×
29.05.2018
218.016.5488

Результат интеллектуальной деятельности: Способ калибровки трехкомпонентного магнитометра

Вид РИД

Изобретение

№ охранного документа
0002654073
Дата охранного документа
16.05.2018
Аннотация: Изобретение относится к области измерения магнитной индукции дифференциальным магнитометром, включающим измерительный и компенсационный каналы. Сущность изобретения заключается в том, что с помощью меры магнитной индукции калибруют каждый канал в его собственной ортогональной системе координат, а после установки каналов на штатных местах находят ортогональную матрицу связи между системами координат каналов через сопоставление синхронных откорректированных результатов измерения однородного МПЗ. Технический результат – повышение точности калибровки дифференциального магнитометра, включая вариант с датчиками без кардановых подвесов. 1 ил., 2 табл.

Изобретение относится к области измерений индукции магнитного поля (МП), в частности МП корабля (МПК).

Контролем МПК занимается специальная магнитометрия, в которой применяются группы трехкомпонентных измерительных магнитометров, включенных по дифференциальной (разностной) схеме относительно опорного (компенсационного) магнитометра. Дифференциальное включение требуется для того, чтобы исключить влияние МП Земли (МПЗ) на результаты измерения МПК. При этом, как правило, датчики таких магнитометров располагаются в труднодоступных местах, что затрудняет их ориентацию вдоль опорной системы координат (СК).

Среди специалистов проблема углового согласования (УС) таких магнитометров относительно опорной СК традиционно считалась трудноразрешимой, что неоднократно подчеркивалось в публикациях, в частности:

- наименьшая погрешность установки датчиков на подводном стенде водолазом по компасу составляет ±5°, тогда как требуемое УС измерительного датчика с опорной СК должно быть не хуже 35 угловых минут [1. B.J. Marshall. Operational Aspects of Magnetic Measurement Ranges. Naval Forces 1989, V 10, #2, P 72-78];

- стоимость геодезических и подводных работ по ориентации каждого трехкомпонентного датчика при установке на его штатном месте, составляет значительную часть стоимости затрат за весь срок службы магнитоизмерительного стенда 2-го поколения [2. Matthews D.C. Contemporary degaussing measuring ranges. Maritime Defence 1979, V 4, #12, P 499-503].

Различают стенды 1-го поколения (1950 -1970 г.) с однокомпонентными датчиками на кардановых подвесах; 2-го поколения (после 1970 г.), использующих 12-18 трехкомпонентных датчиков на кардановых подвесах; 3-го поколения (с конца 1986 г), на которых используются 2-4 трехкомпонентных датчика без кардановых подвесов. Примером стенда 3-го поколения является стенд MS90 [3. More efficient degaussin gatless cost. Maritime Defence 1988, V 13, #7].

Угловая несогласованность датчиков является, по-видимому, самым плохо контролируемым источником систематической погрешности дифференциальных магнитометров на стендах 2 и 3 поколений.

Известен способ [4. Способ углового согласования трехкомпонентных магнитометров на кардановых подвесах. Патент РФ №2256188], из названия которого следует, что способ [4] не пригоден для стендов 3 поколения, где нет кардановых подвесов.

Известен также способ компенсации вариаций МПЗ, описанный в монографии [5. John J. Holmes. Exploitation of a Ship's Magnetic Field Signatures. Morgan & Claypool. 2006. P. 51]. Способ [5] основан на использовании данных вариационной станции, удаленной от испытуемого измерительного датчика. Проверка способа [5] с помощью компьютерного моделирования вариаций МПЗ показала, что он очень критичен к уровню СКО короткопериодных вариаций МПЗ. Например, при СКО вариаций 3 нТл погрешность согласования составляет 15%, при 4 нТл - 5%, при 5 нТл - 0.2%. Но согласно литературным данным амплитуды короткопериодных вариаций в спокойные периоды на широте Санкт-Петербурга лежат в диапазоне менее 3 нТл. Это амплитуды. СКО этих оценок были бы раза в три меньше.

Известен способ, обеспечивающий значительное повышение точности обычной трехкомпонентной магнитометрии [6. Способ калибровки трехкомпонентного магнитометра, Патент РФ №2497139. См. также Иванов Ю.М., Семенов В.Г. Корректирующие матрицы - путь к повышению точности трехкомпонентных магнитометров // Измерительная техника. 2013. №6. С. 46-51]. Способ [6] включает построение собственной ортогональной системы координат (COCK) для неортогонального магнитометра. Но способ [6] не является способом калибровки дифференциального магнитометра, хотя и создает удобную отправную точку для такой калибровки.

В результате анализа перечисленных выше технических решений по совокупности существенных признаков в качестве ближайшего аналога заявляемого способа принят способ [6].

Известный способ калибровки трехкомпонентного магнитометра включает предварительное (то есть, до установки на его штатном месте) определение его уходов нулей и его корректирующей матрицы в его COCK.

Причиной, препятствующей достижению указанного ниже технического результата при использовании известного способа, является то, что он не является способом калибровки дифференциального магнитометра.

Задача, на решение которой направлено заявляемое изобретение, заключается в повышении точности УС дифференциального магнитометра.

Технический результат, получаемый при осуществлении изобретения, заключается в обеспечении калибровки дифференциальных магнитометров с датчиками без кардановых подвесов, то есть в расширении функциональных возможностей калибровки стендов, включая стенды 3 поколения.

Указанный технический результат достигается тем, что заявляемый способ калибровки трехкомпонентного магнитометра, включающий предварительное определение его уходов нулей и корректирующей матрицы в его COCK отличается тем, что калибруют измерительный и компенсационный каналы дифференциального магнитометра, которыми после установки на штатных местах синхронно измеряют однородное МПЗ, из сопоставления скорректированных результатов измерения которого находят ортогональную матрицу связи между COCK того и другого каналов.

На Фиг. 1 изображена типичная схема расположения трехкомпонентных датчиков индукции МП на измерительном стенде. На этой схеме i - один из измерительных датчиков, 0 - единый опорный (компенсационный) датчик. Каждая пара датчиков i и 0 образует дифференциальный магнитометр, подлежащий калибровке.

В известном способе [6] результат измерения трехкомпонентным магнитометром представляют как искажение действительного значение вектора МИ некоторой 3×3 матрицей, называемой искажающей

где (В-O)ui - вектор-столбец результата измерения i-магнитометра (см. Фиг. 1), исправленный на его уходы нулей; ui - искажающая матрица i-магнитометра в его COCKi;

Bi - вектор-столбец действительного значения МИ в точке i в COCK;.

Аналогично обозначают результат измерения опорным магнитометром 0

(В-О)u0=u0⋅B0

где (В-О)u0 - вектор-столбец результата измерения опорным магнитометром 0, исправленный на его уходы нулей; u0 - искажающая матрица опорного магнитометра в его СОСК0; В0 - вектор-столбец действительного значения МИ в точке 0 в СОСК0. Дополнительные пояснения к COCK даны ниже.

Искажающую любого магнитометра выражают произведением диагональной матрицы L на матрицу единичных осей l

где La - безразмерные величины, близкие к единице, а=1, 2, 3;

lа - единичные вектор-строки осей магнитометра.

Матрица L инвариантна к выбору СК, а матрица l зависит от него. Если выбрать ортогональную СК (ОСК) так, чтобы ее орт 1 совпал с осью l1, а орт 2 оказался в плоскости осей l1 и l2, то в такой ОСК матрица l примет вид треугольной, ненулевые элементы которой можно выразить через 1 и неортогональности ее осей

где ; ; - неортогональности осей данного магнитометра;

Т - символ транспонирования вектор-строки в вектор-столбец;

Эта ОСК является собственной для данного магнитометра, поскольку она жестко связана с его (неортогональными) осями. Следует отметить, что понятие COCK ранее предложено в работе [7. Merrayo J.M.J, е.а. Scalar calibration of vector magnetometers // Meas. Sci. Technol. 2000. V. 11. Р. 120-132]. В [7] разработан быстрый, точный и помехоустойчивый метод определения неортогональностей ϕ12, ϕ13, ϕ23, величин La, и уходов нулей магнитометра с помощью трехкомпонентной меры магнитной индукции, что позволяет определить искажающую i-магнитометра в СОСКi и опорного магнитометра в СОСК0.

В итоге последующие результаты измерения (1) корректируют и получают действительное значение индукции в точке i в СОСКi

где - обратная искажающей i-магнитометра или его корректирующая матрица в СОСКi. Обратим внимание на то, что результат измерения i-магнитометром (В-О)ui не зависит от СОСКi., так как магнитометр «не знает», какую СОСК мы выбрали.

Аналогично корректируют результат измерения опорным магнитометром для получения действительного значения индукции в точке 0 в СОСК0

где - корректирующая матрица опорного магнитометра в СОСК0.

Для измерения дифференциальным магнитометром требуется дополнительное выражение индукции в точке i в СОСК0.

где si0 - (неизвестная) матрица ортогонального преобразования координат из СОСК0 в СОСКi; - действительное значение индукции в точке i в СОСК0; s0i - обратная или транспонированная si0 (одно из свойств ортогональной матрицы заключается в том что ее транспонированная и обратная совпадают).

С помощью соотношений (4)-(6) составим скорректированное уравнение измерения дифференциальным магнитометром i0, обозначенным на Фиг. 1.

где - скорректированная в СОСК0 разность индукций МП объекта в точках i и 0;

, - соответствующие части результатов измерения МП объекта в точках i и 0; , - соответствующие части результатов измерения МПЗ в точках i и 0.

Как следует из выражения (7), при удаленном объекте и синхронном измерении однородного МПЗ в точках i и 0

где вектор-столбцы Вi, В0 известны в результате измерений и последующих коррекций.

Матрицу S0i можно выразить последовательным произведением элементарных матриц поворота. Например, поворотом на угол x1 вокруг орта 1, затем на угол x2 вокруг орта 2, затем на угол х3 вокруг орта 3 [8. Андре Анго. Математика для электро- и радиоинженеров. М. Наука. 1965 г. С. 187]

где са=cosxa, sa=sinxa, а=1, 2, 3

Итак, (8) представляет собой систему трех нелинейных уравнений относительно трех неизвестных углов x1, x2, x3. Для решения нелинейных систем в пакете Матлаб разработана программа "fsolve". Но для системы (8)+(9) программа неизменно выдавала физически неприемлемые значения углов (ха>50, 50=0.087).

В этой связи опробован упрощенный аналог (9), учитывающий близость са к единице и sa к нулю

где , а, b, с=1, 2, 3, а≠b≠с.

Кроме того, результаты решения систем зависели от выбора начальных данных х0.

Поэтому целесообразно контролировать решения оценкой погрешности УС в виде

где х=(x1 x2 x3) - результаты решения системы уравнений (8)+(10).

Для иллюстрации всего процесса решения (8)-(11)проведено его компьютерное моделирование для конкретного примера УС:

В0=(0.2097 0.0203 0.4945)⋅10-4, Bi=(0.22 0.02 0.49)⋅10-4

x1=0.01, х2=-0.02, х3=0.025.

Как видно из таблицы, точная система (8)+(9) дает физически неприемлемые решения (углы > 50), а «неточная» система (8)+(10) дает углы, близкие к точным. Это оправдывает упрощение (10). Оценка (11) для (8)+(10) отслеживает точность решения и указывает на наиболее точное из полученных решений (выделено полужирным шрифтом):

Дальнейшее уточнение матрицы УС достигается подстановкой (12) в (8), при этом минимум (11) снижается от 1.28е-04 до 9.45е-05.

Сравним погрешности УС (8)-(10), (8)-(12) с вариантом без УС.

Таким образом, в заявляемом способе с помощью выражений (8)-(12) находят ортогональную матрицу s0i, обеспечивающую УС каналов дифференциального магнитометра i0 при измерении по уравнению (7). При этом заявляемый способ снижает погрешность УС каналов более чем в 200 раз (см. Таблицу 2).

Способ калибровки трехкомпонентного магнитометра, включающий предварительное определение его уходов нулей и корректирующей матрицы в его собственной ортогональной системе координат (СОСК), отличающийся тем, что калибруют измерительный и компенсационный каналы дифференциального магнитометра, которыми после установки на штатных местах синхронно измеряют однородное МПЗ, из сопоставления скорректированных результатов измерения которого находят ортогональную матрицу связи между СОСК того и другого каналов.
Способ калибровки трехкомпонентного магнитометра
Способ калибровки трехкомпонентного магнитометра
Источник поступления информации: Роспатент

Showing 1-5 of 5 items.
26.08.2017
№217.015.d990

Способ и устройство для определения октановых чисел автомобильных бензинов

Способ определения ОЧ автомобильных бензинов заключается в определении текущего значения информационного параметра анализируемого бензина и определении ОЧ по соответствующей калибровочной зависимости. Значение информационного параметра определяют путем измерения текущих значений температуры и...
Тип: Изобретение
Номер охранного документа: 0002623698
Дата охранного документа: 28.06.2017
29.12.2017
№217.015.f7d7

Способ управления работой двигателя внутреннего сгорания и система для его осуществления

Изобретение относится к двигателестроению, в частности к двигателям внутреннего сгорания (ДВС). Изобретение позволяет повысить качество смесеобразования в камере сгорания ДВС в широком диапазоне эксплуатационных режимов за счет использования управления системами внешней и внутренней...
Тип: Изобретение
Номер охранного документа: 0002639456
Дата охранного документа: 21.12.2017
19.10.2018
№218.016.9398

Способ защиты от вибрации и устройство для его осуществления

Изобретение относится к области машиностроения. Маятники связывают по дифференциальной схеме и устанавливают соотношение между жесткостями упруго-демпфирующих элементов. Устройство содержит подвижные и неподвижные элементы. Упруго-демпфирующие связи образуют маятниковую систему с двумя...
Тип: Изобретение
Номер охранного документа: 0002669914
Дата охранного документа: 16.10.2018
24.01.2019
№219.016.b32d

Способ измерения магнитного момента тела удлиненной формы

Изобретение относится к области измерения магнитного момента (ММ). Сущность изобретения заключается в том, что намагниченное тело делят на продольные участки одинакового объема, измеряют расстояния между центрами участков и измерительным и компенсационным датчиками трехкомпонентного...
Тип: Изобретение
Номер охранного документа: 0002677928
Дата охранного документа: 22.01.2019
24.10.2019
№219.017.da02

Способ автоматического размагничивания кораблей

Изобретение относится к области размагничивания корабля для защиты от магнитных мин и магнитных средств его обнаружения. Для автоматического размагничивания корабля включают определение токов размагничивающих обмоток по результатам измерений магнитной индукции бортовыми трехкомпонентными...
Тип: Изобретение
Номер охранного документа: 0002703765
Дата охранного документа: 22.10.2019
Showing 11-20 of 23 items.
29.12.2017
№217.015.f7d7

Способ управления работой двигателя внутреннего сгорания и система для его осуществления

Изобретение относится к двигателестроению, в частности к двигателям внутреннего сгорания (ДВС). Изобретение позволяет повысить качество смесеобразования в камере сгорания ДВС в широком диапазоне эксплуатационных режимов за счет использования управления системами внешней и внутренней...
Тип: Изобретение
Номер охранного документа: 0002639456
Дата охранного документа: 21.12.2017
19.10.2018
№218.016.9398

Способ защиты от вибрации и устройство для его осуществления

Изобретение относится к области машиностроения. Маятники связывают по дифференциальной схеме и устанавливают соотношение между жесткостями упруго-демпфирующих элементов. Устройство содержит подвижные и неподвижные элементы. Упруго-демпфирующие связи образуют маятниковую систему с двумя...
Тип: Изобретение
Номер охранного документа: 0002669914
Дата охранного документа: 16.10.2018
24.01.2019
№219.016.b32d

Способ измерения магнитного момента тела удлиненной формы

Изобретение относится к области измерения магнитного момента (ММ). Сущность изобретения заключается в том, что намагниченное тело делят на продольные участки одинакового объема, измеряют расстояния между центрами участков и измерительным и компенсационным датчиками трехкомпонентного...
Тип: Изобретение
Номер охранного документа: 0002677928
Дата охранного документа: 22.01.2019
01.03.2019
№219.016.c9e0

Способ раздельного измерения индуктивного и постоянного магнитных моментов крупногабаритного ферромагнитного тела удлиненной формы

Предложенное изобретение относится к области измерения магнитных характеристик, в частности к измерению индуктивного и постоянного моментов крупногабаритного тела, например корабля. Задачей, на решение которой направлено данное изобретение, является упрощение процедуры измерения всех компонент...
Тип: Изобретение
Номер охранного документа: 0002293345
Дата охранного документа: 10.02.2007
20.03.2019
№219.016.e86d

Устройство для изготовления тонкосводных баллиститных пороховых трубок

Изобретение относится к области изготовления тонкосводных баллиститных пороховых трубок по прессовой технологии, используемых для артиллерийских зарядов. Техническим результатом заявленного устройства является обеспечение изготовления тонкосводных пороховых трубок с малым коэффициентом...
Тип: Изобретение
Номер охранного документа: 0002451599
Дата охранного документа: 27.05.2012
29.03.2019
№219.016.f609

Способ изготовления тонкосводных пороховых трубок

Изобретение относится к области изготовления тонкосводных трубчатых баллиститных порохов по прессовой технологии с коэффициентом упругости ≤0,15, используемых для артиллерийских зарядов. Способ включает загрузку в стакан вертикального гидравлического пресса разогретого порохового блока,...
Тип: Изобретение
Номер охранного документа: 0002451002
Дата охранного документа: 20.05.2012
29.03.2019
№219.016.f60a

Экструдер для переработки баллиститных порохов и топлив

Изобретение относится к оборудованию, предназначенному для переработки баллиститных порохов и топлив и изготовления зарядов из них, и может быть эффективно использовано на фазе гомогенизации пороховой массы и прессования зарядов. Изобретение представляет собой экструдер, рабочий орган которого...
Тип: Изобретение
Номер охранного документа: 0002451003
Дата охранного документа: 20.05.2012
19.04.2019
№219.017.300f

Способ измерения магнитного момента крупногабаритного тела удлиненной формы

Изобретение относится к области измерения магнитного момента (ММ). Тело делят на продольные участки с неизвестными ММ, измеряют параметры индукции магнитного поля тела во внешних точках и расстояния между точками и центром тела, включая удаление или минимальное расстояние между датчиком поля и...
Тип: Изобретение
Номер охранного документа: 0002303792
Дата охранного документа: 27.07.2007
29.04.2019
№219.017.44be

Способ измерения плоского угла и устройство для его реализации

Способ заключается в кодировании измерительного диапазона прибора с помощью сигнальных щелей маски, формировании изображения сигнальной щели в плоскости приемной ПЗС (КМОП)-матрицы и передаче полученного изображения в вычислительный блок. Кодирование измерительного диапазона прибора...
Тип: Изобретение
Номер охранного документа: 0002451903
Дата охранного документа: 27.05.2012
29.05.2019
№219.017.66c1

Способ изготовления заготовки заряда баллиститного твердого ракетного топлива и устройство для его осуществления

Группа изобретений относится к изготовлению зарядов твердого ракетного топлива. Предложен способ изготовления заготовки заряда баллиститного твердого ракетного топлива и устройство для осуществления способа. Способ включает установку нижнего и верхнего обтюрирующих колец в стакан гидропресса,...
Тип: Изобретение
Номер охранного документа: 0002337087
Дата охранного документа: 27.10.2008
+ добавить свой РИД