400568 МПК С25С 3/26, опубл. 27.09.2010), первый вариант которого является прототипом первого варианта заявляемого способа, а именно способ получения циркония электролизом расплавленного электролита с использованием в качестве исходных солей фторцирконата калия, хлорида калия и тетрафторида циркония, включает контроль количества электричества, контроль температуры электролита, поддержание состава электролита путем взятия проб электролита для определения его состава по концентрациям циркония и хлора, определения расчетной массы загрузки фторцирконата калия и хлорида калия по формулам:

где , , - расчетные массы загрузки солей K2ZrF6, KCl, кг;

- масса загружаемого ZrF4, кг;

k1, k2, - эмпирические коэффициенты: k1=1-3; k2=0,5-2,5;

Wn - количество электричества, кАч;

- заданные значения концентраций Zr и Cl в электролите, мас. %;

Рэ - масса жидкой фазы электролита, кг;

- текущие значения концентраций Zr и Cl в электролите, мас. %, рассчитывают по формулам:

где - значения концентраций Zr и Cl в электролите по химическому анализу, мас. %;

, , - фактические массы фторцирконата калия, хлорида калия и тетрафторида циркония, отдозированных в расплав после взятия пробы электролита на его состав, кг;

Wn-1 - фактическое количество электричества, потраченное после взятия пробы электролита для определения его состава, кАч;

Рсэ - масса слитого электролита, кг.

Второй вариант (RU 2400568) является прототипом второго и четвертого варианта заявляемого способа, а именно способ получения циркония электролизом расплавленного электролита с использованием в качестве исходных солей фторцирконата калия, хлорида калия, хлорида натрия и тетрафторида циркония, включает контроль количества электричества, контроль температуры электролита, поддержание состава электролита путем взятия проб электролита для определения его состава по концентрациям циркония и хлора, определения расчетной массы загрузки фторцирконата калия и хлорида калия и загрузки их в электролизер, при этом определение расчетной массы загрузки фторцирконата калия, хлорида калия и хлорида натрия ведут по формулам:

где , , - расчетные массы загрузки солей K2ZrF6, KCl, NaCl, кг;

- масса загружаемого ZrF4, кг;

k1, k2, k3, - эмпирические коэффициенты: k1=1-3; k2=0,5-2,5; k3=0,05-0,3;

Wn - количество электричества, кАч;

- заданные значения концентраций Zr, Cl и Na в электролите, мас. %;

Рэ - масса жидкой фазы электролита, кг;

- текущие значения концентраций Zr, Cl и Na в электролите, мас. %, рассчитывают по формулам:

где - значения концентраций Zr, Cl и Na в электролите по химическому анализу, мас. %;

, , , - фактические массы фторцирконата калия, хлорида калия, хлорида натрия и тетрафторида циркония, отдозированных в расплав после взятия пробы электролита на его состав, кг;

Wn-1 - фактическое количество электричества, потраченное после взятия пробы электролита для определения его состава, кАч;

Рсэ - масса слитого электролита, кг.

Третий вариант (RU 2400568) является прототипом третьего варианта заявляемого способа, а именно способ получения циркония электролизом расплавленного электролита с использованием в качестве исходных солей фторцирконата калия, хлорида калия, хлорида натрия, хлорида магния и тетрафторида циркония, включает контроль количества электричества, контроль температуры электролита, поддержание состава электролита путем взятия проб электролита для определения его состава по концентрациям циркония и хлора, определения расчетной массы загрузки фторцирконата калия и хлорида калия и загрузки их в электролизер, при этом определение расчетной массы загрузки фторцирконата калия, хлорида калия, хлорида натрия и хлорида магния ведут по формулам:

где , , , - расчетные массы загрузки солей K2ZrF6, KCl, NaCl, MgCl2, кг;

- масса загружаемого ZrF4, кг;

k1, k2 k3, k4 - эмпирические коэффициенты: k1=1-3; k2=0,5-2,5; k3=0,05-0,3; k4=0,01-0,1;

Wn - количество электричества, кАч;

- заданные значения концентраций Zr, Cl, Na, Mg в электролите, мас. %;

Рэ - масса жидкой фазы электролита, кг;

- текущие значения концентраций Zr, Cl, Na и Mg в электролите, мас. %, рассчитывают по формулам:

где - значения концентраций Zr, Cl, Na и Mg в электролите по химическому анализу, мас. %;

, , , , - фактические массы фторцирконата калия, хлорида калия, хлорида натрия, хлорида магния и тетрафторида циркония, отдозированных в расплав после взятия пробы электролита на его состав, кг;

Wn-1 - фактическое количество электричества, потраченное после взятия пробы электролита для определения его состава, кАч;

Рсэ - масса слитого электролита, кг.

Недостатками этого способа являются большое колебание температуры электролита, вызванное отсутствием расчетных моделей определения заданной температуры электролита.

Техническим результатом предлагаемого изобретения является повышение точности поддержания температуры электролита и, как следствие, повышение извлечения циркония.

Технический результат по первому варианту достигается в способе получения циркония электролизом расплавленного электролита с использованием в качестве исходных солей фторцирконата калия, хлорида калия и тетрафторида циркония, заключающемся в том, что осуществляют контроль количества электричества, контроль температуры электролита, поддержание состава электролита путем взятия проб электролита для определения его состава по концентрациям циркония и хлора, при этом определение расчетной массы загрузки фторцирконата калия и хлорида калия ведут по формулам:

где , - расчетные массы загрузки солей K2ZrF6, KCl, кг;

- масса загружаемого ZrF4, кг;

k1, k2, - эмпирические коэффициенты: ; ;

Wn - количество электричества, кАч;

- заданные значения концентраций Zr и Cl в электролите, мас. %;

Рэ - масса жидкой фазы электролита, кг;

- текущие значения концентраций Zr и Cl в электролите, мас. %, рассчитывают по формулам:

где - значения концентраций Zr и Cl в электролите по химическому анализу, мас. %;

, , - фактические массы фторцирконата калия, хлорида калия и тетрафторида циркония, отдозированных в расплав после взятия пробы электролита на его состав, кг;

Wn-1 - фактическое количество электричества, потраченное после взятия пробы электролита для определения его состава, кАч;

Рсэ - масса слитого электролита, кг,

причем определяют массу отдозированных солей в конце текущего периода, а контроль и поддержание температуры электролита (tэ) осуществляют путем ее измерения, сравнения ее через равные промежутки времени с заданной температурой электролита (tзад), рассчитанной по формуле:

где - заданная температура электролита в n+1 период, °С;

- заданная температура электролита в n период, °С;

kп - коэффициент пропорциональности, принят равным 0,1-0,7°С/кг;

- фактическая масса солей, загруженная в бункер в n период, кг;

- масса солей, отдозированных в расплав в конце n периода, кг,

и в случае, если tэ>tзад, для поддержания tэ осуществляют дозирование солей в расплав электролита до тех пор, пока температура электролита(tэ) не станет меньше заданной температуры электролита (tзад).

Технический результат по второму варианту достигается в способе получения циркония электролизом расплавленного электролита с использованием в качестве исходных солей фторцирконата калия, хлорида калия, хлорида натрия и тетрафторида циркония, заключающемся в том, что осуществляют контроль количества электричества, контроль температуры электролита, поддержание состава электролита путем взятия проб электролита для определения его состава по концентрациям циркония, хлора и натрия, при этом определение расчетной массы загрузки фторцирконата калия, хлорида калия и хлорида натрия ведут по формулам:

где , , - расчетные массы загрузки солей K2ZrF6, KCl, NaCl, кг;

- масса загружаемого ZrF4, кг;

k1, k2 k3, - эмпирические коэффициенты: ; ; ;

Wn - количество электричества, кАч;

- заданные значения концентраций Zr, Cl и Na в электролите, мас. %;

Рэ - масса жидкой фазы электролита, кг;

- текущие значения концентраций Zr, Cl и Na в электролите, мас. %, рассчитывают по формулам:

где - значения концентраций Zr, Cl и Na в электролите по химическому анализу, мас. %;

, , , - фактические массы фторцирконата калия, хлорида калия, хлорида натрия и тетрафторида циркония, отдозированных в расплав после взятия пробы электролита на его состав, кг;

Wn-1 - фактическое количество электричества, потраченное после взятия пробы электролита для определения его состава, кАч;

Рсэ - масса слитого электролита, кг,

причем определяют массу отдозированных солей в конце текущего периода, а контроль и поддержание температуры электролита (tэ) осуществляют путем ее измерения, сравнения ее через равные промежутки времени с заданной температурой электролита (^ад), рассчитанной по формуле:

где - заданная температура электролита в n+1 период, °С;

- заданная температура электролита в n период, °С;

kп - коэффициент пропорциональности, принят равным 0,1-0,7°С/кг;

- фактическая масса солей, загруженная в бункер в n период, кг;

- масса солей, отдозированных в расплав в конце n периода, кг,

и в случае, если tэ>tзад для поддержания tэ осуществляют дозирование солей в расплав электролита до тех пор, пока температура электролита(tэ) не станет меньше заданной температуры электролита (tзад).

Технический результат по третьему варианту достигается в способе получения циркония электролизом расплавленного электролита с использованием в качестве исходных солей фторцирконата калия, хлорида калия, хлорида натрия, хлорида магния и тетрафторида циркония, заключающемся в том, что осуществляют контроль количества электричества, контроль температуры электролита, поддержание состава электролита путем взятия проб электролита для определения его состава по концентрациям циркония, хлора, натрия и магния, при этом определение расчетной массы загрузки фторцирконата калия, хлорида калия, хлорида натрия и хлорида магния ведут по формулам:

где , , , - расчетные массы загрузки солей K2ZrF6, KCl, NaCl, MgCl2, кг;

- масса загружаемого ZrF4, кг;

k1, k2, k3, k4 - эмпирические коэффициенты: ; ; ; ;

Wn - количество электричества, кАч;

- заданные значения концентраций Zr, Cl, Na, Mg в электролите, мас. %;

Рэ - масса жидкой фазы электролита, кг;

- текущие значения концентраций Zr, Cl, Na и Mg в электролите, мас. %, рассчитывают по формулам:

где - значения концентраций Zr, Cl, Na и Mg в электролите по химическому анализу, мас. %;

, , , , - фактические массы фторцирконата калия, хлорида калия, хлорида натрия, хлорида магния и тетрафторида циркония, отдозированных в расплав после взятия пробы электролита на его состав, кг;

Wn-1 - фактическое количество электричества, потраченное после взятия пробы электролита для определения его состава, кАч;

Рсэ - масса слитого электролита, кг,

причем определяют массу отдозированных солей в конце текущего периода, а контроль и поддержание температуры электролита (tэ) осуществляют путем ее измерения, сравнения ее через равные промежутки времени с заданной температурой электролита (tзад), рассчитанной по формуле:

где - заданная температура электролита в n+1 период, °С;

- заданная температура электролита в n период, °С;

kп - коэффициент пропорциональности, принят равным 0,1-0,7°С/кг;

- фактическая масса солей, загруженная в бункер в n период, кг;

- масса солей, отдозированных в расплав в конце n периода, кг,

и в случае, если tэ>tзад для поддержания tэ осуществляют дозирование солей в расплав электролита до тех пор, пока температура электролита (tэ) не станет меньше заданной температуры электролита (tзад).

Технический результат по четвертому варианту достигается в способе получения циркония электролизом расплавленного электролита с использованием в качестве исходных солей фторцирконата калия, хлорида калия и хлорида натрия, заключающемся в том, что осуществляют контроль количества электричества, контроль температуры электролита, поддержание состава электролита путем взятия проб электролита для определения его состава по концентрациям циркония, хлора и натрия, при этом определение расчетной массы загрузки фторцирконата калия, хлорида калия и хлорида натрия ведут по формулам:

где , , - расчетные массы загрузки солей K2ZrF6, KCl, NaCl, кг;

k1, k2 k3, - эмпирические коэффициенты: ; ; ;

Wn - количество электричества, кАч;

- заданные значения концентраций Zr, Cl и Na в электролите, мас. %;

Рэ - масса жидкой фазы электролита, кг;

- текущие значения концентраций Zr, Cl и Na в электролите, мас. %, рассчитывают по формулам:

где - значения концентраций Zr, Cl и Na в электролите по химическому анализу, мас. %;

, , - фактические массы фторцирконата калия, хлорида калия и хлорида натрия, отдозированных в расплав после взятия пробы электролита на его состав, кг;

Wn-1 - фактическое количество электричества, потраченное после взятия пробы электролита для определения его состава, кАч;

Рсэ - масса слитого электролита, кг,

причем определяют массу отдозированных солей в конце текущего периода, а контроль и поддержание температуры электролита (tэ) осуществляют путем ее измерения, сравнения ее через равные промежутки времени с заданной температурой электролита (tзад), рассчитанной по формуле:

где - заданная температура электролита в n+1 период, °С;

- заданная температура электролита в n период, °С;

kn - коэффициент пропорциональности, принят равным 0,1-0,7°С/кг;

- фактическая масса солей, загруженная в бункер в n период, кг;

- масса солей, отдозированных в расплав в конце n периода, кг,

и в случае, если tэ>tзад, для поддержания tэ осуществляют дозирование солей в расплав электролита до тех пор, пока температура электролита (tэ) не станет меньше заданной температуры электролита (tзад).

Указанные признаки являются необходимыми и все вместе достаточны для решения поставленной задачи.

Предлагаемый способ осуществляют на промышленном электролизере для получения циркония. В случае отсутствия данных анализа химического состава электролита производят расчет содержания Zr, Cl. При добавках в электролит NaCl рассчитывают содержание Na. При добавках в электролит MgCl2 рассчитывают содержание Mg. Затем осуществляют расчет загрузки солей K2ZrF6, KCl, NaCl, MgCl2 (если в состав шихты не входит NaCl, то расчет массы загрузки для этой соли (PNaCl) не производят. Если в состав шихты не входит MgCl2, то расчет массы загрузки для этой соли () не производят). Затем взвешивают их с помощью дозатора и загружают в бункер электролизера. Дозирование солей в электролит осуществляют в зависимости от температуры электролита: t>tзад - включают шнековый питатель; t<tзад шнековый питатель отключают. В конце текущего периода дозирования определяют массу отдозированных солей, осуществляют расчет заданной температуры электролита и расчет остатка солей в загрузочном бункере электролизера. Если расчет показал, что соли в бункере остались, то производят их равномерное дозирование в расплав.

Возможность осуществления предлагаемого способа подтверждается следующим примером.

Пример

Всего опыт длился 24 периода по 6 часов и проводился на двух электролизерах (на первом электролизере получение циркония осуществлялось по прототипу, на втором электролизере по предлагаемому способу). В качестве исходных солей по прототипу и предлагаемому способу использовались фторцирконат калия, тетрафторид циркония, хлорид калия, хлорид натрия и хлорид магния. Состав электролита в среднем поддерживался на уровне: CZr=3,3 мас. %, CCl=8,5 мас. %, CNa=3 мас. %, CMg=0,2 мас. %. Загрузка исходных солей в электролизеры производилась один раз в период. Контроль количества электричества производился по амперметру. Температура электролита измерялась с помощью термопары ТХА. Масса жидкой фазы электролита определялась статистическими методами. Слив избыточного электролита осуществлялся один раз в сутки. Масса слитого электролита определялась на электронных весах. При проведении опыта по прототипу и предлагаемому способу загрузка тетрафторида циркония в электролит осуществлялась по следующему регламенту: 1, 5, 9, 13, 17, 21 периоды по 60 кг; все остальные периоды по 30 кг. Взятие пробы электролита и ее химический анализ осуществляли один раз в сутки.

Для определения расчетной массы загрузки фторцирконата калия, хлорида калия, хлорида натрия и хлорида магния использовались следующие значения коэффициентов: ; ; ; . Фактические массы солей, загруженных в бункер электролизера и отдозированных в расплав за период решения задачи, определяли с помощью шнекового дозатора. Масса солей, отдозированных в расплав в конце текущего периода, по предлагаемому способу определялась с помощью датчика уровня солей в загрузочном бункере электролизера.

Заданная температура электролита по прототипу устанавливалась на уровне 760°С. Заданная температура электролита по предлагаемому способу в первый период устанавливалась также на уровне 760°С. Для расчета заданной температуры электролита по предлагаемому способу в последующие периоды коэффициент kп приравнивался 0,37°С/кг.

Результаты опыта приведены в таблицах 1 и 2.

Как видно из таблиц 1 и 2, состав электролита по прототипу изменялся по содержанию Zr от 3,0 до 3,6 мас. %, по содержанию Cl от 8,2 до 8,8 мас. %, по содержанию Na от 2,8 до 3,1 мас. %, по содержанию Mg от 0,17 до 0,22 мас. %; состав электролита по предлагаемому способу изменялся по содержанию Zr от 3,1 до 3,6 мас. %, по содержанию Cl от 8,2 до 8,8 мас. %, по содержанию Na от 2,9 до 3,1 мас. %, по содержанию Mg от 0,17 до 0,22 мас. %; колебания температуры электролита по прототипу составляют от 11 до 24°С, а по предлагаемому способу от 2 до 9°С. Таким образом, получение циркония по предлагаемому способу позволяет уменьшить колебания температуры электролита и при этом не ухудшать точность поддержания состава электролита, что приводит к повышению извлечения циркония.


СПОСОБ ПОЛУЧЕНИЯ ЦИРКОНИЯ ЭЛЕКТРОЛИЗОМ РАСПЛАВЛЕННОГО ЭЛЕКТРОЛИТА (ВАРИАНТЫ)
СПОСОБ ПОЛУЧЕНИЯ ЦИРКОНИЯ ЭЛЕКТРОЛИЗОМ РАСПЛАВЛЕННОГО ЭЛЕКТРОЛИТА (ВАРИАНТЫ)
СПОСОБ ПОЛУЧЕНИЯ ЦИРКОНИЯ ЭЛЕКТРОЛИЗОМ РАСПЛАВЛЕННОГО ЭЛЕКТРОЛИТА (ВАРИАНТЫ)
СПОСОБ ПОЛУЧЕНИЯ ЦИРКОНИЯ ЭЛЕКТРОЛИЗОМ РАСПЛАВЛЕННОГО ЭЛЕКТРОЛИТА (ВАРИАНТЫ)
СПОСОБ ПОЛУЧЕНИЯ ЦИРКОНИЯ ЭЛЕКТРОЛИЗОМ РАСПЛАВЛЕННОГО ЭЛЕКТРОЛИТА (ВАРИАНТЫ)
СПОСОБ ПОЛУЧЕНИЯ ЦИРКОНИЯ ЭЛЕКТРОЛИЗОМ РАСПЛАВЛЕННОГО ЭЛЕКТРОЛИТА (ВАРИАНТЫ)
СПОСОБ ПОЛУЧЕНИЯ ЦИРКОНИЯ ЭЛЕКТРОЛИЗОМ РАСПЛАВЛЕННОГО ЭЛЕКТРОЛИТА (ВАРИАНТЫ)
СПОСОБ ПОЛУЧЕНИЯ ЦИРКОНИЯ ЭЛЕКТРОЛИЗОМ РАСПЛАВЛЕННОГО ЭЛЕКТРОЛИТА (ВАРИАНТЫ)
СПОСОБ ПОЛУЧЕНИЯ ЦИРКОНИЯ ЭЛЕКТРОЛИЗОМ РАСПЛАВЛЕННОГО ЭЛЕКТРОЛИТА (ВАРИАНТЫ)
СПОСОБ ПОЛУЧЕНИЯ ЦИРКОНИЯ ЭЛЕКТРОЛИЗОМ РАСПЛАВЛЕННОГО ЭЛЕКТРОЛИТА (ВАРИАНТЫ)
СПОСОБ ПОЛУЧЕНИЯ ЦИРКОНИЯ ЭЛЕКТРОЛИЗОМ РАСПЛАВЛЕННОГО ЭЛЕКТРОЛИТА (ВАРИАНТЫ)
СПОСОБ ПОЛУЧЕНИЯ ЦИРКОНИЯ ЭЛЕКТРОЛИЗОМ РАСПЛАВЛЕННОГО ЭЛЕКТРОЛИТА (ВАРИАНТЫ)
СПОСОБ ПОЛУЧЕНИЯ ЦИРКОНИЯ ЭЛЕКТРОЛИЗОМ РАСПЛАВЛЕННОГО ЭЛЕКТРОЛИТА (ВАРИАНТЫ)
СПОСОБ ПОЛУЧЕНИЯ ЦИРКОНИЯ ЭЛЕКТРОЛИЗОМ РАСПЛАВЛЕННОГО ЭЛЕКТРОЛИТА (ВАРИАНТЫ)
СПОСОБ ПОЛУЧЕНИЯ ЦИРКОНИЯ ЭЛЕКТРОЛИЗОМ РАСПЛАВЛЕННОГО ЭЛЕКТРОЛИТА (ВАРИАНТЫ)
СПОСОБ ПОЛУЧЕНИЯ ЦИРКОНИЯ ЭЛЕКТРОЛИЗОМ РАСПЛАВЛЕННОГО ЭЛЕКТРОЛИТА (ВАРИАНТЫ)
СПОСОБ ПОЛУЧЕНИЯ ЦИРКОНИЯ ЭЛЕКТРОЛИЗОМ РАСПЛАВЛЕННОГО ЭЛЕКТРОЛИТА (ВАРИАНТЫ)
СПОСОБ ПОЛУЧЕНИЯ ЦИРКОНИЯ ЭЛЕКТРОЛИЗОМ РАСПЛАВЛЕННОГО ЭЛЕКТРОЛИТА (ВАРИАНТЫ)
СПОСОБ ПОЛУЧЕНИЯ ЦИРКОНИЯ ЭЛЕКТРОЛИЗОМ РАСПЛАВЛЕННОГО ЭЛЕКТРОЛИТА (ВАРИАНТЫ)
СПОСОБ ПОЛУЧЕНИЯ ЦИРКОНИЯ ЭЛЕКТРОЛИЗОМ РАСПЛАВЛЕННОГО ЭЛЕКТРОЛИТА (ВАРИАНТЫ)
СПОСОБ ПОЛУЧЕНИЯ ЦИРКОНИЯ ЭЛЕКТРОЛИЗОМ РАСПЛАВЛЕННОГО ЭЛЕКТРОЛИТА (ВАРИАНТЫ)
СПОСОБ ПОЛУЧЕНИЯ ЦИРКОНИЯ ЭЛЕКТРОЛИЗОМ РАСПЛАВЛЕННОГО ЭЛЕКТРОЛИТА (ВАРИАНТЫ)
СПОСОБ ПОЛУЧЕНИЯ ЦИРКОНИЯ ЭЛЕКТРОЛИЗОМ РАСПЛАВЛЕННОГО ЭЛЕКТРОЛИТА (ВАРИАНТЫ)
СПОСОБ ПОЛУЧЕНИЯ ЦИРКОНИЯ ЭЛЕКТРОЛИЗОМ РАСПЛАВЛЕННОГО ЭЛЕКТРОЛИТА (ВАРИАНТЫ)
СПОСОБ ПОЛУЧЕНИЯ ЦИРКОНИЯ ЭЛЕКТРОЛИЗОМ РАСПЛАВЛЕННОГО ЭЛЕКТРОЛИТА (ВАРИАНТЫ)
СПОСОБ ПОЛУЧЕНИЯ ЦИРКОНИЯ ЭЛЕКТРОЛИЗОМ РАСПЛАВЛЕННОГО ЭЛЕКТРОЛИТА (ВАРИАНТЫ)
СПОСОБ ПОЛУЧЕНИЯ ЦИРКОНИЯ ЭЛЕКТРОЛИЗОМ РАСПЛАВЛЕННОГО ЭЛЕКТРОЛИТА (ВАРИАНТЫ)
СПОСОБ ПОЛУЧЕНИЯ ЦИРКОНИЯ ЭЛЕКТРОЛИЗОМ РАСПЛАВЛЕННОГО ЭЛЕКТРОЛИТА (ВАРИАНТЫ)
СПОСОБ ПОЛУЧЕНИЯ ЦИРКОНИЯ ЭЛЕКТРОЛИЗОМ РАСПЛАВЛЕННОГО ЭЛЕКТРОЛИТА (ВАРИАНТЫ)
СПОСОБ ПОЛУЧЕНИЯ ЦИРКОНИЯ ЭЛЕКТРОЛИЗОМ РАСПЛАВЛЕННОГО ЭЛЕКТРОЛИТА (ВАРИАНТЫ)
СПОСОБ ПОЛУЧЕНИЯ ЦИРКОНИЯ ЭЛЕКТРОЛИЗОМ РАСПЛАВЛЕННОГО ЭЛЕКТРОЛИТА (ВАРИАНТЫ)
СПОСОБ ПОЛУЧЕНИЯ ЦИРКОНИЯ ЭЛЕКТРОЛИЗОМ РАСПЛАВЛЕННОГО ЭЛЕКТРОЛИТА (ВАРИАНТЫ)
СПОСОБ ПОЛУЧЕНИЯ ЦИРКОНИЯ ЭЛЕКТРОЛИЗОМ РАСПЛАВЛЕННОГО ЭЛЕКТРОЛИТА (ВАРИАНТЫ)
СПОСОБ ПОЛУЧЕНИЯ ЦИРКОНИЯ ЭЛЕКТРОЛИЗОМ РАСПЛАВЛЕННОГО ЭЛЕКТРОЛИТА (ВАРИАНТЫ)
СПОСОБ ПОЛУЧЕНИЯ ЦИРКОНИЯ ЭЛЕКТРОЛИЗОМ РАСПЛАВЛЕННОГО ЭЛЕКТРОЛИТА (ВАРИАНТЫ)
СПОСОБ ПОЛУЧЕНИЯ ЦИРКОНИЯ ЭЛЕКТРОЛИЗОМ РАСПЛАВЛЕННОГО ЭЛЕКТРОЛИТА (ВАРИАНТЫ)
СПОСОБ ПОЛУЧЕНИЯ ЦИРКОНИЯ ЭЛЕКТРОЛИЗОМ РАСПЛАВЛЕННОГО ЭЛЕКТРОЛИТА (ВАРИАНТЫ)
СПОСОБ ПОЛУЧЕНИЯ ЦИРКОНИЯ ЭЛЕКТРОЛИЗОМ РАСПЛАВЛЕННОГО ЭЛЕКТРОЛИТА (ВАРИАНТЫ)
СПОСОБ ПОЛУЧЕНИЯ ЦИРКОНИЯ ЭЛЕКТРОЛИЗОМ РАСПЛАВЛЕННОГО ЭЛЕКТРОЛИТА (ВАРИАНТЫ)
СПОСОБ ПОЛУЧЕНИЯ ЦИРКОНИЯ ЭЛЕКТРОЛИЗОМ РАСПЛАВЛЕННОГО ЭЛЕКТРОЛИТА (ВАРИАНТЫ)
СПОСОБ ПОЛУЧЕНИЯ ЦИРКОНИЯ ЭЛЕКТРОЛИЗОМ РАСПЛАВЛЕННОГО ЭЛЕКТРОЛИТА (ВАРИАНТЫ)
СПОСОБ ПОЛУЧЕНИЯ ЦИРКОНИЯ ЭЛЕКТРОЛИЗОМ РАСПЛАВЛЕННОГО ЭЛЕКТРОЛИТА (ВАРИАНТЫ)
СПОСОБ ПОЛУЧЕНИЯ ЦИРКОНИЯ ЭЛЕКТРОЛИЗОМ РАСПЛАВЛЕННОГО ЭЛЕКТРОЛИТА (ВАРИАНТЫ)
СПОСОБ ПОЛУЧЕНИЯ ЦИРКОНИЯ ЭЛЕКТРОЛИЗОМ РАСПЛАВЛЕННОГО ЭЛЕКТРОЛИТА (ВАРИАНТЫ)
СПОСОБ ПОЛУЧЕНИЯ ЦИРКОНИЯ ЭЛЕКТРОЛИЗОМ РАСПЛАВЛЕННОГО ЭЛЕКТРОЛИТА (ВАРИАНТЫ)
СПОСОБ ПОЛУЧЕНИЯ ЦИРКОНИЯ ЭЛЕКТРОЛИЗОМ РАСПЛАВЛЕННОГО ЭЛЕКТРОЛИТА (ВАРИАНТЫ)
СПОСОБ ПОЛУЧЕНИЯ ЦИРКОНИЯ ЭЛЕКТРОЛИЗОМ РАСПЛАВЛЕННОГО ЭЛЕКТРОЛИТА (ВАРИАНТЫ)
СПОСОБ ПОЛУЧЕНИЯ ЦИРКОНИЯ ЭЛЕКТРОЛИЗОМ РАСПЛАВЛЕННОГО ЭЛЕКТРОЛИТА (ВАРИАНТЫ)
СПОСОБ ПОЛУЧЕНИЯ ЦИРКОНИЯ ЭЛЕКТРОЛИЗОМ РАСПЛАВЛЕННОГО ЭЛЕКТРОЛИТА (ВАРИАНТЫ)
СПОСОБ ПОЛУЧЕНИЯ ЦИРКОНИЯ ЭЛЕКТРОЛИЗОМ РАСПЛАВЛЕННОГО ЭЛЕКТРОЛИТА (ВАРИАНТЫ)
СПОСОБ ПОЛУЧЕНИЯ ЦИРКОНИЯ ЭЛЕКТРОЛИЗОМ РАСПЛАВЛЕННОГО ЭЛЕКТРОЛИТА (ВАРИАНТЫ)
СПОСОБ ПОЛУЧЕНИЯ ЦИРКОНИЯ ЭЛЕКТРОЛИЗОМ РАСПЛАВЛЕННОГО ЭЛЕКТРОЛИТА (ВАРИАНТЫ)
СПОСОБ ПОЛУЧЕНИЯ ЦИРКОНИЯ ЭЛЕКТРОЛИЗОМ РАСПЛАВЛЕННОГО ЭЛЕКТРОЛИТА (ВАРИАНТЫ)
СПОСОБ ПОЛУЧЕНИЯ ЦИРКОНИЯ ЭЛЕКТРОЛИЗОМ РАСПЛАВЛЕННОГО ЭЛЕКТРОЛИТА (ВАРИАНТЫ)
СПОСОБ ПОЛУЧЕНИЯ ЦИРКОНИЯ ЭЛЕКТРОЛИЗОМ РАСПЛАВЛЕННОГО ЭЛЕКТРОЛИТА (ВАРИАНТЫ)
СПОСОБ ПОЛУЧЕНИЯ ЦИРКОНИЯ ЭЛЕКТРОЛИЗОМ РАСПЛАВЛЕННОГО ЭЛЕКТРОЛИТА (ВАРИАНТЫ)
СПОСОБ ПОЛУЧЕНИЯ ЦИРКОНИЯ ЭЛЕКТРОЛИЗОМ РАСПЛАВЛЕННОГО ЭЛЕКТРОЛИТА (ВАРИАНТЫ)
СПОСОБ ПОЛУЧЕНИЯ ЦИРКОНИЯ ЭЛЕКТРОЛИЗОМ РАСПЛАВЛЕННОГО ЭЛЕКТРОЛИТА (ВАРИАНТЫ)
СПОСОБ ПОЛУЧЕНИЯ ЦИРКОНИЯ ЭЛЕКТРОЛИЗОМ РАСПЛАВЛЕННОГО ЭЛЕКТРОЛИТА (ВАРИАНТЫ)
СПОСОБ ПОЛУЧЕНИЯ ЦИРКОНИЯ ЭЛЕКТРОЛИЗОМ РАСПЛАВЛЕННОГО ЭЛЕКТРОЛИТА (ВАРИАНТЫ)
СПОСОБ ПОЛУЧЕНИЯ ЦИРКОНИЯ ЭЛЕКТРОЛИЗОМ РАСПЛАВЛЕННОГО ЭЛЕКТРОЛИТА (ВАРИАНТЫ)
СПОСОБ ПОЛУЧЕНИЯ ЦИРКОНИЯ ЭЛЕКТРОЛИЗОМ РАСПЛАВЛЕННОГО ЭЛЕКТРОЛИТА (ВАРИАНТЫ)
СПОСОБ ПОЛУЧЕНИЯ ЦИРКОНИЯ ЭЛЕКТРОЛИЗОМ РАСПЛАВЛЕННОГО ЭЛЕКТРОЛИТА (ВАРИАНТЫ)
СПОСОБ ПОЛУЧЕНИЯ ЦИРКОНИЯ ЭЛЕКТРОЛИЗОМ РАСПЛАВЛЕННОГО ЭЛЕКТРОЛИТА (ВАРИАНТЫ)
СПОСОБ ПОЛУЧЕНИЯ ЦИРКОНИЯ ЭЛЕКТРОЛИЗОМ РАСПЛАВЛЕННОГО ЭЛЕКТРОЛИТА (ВАРИАНТЫ)
СПОСОБ ПОЛУЧЕНИЯ ЦИРКОНИЯ ЭЛЕКТРОЛИЗОМ РАСПЛАВЛЕННОГО ЭЛЕКТРОЛИТА (ВАРИАНТЫ)
СПОСОБ ПОЛУЧЕНИЯ ЦИРКОНИЯ ЭЛЕКТРОЛИЗОМ РАСПЛАВЛЕННОГО ЭЛЕКТРОЛИТА (ВАРИАНТЫ)
СПОСОБ ПОЛУЧЕНИЯ ЦИРКОНИЯ ЭЛЕКТРОЛИЗОМ РАСПЛАВЛЕННОГО ЭЛЕКТРОЛИТА (ВАРИАНТЫ)
СПОСОБ ПОЛУЧЕНИЯ ЦИРКОНИЯ ЭЛЕКТРОЛИЗОМ РАСПЛАВЛЕННОГО ЭЛЕКТРОЛИТА (ВАРИАНТЫ)
СПОСОБ ПОЛУЧЕНИЯ ЦИРКОНИЯ ЭЛЕКТРОЛИЗОМ РАСПЛАВЛЕННОГО ЭЛЕКТРОЛИТА (ВАРИАНТЫ)
СПОСОБ ПОЛУЧЕНИЯ ЦИРКОНИЯ ЭЛЕКТРОЛИЗОМ РАСПЛАВЛЕННОГО ЭЛЕКТРОЛИТА (ВАРИАНТЫ)
СПОСОБ ПОЛУЧЕНИЯ ЦИРКОНИЯ ЭЛЕКТРОЛИЗОМ РАСПЛАВЛЕННОГО ЭЛЕКТРОЛИТА (ВАРИАНТЫ)
СПОСОБ ПОЛУЧЕНИЯ ЦИРКОНИЯ ЭЛЕКТРОЛИЗОМ РАСПЛАВЛЕННОГО ЭЛЕКТРОЛИТА (ВАРИАНТЫ)
СПОСОБ ПОЛУЧЕНИЯ ЦИРКОНИЯ ЭЛЕКТРОЛИЗОМ РАСПЛАВЛЕННОГО ЭЛЕКТРОЛИТА (ВАРИАНТЫ)
СПОСОБ ПОЛУЧЕНИЯ ЦИРКОНИЯ ЭЛЕКТРОЛИЗОМ РАСПЛАВЛЕННОГО ЭЛЕКТРОЛИТА (ВАРИАНТЫ)
СПОСОБ ПОЛУЧЕНИЯ ЦИРКОНИЯ ЭЛЕКТРОЛИЗОМ РАСПЛАВЛЕННОГО ЭЛЕКТРОЛИТА (ВАРИАНТЫ)
СПОСОБ ПОЛУЧЕНИЯ ЦИРКОНИЯ ЭЛЕКТРОЛИЗОМ РАСПЛАВЛЕННОГО ЭЛЕКТРОЛИТА (ВАРИАНТЫ)
СПОСОБ ПОЛУЧЕНИЯ ЦИРКОНИЯ ЭЛЕКТРОЛИЗОМ РАСПЛАВЛЕННОГО ЭЛЕКТРОЛИТА (ВАРИАНТЫ)
СПОСОБ ПОЛУЧЕНИЯ ЦИРКОНИЯ ЭЛЕКТРОЛИЗОМ РАСПЛАВЛЕННОГО ЭЛЕКТРОЛИТА (ВАРИАНТЫ)
СПОСОБ ПОЛУЧЕНИЯ ЦИРКОНИЯ ЭЛЕКТРОЛИЗОМ РАСПЛАВЛЕННОГО ЭЛЕКТРОЛИТА (ВАРИАНТЫ)
СПОСОБ ПОЛУЧЕНИЯ ЦИРКОНИЯ ЭЛЕКТРОЛИЗОМ РАСПЛАВЛЕННОГО ЭЛЕКТРОЛИТА (ВАРИАНТЫ)
СПОСОБ ПОЛУЧЕНИЯ ЦИРКОНИЯ ЭЛЕКТРОЛИЗОМ РАСПЛАВЛЕННОГО ЭЛЕКТРОЛИТА (ВАРИАНТЫ)
СПОСОБ ПОЛУЧЕНИЯ ЦИРКОНИЯ ЭЛЕКТРОЛИЗОМ РАСПЛАВЛЕННОГО ЭЛЕКТРОЛИТА (ВАРИАНТЫ)
СПОСОБ ПОЛУЧЕНИЯ ЦИРКОНИЯ ЭЛЕКТРОЛИЗОМ РАСПЛАВЛЕННОГО ЭЛЕКТРОЛИТА (ВАРИАНТЫ)
СПОСОБ ПОЛУЧЕНИЯ ЦИРКОНИЯ ЭЛЕКТРОЛИЗОМ РАСПЛАВЛЕННОГО ЭЛЕКТРОЛИТА (ВАРИАНТЫ)
СПОСОБ ПОЛУЧЕНИЯ ЦИРКОНИЯ ЭЛЕКТРОЛИЗОМ РАСПЛАВЛЕННОГО ЭЛЕКТРОЛИТА (ВАРИАНТЫ)
СПОСОБ ПОЛУЧЕНИЯ ЦИРКОНИЯ ЭЛЕКТРОЛИЗОМ РАСПЛАВЛЕННОГО ЭЛЕКТРОЛИТА (ВАРИАНТЫ)
СПОСОБ ПОЛУЧЕНИЯ ЦИРКОНИЯ ЭЛЕКТРОЛИЗОМ РАСПЛАВЛЕННОГО ЭЛЕКТРОЛИТА (ВАРИАНТЫ)
СПОСОБ ПОЛУЧЕНИЯ ЦИРКОНИЯ ЭЛЕКТРОЛИЗОМ РАСПЛАВЛЕННОГО ЭЛЕКТРОЛИТА (ВАРИАНТЫ)
СПОСОБ ПОЛУЧЕНИЯ ЦИРКОНИЯ ЭЛЕКТРОЛИЗОМ РАСПЛАВЛЕННОГО ЭЛЕКТРОЛИТА (ВАРИАНТЫ)
Источник поступления информации: Роспатент

Showing 31-40 of 52 items.
03.08.2019
№219.017.bbce

Способ растворения диоксида плутония с получением концентрированного раствора

Изобретение относится к способу растворения диоксида плутония или смешанных оксидов актиноидов, содержащих диоксид плутония, любых других оксидов с окислительно-восстановительным потенциалом положительнее потенциала пары Ag/Ag(-1,98 В). Способ включает загрузку в электролизер с пульсационной...
Тип: Изобретение
Номер охранного документа: 0002696475
Дата охранного документа: 01.08.2019
16.08.2019
№219.017.c058

Способ изготовления проволоки из высокопрочных сплавов на основе титана

Изобретение относится к области металлургии, в частности к обработке металлов давлением, и может быть использовано для получения проволоки из высокопрочных сплавов на основе титана. Способ получения заготовки сплавов включает получение слитка, его горячую деформацию под многократное волочение...
Тип: Изобретение
Номер охранного документа: 0002697309
Дата охранного документа: 13.08.2019
02.10.2019
№219.017.cfdc

Способ получения слитков из сплавов циркония на основе магниетермической губки

Изобретение относится к получению слитков из сплавов циркония на основе циркониевой магниетермической губки, содержащих легирующие элементы. Способ включает получение таблеток лигатуры, формирование расходуемых электродов и выплавку слитков. Таблетки лигатуры получают смешиванием и прессованием...
Тип: Изобретение
Номер охранного документа: 0002700892
Дата охранного документа: 23.09.2019
02.10.2019
№219.017.d07b

Выпарной аппарат

Изобретение относится к конструкции выпарных аппаратов и может быть использовано для концентрирования радиоактивных растворов. Предложен выпарной аппарат, содержащий вынесенную греющую камеру, сепаратор с брызгоуловителем, нижнюю питающую камеру, циркуляционную трубу, соединяющую нижнюю...
Тип: Изобретение
Номер охранного документа: 0002700059
Дата охранного документа: 12.09.2019
24.11.2019
№219.017.e5a8

Способ многократного волочения изделий с электроконтактным нагревом и изделие, изготовленное таким способом

Изобретения относятся к области обработки металлов давлением и их термической обработки, в частности к производству изделий из труднодеформируемых, высокопрочных металлов и сплавов, включая титан и его сплавы, нитинол. Техническим результатом является повышение качества изделий за счет...
Тип: Изобретение
Номер охранного документа: 0002707054
Дата охранного документа: 21.11.2019
29.11.2019
№219.017.e803

Способ изготовления трубных изделий высокой точности из гафния

Изобретение относится к металлургии, в частности к способам изготовления труб, трубных полуфабрикатов из металлического гафния с содержанием основного металла не менее 98,8 мас.%, используемых в качестве конструкционного материала для активных зон атомных реакторов, в химической и нефтегазовой...
Тип: Изобретение
Номер охранного документа: 0002707376
Дата охранного документа: 26.11.2019
14.05.2020
№220.018.1caa

Ректификационная колонна

Изобретение относится к области химического машиностроения, может быть использовано при конструировании и изготовлении ректификационных колонн, предназначенных для работы с высококоррозионными средами при повышенных температурах, например для разделения хлоридов циркония и гафния методом...
Тип: Изобретение
Номер охранного документа: 0002720786
Дата охранного документа: 13.05.2020
21.06.2020
№220.018.2914

Кальцийсодержащий материал для обработки металлургических расплавов и способ его получения

Изобретение относится к области металлургии и может быть использовано для получения кальцийсодержащего материала для обработки металлургических расплавов. В способе после проведения процесса грануляции осуществляют процесс пассивации полученных гранул путем вакуумирования упомянутой установки...
Тип: Изобретение
Номер охранного документа: 0002723870
Дата охранного документа: 17.06.2020
21.06.2020
№220.018.292f

Способ безокислительной термической обработки изделий из аустенитной коррозионно-стойкой стали

Изобретение относится к области безокислительной термической обработки изделий из коррозионно-стойкой аустенитной стали, используемых в качестве конструкционных элементов атомных реакторов. В вакуумную камеру загружают садку из обезжиренных изделий и проводят вакуумирование камеры с садкой....
Тип: Изобретение
Номер охранного документа: 0002723871
Дата охранного документа: 17.06.2020
04.07.2020
№220.018.2f19

Кальцийсодержащая проволока для ковшевой обработки стали

Изобретение относится к области чёрной металлургии, в частности к внепечной обработке расплавов чугуна или стали кальцийсодержащими материалами. Кальцийсодержащая проволока состоит из кальцийсодержащего наполнителя и стальной оболочки, продольные края которой соединены методом сварки, при этом...
Тип: Изобретение
Номер охранного документа: 0002725446
Дата охранного документа: 02.07.2020
Showing 11-14 of 14 items.
16.05.2023
№223.018.5f91

Способ ультразвуковой очистки трубы и устройство для его осуществления

Группа изобретений относится к способам очистки труб в различных отраслях промышленности от технологических смазок и загрязнений в процессе их производства и эксплуатации. Ультразвуковое воздействие на очищаемую трубу, один конец которой закреплен зажимом или фиксатором, производят...
Тип: Изобретение
Номер охранного документа: 0002744055
Дата охранного документа: 02.03.2021
16.05.2023
№223.018.5f92

Способ ультразвуковой очистки трубы и устройство для его осуществления

Группа изобретений относится к способам очистки труб в различных отраслях промышленности от технологических смазок и загрязнений в процессе их производства и эксплуатации. Ультразвуковое воздействие на очищаемую трубу, один конец которой закреплен зажимом или фиксатором, производят...
Тип: Изобретение
Номер охранного документа: 0002744055
Дата охранного документа: 02.03.2021
23.05.2023
№223.018.6dc2

Металлокерамический сплав на основе урана

Изобретение относится к атомной технике, а именно к металлокерамическому сплаву на основе урана и может быть использовано при изготовлении ядерного топлива тепловыделяющих элементов (ТВЭЛОВ) для коммерческих реакторов на тепловых нейтронах типа ВВЭР (как толерантное топливо), а также для...
Тип: Изобретение
Номер охранного документа: 0002763048
Дата охранного документа: 27.12.2021
02.06.2023
№223.018.75b9

Способ получения лигатуры цирконий-ниобий

Способ относится к металлургии, в том числе к способам производства слитков циркониевых сплавов, и может быть использован в атомной промышленности. Способ получения лигатуры цирконий-ниобий, включающий обеспечение цирконийсодержащего и ниобийсодержащего материалов и проведение выплавки...
Тип: Изобретение
Номер охранного документа: 0002796507
Дата охранного документа: 24.05.2023
+ добавить свой РИД